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CHAPITRE [II
BASES D’ENTIERS
III.1. RAPPELS
Bases d’entiers normales

Soit K une extension abélienne de Q. On dit qu'un élément 6 de K
engendre une base normale des entiers de K si I'anneau des entiers de K
admet pour base, sur Z, ’ensemble des conjugués de 6.

Si K possede une base d’entiers normale, engendrée par 6, alors:

— Tout sous-corps L de K posséde également une base d’entiers normale
engendrée par Try,; (0).

En effet, tout entier x de L, s’écrit:
x= Y  A,0(0), 4, appartenant & Z.

se G (Kjg)
Puisque x est invariant par tout L-automorphisme de K, alors A, = 4,

pour tous ¢ et ¢’ situés dans la méme classe modulo G (X/1).
— La trace de 6 sur Q est égale a + 1.
En effet Z n’a pas d’autre base d’entiers que {1} ou { — 1 .

Corps cyclotomiques

¢ étant une racine primitive ne™e de 1, on notera @, (X) le ne™e polynome
cyclotomique, c’est-a-dire le polynome minimal de & sur Q. On rappelle
qu'on a la relation: X" — 1 = [] ¢, (X).

k|n
Sin = pit..p,™ est la décomposition de » en facteurs premiers, on a:

1 um—1>

By(x) = o, (X707l

Di---Pm

([6] chapitre 8).

II1.2. BASES D’ENTIERS DANS LES CORPS CYCLOTOMIQUES

LemMme II1.1.

Soit d un entier sans facteur carré et ¢ une racine primitive deme
de 1. On a alors Trg 4,0 (§) = (— D™, m étant le nombre de facteurs

premiers de d.
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X -1
On peut raisonner par récurrence sur 7, en utilisant: @; = 1—[ o
k
k|d
k#d

Pour tout diviseur k de d soit my, le nombre de facteurs premiers de k.
D’aprés I'hypothése de récurrence, les @, sont de la forme:

XOW (1) xP®-t

et &, sera de la forme:

k|d
k#d

Xe-d _ gxe@=d=1 L ayec s = )y (—1"k.
k|d
k#d
Comme le nombre de diviseurs k de d, possédant m, facteurs premiers est
Ck, on aura donc:

s= Y (=1cChL=—-(-D".

0<j<m—1 .
@, sera donc de la forme:

X<P(d) . (_1)quJ(d)—-1 4o

LemMmEe II1.2.

Soient n et d deux entiers tels que d soit sans facteur carré et
premier avec n. Soit ¢ une racine primitive (nd)e™me de 1. Soient F
I’ensemble des racines primitives (nd)e™e de 1 et F” I’ensemble des
& tels que: 0 = b < ¢ (nd) et PGCD (b, n) # 1.

Alors le module engendré sur Z par F U F” est I'anneau des
entiers de Q (nd).

Comme {1, &, &2, ..., £20D 711 est une base de I'anneau des entiers de
Q (nd), il suffit de montrer que si ¢ est premier avec # et non premier avec d,

alors &€ appartient au module engendré par F.
nd

Soit v = PGCD (c, d). 67 est une racine primitive ve™e de 1 et v est sans
facteur carré. D’aprés le lemme III.1, on a la relation:

ndk ndk

—_— — T
+ 1= Y Ev doun: ¢ = + Y Ev
O0<k<v O<k<vw
PGCD (k,v)=1 PGCD (k,v)=1
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, ndk , o
On vérifie que — + ¢ et nd sont premiers entre eux, c’est-a-dire que les
v

dk
n——+c
v

¢ appartiennent a F.

LemME 1II1.3.

En effet si d est sans facteur carré, alors d’aprés le lemme II1.2, appliqué
an = 1, les conjugués de &, racine primitive d¢™e de 1, engendrent ’anneau
des entiers de Q (d). Comme ils sont en nombre égal a [2 (d): O], ils forment
donc une base de I'anneau des entiers de Q (d). Réciproquement soit p un
nombre premier et ¢ une racine primitive (p?)eme de 1. Comme @, (X)
= @, (X?), on a Try,2y,0 (§) = 0. D’autre part:

Tropee(€?) = pTropy () = —p

et la trace de toute racine (p?)¢™me de 1, non primitive, est multiple de p.
Ainsi la trace de tout entier de Q (p?) est multiple de p, donc ne peut étre
égale & 1. Q (p?) n’a pas de base d’entiers normale, non plus que tout sur-
corps de Q (p?). En particulier Q (d) n’a pas de base d’entiers normale si d
possede un facteur carré.

Q (d) posséde une base d’entiers normale si et seulement si d
est sans facteur carré.

ITI1.3. CONDITIONS POUR QU’UNE EXTENSION ABELIENNE DE Q
POSSEDE UNE BASE D’ENTIERS NORMALE

Notation : Si K est une extension cyclique sur Q, 0 un élément de K,
o un automorphisme de K, ¢ un entier positif, B (0, g, t) désignera
I’ensemble des ¢ premiers conjugués successifs de § par o, c’est-
a-dire:

B(0,0,t) = {d"(0),0 <k <t}

ProrosiTioN II1.1.

Soit K, une extension cyclique de degré p" sur Q (p premier).
Soit Q (n,) le plus petit corps cyclotomique contenant K,. On suppose
que u, est différent de 0, que £ est une racine primitive (n,)eme de
1 et B,_, est une base de I’anneau des entiers de K,_,. Soient 6
= > % et o un générateur de G (K,/Q).

se Sy
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