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CHAPITRE [II
BASES D’ENTIERS
III.1. RAPPELS
Bases d’entiers normales

Soit K une extension abélienne de Q. On dit qu'un élément 6 de K
engendre une base normale des entiers de K si I'anneau des entiers de K
admet pour base, sur Z, ’ensemble des conjugués de 6.

Si K possede une base d’entiers normale, engendrée par 6, alors:

— Tout sous-corps L de K posséde également une base d’entiers normale
engendrée par Try,; (0).

En effet, tout entier x de L, s’écrit:
x= Y  A,0(0), 4, appartenant & Z.

se G (Kjg)
Puisque x est invariant par tout L-automorphisme de K, alors A, = 4,

pour tous ¢ et ¢’ situés dans la méme classe modulo G (X/1).
— La trace de 6 sur Q est égale a + 1.
En effet Z n’a pas d’autre base d’entiers que {1} ou { — 1 .

Corps cyclotomiques

¢ étant une racine primitive ne™e de 1, on notera @, (X) le ne™e polynome
cyclotomique, c’est-a-dire le polynome minimal de & sur Q. On rappelle
qu'on a la relation: X" — 1 = [] ¢, (X).

k|n
Sin = pit..p,™ est la décomposition de » en facteurs premiers, on a:

1 um—1>

By(x) = o, (X707l

Di---Pm

([6] chapitre 8).

II1.2. BASES D’ENTIERS DANS LES CORPS CYCLOTOMIQUES

LemMme II1.1.

Soit d un entier sans facteur carré et ¢ une racine primitive deme
de 1. On a alors Trg 4,0 (§) = (— D™, m étant le nombre de facteurs

premiers de d.
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X -1
On peut raisonner par récurrence sur 7, en utilisant: @; = 1—[ o
k
k|d
k#d

Pour tout diviseur k de d soit my, le nombre de facteurs premiers de k.
D’aprés I'hypothése de récurrence, les @, sont de la forme:

XOW (1) xP®-t

et &, sera de la forme:

k|d
k#d

Xe-d _ gxe@=d=1 L ayec s = )y (—1"k.
k|d
k#d
Comme le nombre de diviseurs k de d, possédant m, facteurs premiers est
Ck, on aura donc:

s= Y (=1cChL=—-(-D".

0<j<m—1 .
@, sera donc de la forme:

X<P(d) . (_1)quJ(d)—-1 4o

LemMmEe II1.2.

Soient n et d deux entiers tels que d soit sans facteur carré et
premier avec n. Soit ¢ une racine primitive (nd)e™me de 1. Soient F
I’ensemble des racines primitives (nd)e™e de 1 et F” I’ensemble des
& tels que: 0 = b < ¢ (nd) et PGCD (b, n) # 1.

Alors le module engendré sur Z par F U F” est I'anneau des
entiers de Q (nd).

Comme {1, &, &2, ..., £20D 711 est une base de I'anneau des entiers de
Q (nd), il suffit de montrer que si ¢ est premier avec # et non premier avec d,

alors &€ appartient au module engendré par F.
nd

Soit v = PGCD (c, d). 67 est une racine primitive ve™e de 1 et v est sans
facteur carré. D’aprés le lemme III.1, on a la relation:

ndk ndk

—_— — T
+ 1= Y Ev doun: ¢ = + Y Ev
O0<k<v O<k<vw
PGCD (k,v)=1 PGCD (k,v)=1

L’Enseignement mathém., t. XVIII, fasc. 1. 7




90 —

, ndk , o
On vérifie que — + ¢ et nd sont premiers entre eux, c’est-a-dire que les
v

dk
n——+c
v

¢ appartiennent a F.

LemME 1II1.3.

En effet si d est sans facteur carré, alors d’aprés le lemme II1.2, appliqué
an = 1, les conjugués de &, racine primitive d¢™e de 1, engendrent ’anneau
des entiers de Q (d). Comme ils sont en nombre égal a [2 (d): O], ils forment
donc une base de I'anneau des entiers de Q (d). Réciproquement soit p un
nombre premier et ¢ une racine primitive (p?)eme de 1. Comme @, (X)
= @, (X?), on a Try,2y,0 (§) = 0. D’autre part:

Tropee(€?) = pTropy () = —p

et la trace de toute racine (p?)¢™me de 1, non primitive, est multiple de p.
Ainsi la trace de tout entier de Q (p?) est multiple de p, donc ne peut étre
égale & 1. Q (p?) n’a pas de base d’entiers normale, non plus que tout sur-
corps de Q (p?). En particulier Q (d) n’a pas de base d’entiers normale si d
possede un facteur carré.

Q (d) posséde une base d’entiers normale si et seulement si d
est sans facteur carré.

ITI1.3. CONDITIONS POUR QU’UNE EXTENSION ABELIENNE DE Q
POSSEDE UNE BASE D’ENTIERS NORMALE

Notation : Si K est une extension cyclique sur Q, 0 un élément de K,
o un automorphisme de K, ¢ un entier positif, B (0, g, t) désignera
I’ensemble des ¢ premiers conjugués successifs de § par o, c’est-
a-dire:

B(0,0,t) = {d"(0),0 <k <t}

ProrosiTioN II1.1.

Soit K, une extension cyclique de degré p" sur Q (p premier).
Soit Q (n,) le plus petit corps cyclotomique contenant K,. On suppose
que u, est différent de 0, que £ est une racine primitive (n,)eme de
1 et B,_, est une base de I’anneau des entiers de K,_,. Soient 6
= > % et o un générateur de G (K,/Q).

se Sy
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i Alors:
|
|

B,_; UB(0,0, ¢(p")) est une base de I'anneau des entiers de K.

Soit g un automorphisme de Q (n,) prolongeant o. Les classes de G (n,)
§ modulo S, sont g5, 0=k < p".
Introduisons les ensembles suivants:

F est ’ensemble des racines primitives n;"° de 1 c’est-a-dire:
F ={{aeGn,)},
={&ae U ¢*S,}

O0<k=<o(pr)

={&0<b<o(m) e pl|b}.

Puisque p"“ est le plus grand facteur carré divisant n,, le lemme 1II.2
permet d’affirmer que le module engendré sur Z par F u F” est 'anneau des
entiers de Q2 (n,). Montrons que F’' U F” est une base de cet anneau. Pour
cela 1l suffit de constater que:

— Card F" U F" = ¢ (n,).
— Tout élément de F — F’ appartient au module engendré par F’.

£,

i
1
:
By

La premiére assertion résulte d’un dénombrement immédiat des élé-
 ments de F' U F". Pour démontrer la deuxiéme, on écrit tout d’abord que:

13
i
]
b
{
|
‘
I
!
‘
1
1

‘(ép est une racine primitive peme de 1).
- Soit en multipliant cette égalité par £, on obtient:

f;jm Y& =0
} aeT(nr _g_)

] 14 b r A n
v Examinons comment sont répartis les éléments de T(n,, —5> dans les

i classes de G (n,) modulo S..
n

i . nr
Puisque K, ¢ Q (p_> onaQ(n) =K,.Q ( ) et puisque K,_; = Q (—5>
p p

:
:
;
L:

(condition I.2.A sur la suite (u;);_;_,), on a:

nr
Kr—l == KrﬂQ<—->.
p

T HWRITL %

I e
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Les sous-groupes correspondants de G (n,) vont donc vérifier les égalités:

n, n,
T(n,, ——) .S, =S,_{ et T<n,, —~> NS, ={1},
| p p

qui montrent que S,_;, groupe des K,_, -automorphismes de Q (n,), est

n
produit direct de S, et de T (n,, —r>. Dans toute classe de S,_, modulo S,
p

0=

r’

. . rq1r nr -
il existe donc un seul élément de T<n,, —) . Ces classes sont g“?" 'S

. r— . o1y - n
k=p — 1. S1 sg? " est I'unique élément de g?’ 'S A T(n ,— |, alors
q r r p
. r—1 5 . ,er r—1
pour tout k entre Oet p — 1, s*g"” ~ est 'unique élément de g*?" ~ S, N

nr r{r nr r—
T(nr, ~> et les éléments de T(n,, —) sont done s*g"" ', 0 =k =p — 1.
p p

L’égalité (1) va donc s’écrire:
®) Yoot~ o,

s appartenant a S,.
Tout élément de F — F” peut s’écrire sous la forme:

rp—1 gt+(p—1)pr~—1 _
gssPm e (p=1op avec s'eS, et 0=t<ptl.

Transformant alors I’égalité (2) par I'automorphisme s'g’, on obtiendra:

és'sp—l gt+(p_ 1)Pr‘1 - Z éslsk gt+kpr—1

O0<k<p-2

Les racines primitives de 1, intervenant sous le signe ) sontdans F'. F' U F”
est donc une base des entiers de Q2 (n,).

Soit x un entier de K,. On a x = x" + x” avec x’ (respectivement x”)
appartenant au module engendré zur Z, par F’ (respectivement F”). Soit
s un K-,automorphisme. Comme F” est une base de I’anneau des entiers de

n, r ”
Q (&> . 8 (x") appartient encore a Q (—) , donc au module engendré par F”.
p :

p
De méme s (x') appartient encore au module engendré par F’, car s permute

entre eux les éléments de F'. Comme enfin s (x) = x, on aura donc s (x')
= x"ets(x") = x".
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. . b nr
x" étant invariant par tout K,-automorphisme, appartient a <;) n k.

' ¢’est-a-dire a K, _ ;.
{ Quant a x’, il s’écrit:

Y 2,64 A, €Z
ae V) gks,
0<k<e(pr)

De x' = s(x) on déduit que A, = A, si a et a’ sont congrus modulo S,.
‘Posant alors p, = A, on obtient:

x' = Z ,“k( Z fagk) = Z ()

0<k<o(pr) aec S, O<k<o(pr)

Remarque I11.1.

On n’utilise pas complétement le fait que @ (n,) est le plus petit corps
cyclotomique contenant Kr, mais seulement que #n, est de la forme pin,

r : , n,
avec n’ premier avec p, sans facteur carré, K, < Q (n,) et K, £ Q (—— :
p

ProrosiTIiON III.2.

Soit K une extension abélienne de Q. Les conditions suivantes sont
équivalentes:

| II1.2.A: K possede une base d’entiers normale.
III.2.B: 11 existe un entier 6 de K tel que Trg,y (0) = 1.

II1.2.C: Le plus petit corps cyclotomique contenant K posséde
une base d’entiers normale.

II1.2.D: K est modérément ramifiée.

C = A et A = B résultent des rappels effectués au paragraphe III.1.
- B = C résulte pour les extensions cycliques de degré p" sur Q de la pro-
posmon ITI.1. Reprenant les mémes notations, si 2 (n,) ne posséde pas de
‘base d’entiers normale, alors, d’aprés le lemme 1II.3, n, posséde un facteur
carré, donc u, = 2.

’ Comme @, (X) =&, (X?*"), la trace de & sur Q est nulle, donc celle

ur—1
p

; de 0 €galement. Si x est un entier de K,, x se décompose comme précé-
‘demment en x = x" 4+ x" et 'on a:
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TrKr/Q(x) = TrKr/Q (x”) =P TrKr_l/Q(x”) ¢

La trace d’un entier de K, ne peut donc étre égale a 1.

Soit maintenant K une extension abélienne de Q et Q (n) le plus petit
corps cyclotomique contenant K. Supposons qu’il existe un entier 8 de K
tel que: Trg,o (0) = 1. '

Le groupe de Galois de K sur Q est produit direct de m groupes cycliques
d’ordre p;t.

Soit K; le corps fixe de Gy x ... x G,y x {1} x G;yy X .. x G
est cyclique de degré pi sur Q et K = KK, ... K,

Soit 0; = Trg k. (0). 0; est un entier de K; tel que Trg, 0 (0;) = 1.
Si Q(n;) est le plus petit corps cyclotomique contenant K, alors n; est
sans facteur carré d’apres la démonstration précédente.

n est le PPCM des n;, donc il est sans facteur carré.

Soit p un nombre premier se ramifiant dans K, c’est-a-dire divisant .
Si n est sans facteur carré, alors I'indice de ramification de p dans Q (n)
est p — 1 et I'indice de ramification de p dans K, divise p — 1, donc est
premier a p.

Réciproquement, si n posséde un facteur carré, alors n est de la forme
n = p°n’, avec p premier, ne divisant pas n’ et s = 2. Soit © 'application
de G (n) sur G (X/p) qui a tout automorphisme de Q (n) fait correspondre |

K.

m* l

n
sa restriction a K. Puisque K ¢ Q (—) , alors
P/

Kern = G("™/,) 2 T<n,%>.

n
Donc = (T <n, —>> a pour ordre p et il est inclus dans 7 (7 (n, n')) quiestle

b |
groupe d’inertie de p dans K. L’indice de ramification de p dans K est donc

multiple de p.

III.4. BASES D’ENTIERS DANS LES EXTENSIONS K,

ProrosiTioN [II.3.

Soit K. une extension cyclique de degré p" sur Q, Q (n,) le plus
petit corps cyclotomique contenant K.
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On suppose que u, = 2; c’est-a-dire que K, ne posséde pas de base
| d’entiers normale. ¢ désignant une racine primitive #;"¢ de 1, on
| pose 0; = > &P 7" pour tout i de [ ar.

se S,

Si p est impair ou si p = 2 et u, = 2, on pose:

i -I+1
9%—1 = 2: éspr
se S,
) } Sip = 2 etu, =3, on pose:
. I
ar—=i+2
g 0,1 = % Z g2
g i se Sy
w |
} | o est un générateur du groupe de Galois de K, sur Q.
i Alors:
B(91—17G:pl—1)u( Y B(Qiao-:q)(pl)))
I<i<r
est une base de I’anneau des entiers de K,.

. On montre tout d’abord que B (0,_4, o, p' 1) est une base de I'anneau
. des entiers de K;_ .
Dans le cas ou p est impair ou p = 2 et u, = 2, ona°u——r—l+2,

r—I+1 r—1+1

{v nr n
K, S ®Q <__> - ——"__est sans facteur carré, donc &7 o engendre
b p

pr—l+1
p" l+1)
1+1> 1K) 1 engendre donc une base normale des entiers
I'

- ) n
~ une base normale des entiers de Q(—r——>

de K,_,. 1l reste donc & montrer que cette quantité est égale & 6,_,. Pour

~ cela introduisons I’application n,_, de G (n,) dans G (~1—> qui a toute
1 p

- classe modulo #, fait correspondre la classe modulo ——
|

S, étant le groupe des K,-automorphismes de Q (n,), ©,_; (S,) sera le groupe

t% n, ) n,
des K,nQ (Tﬁ) -automorphismes de Q <—> :

r—I+1
p

| p
n
Comme K, & Q <ﬁ>, (condition I.2.A; u;, = 2) on a donc
p

h
K-y = K, mQ(W)

—— 77 qui la contient.
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nl‘
m,—4 (S,) est donc le groupe des K,_ -automorphismes de Q(TJH) ‘
P ,

On aura donc I’égalité:

r—1+1 ror—1l+1

Tr r ‘ P = o
Q(;r%:i)/Kl—-l(é ) sgnl_l (Sr)é

ID’autre part, on déduit des égalités:

1 n, n -
-0y )] - o)) -
4 p 14
et
|:Q (n,): Q(”;’zm):l =pte,
p
n,
| r

Les sous-groupes de G (n,) correspondants vont donc vérifier: ;

La restriction de n;,_; a S, est donc bijective. On en déduit:

Z éS/pr—H-l _ Z énl_l(s)pr—l+1

s’enl_l(Sr) seSr

que

Cette derniére quantité est égale a 0,_, puisque, par définition de m,_:

on a B n,
s =1 (9) l')r—_,ﬁ

d’ot sp = () p" T ()
Dans le cas o p = 2 et u, >3, on a alors: u, = r — [ + 3 et I'on §

2r—l+2

nr r . :
utilise alors I’application n;,_, de G (n,) sur G( ) La démonstration

est identique a la précédente, a ceci prés que:

|:Q n): K, . Q(-Z——nmﬂ iy
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| C’est-a-dire que T<nr, ) N S, posséde deux éléments. On aura cette

,
2r—l+2
- fois:

gs;zr—l+2 _ % Z 57.z:l___-2(s)2)‘—1""2

s'eny_5(Sy) seS,
On montre ensuite par récurrence sur ¢ que:

Bt = B (91—15 g, pl-‘l) K-)( v B(Qia g, (P(pl)))
<i<t

I<i

est une base de K,. Supposons donc que B,_, soit une base de I’anneau

r—t

p
n n

Comme K, < Q ( r;) etK,, & Q < r;) (proposition 1.2; condition 1.2.A ;

p

p
nr
K, = Q( H)alg
P

nr
des entiers de K,_ ;. Soit 7, ’application canonique de G (n,) sur G( )

i lli+1 = ui -+ 1), Oon a

n
et 7, (S,) est le groupe des K,-automorphismes de Q< ri t).
p
Si g, = Y &P la proposition IIL.1 et la remarque III.1, appliquées
s’et(Sy)

n, ,
a Q( >et K, permettent de conclure que: B,_; U B (0, o, ¢ (p")) est

r—t

p
- une base de 'anneau des entiers de K. Il reste alors & montrer que 0, = 0,.

| it 1

. Je . r _r r L r nr
. Ceci se déduit comme précédemment de 1’égalité T(n,, > ns,= 1,
| p

toujours vraie si [ =t =r.
On utilisera dans le paragraphe suivant les remarques:

Remarque 111.3.4

Pour tout i = [Trg, x,_, (0;) = 0.
En effet:

Trx;_(0) = TrQ(L,_)/Ki_l (gpr~z)
pr—t

= Tr!)(pr_fii‘.?f>/Ki_1 <Tr9<p:'_i>/9(prfri+1><él"'_")>
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Cette quantité est nulle car X? — 7"~ "+ est le polynome minimal de &7"~°
3 nr
sur i .

Remarque 111.3.B

TrKl_l/Q (0,1 = (- l)mrﬂ

n

Il suffit d’appliquer le lemme II1.1 & Q (%) ou Q <2r_—lr+2—> , suivant
p

les cas.

Remarque 111.3.C

Danslecasou p = 2 et u, = 3, on a:

2: ésZr_l+1

sesS;

0

I

En effet:
(fzr_Hl)

se S, or—Il+1

Z ésZ"—l+1 _ TrQ< ny >/Kz—

et d’autre part
n

Kl—l S Q(Z"__;‘Ts>

TI‘Q(#)/Q<2rjrl+3><£2r—l+1> — 0
n

car X2 — ¥ 7'*2 est le polynome minimal de ¥ ~'*! sur Q(ﬁ)

et

111.5. EXEMPLE

Soit B la base introduite a la proposition III.3. On se propose de chercher
les polynomes caractéristiques des ;. Pour cela, il faut pouvoir calculer les
coordonnées, par rapport & B, des produits mutuels d’¢léments de B.

Les 0, sont des périodes de Gauss ([7] chapitre 7). On pose pour tout

entier a: n (a) = ) &

se Sy

R A s o AR LT T L G T S T R AR i e

AR AR YT

ISR BT
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i
3

{ On a en particulier:

0, =n(p™" pour [Sisr

et suivant les cas:

0y = (@™ ou I(27T?).

* Pour tout b appartenant & G (n,), le transformé de # (a) par b est y (ab).

- En particulier les conjugués de 8;, pour / =i =r, seront:

a“(0) = n(g“p"™).

Le produit de deux périodes 7 (a) et 5 (a’) est donné par: # (a) n (a’)

= Y n (a+a's). Appliquant cette formule a deux éléments de B, on

se Sy

est alors ramené au probléme suivant: donner les coordonnées de n (a), a
entier quelconque, dans la base B.

c et ¢’ désignent dans ce qui suit, des nombres premiers avec p.

1. Dans le cas pimpairoup = 2etu, = 2,5 (p“c),avecu =r — [ + 2,
peut s’exprimer comme somme de périodes de la forme # (p"~'*1c). 1l
suffit d’écrire I’égalité:

multipliant alors cette égalité par £P“° on obtient:

1) n(ﬂkw%) = — n(p“c).

O<k<p p

o - ’
Les quantités —k + p“c sont de la forme p"~'*1¢.

Danslecasoup = 2etu, =3,y (2%), avecu =r — [ + 3, est 'opposé

~ d’une période 5 (2"~ 2¢").

2. n(p¥c), avec u=r —1[1+1 (ou u=r — [+ 2, suivant les cas)

peut s’exprimer comme somme de périodes de la forme # (p“c’), ¢’ appar-
- tenant & G (n,), en procédant de la méme fagon qu’au lemme II1.2. C’est-

- a~dire: si v désigne le PGCD de c et de n,, et m, le nombre de diviseurs pre-
- miers de v, on a:

Il

I

O<k<v
PGCD(k,v)=1
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d’ou:

(—D™nGp' = Y n(%mpuc)

O<k<v
PGCD(kyw)=1

Les quantités — k 4 p“c sont de la forme p“c’, avec ¢’ premier avec #,.
v

Cas particulier :

n, n,
Si K, n Q(—) cK.nQ <~—u> et u=r — [, alors n (p“c) = 0.
v P

n, n, n,
En effet on a: PGCD (7,——> = .

nr nr A r
Dou K, n Q2 (——) c Q <T> En employant la méme méthode que dans
v p*v

la démonstration de la proposition IIL.3, n (p¥c) est égal, a un coefficient |
pres, a:

T?‘Q(ir_)/Ker(n_vr)(fPuc)

puv

n n,
Comme K, N Q (—;) > K, nQ (—) et comme u =r — [, on aura donc:
p v

n, n,
K,mg( u+1>2 K,m9<—>.
p v

n _ n, n ,
Q( - ) sera donc compris entre K, N Q (~> et Q (Tr> et 'on a
| v p*“v

M) )

3. n(p¥), avec u=r — [+ 1 (ou u=r — [ 4+ 2 suivant le cas) et
¢ premier avec #,, est un conjugué de # (p*) = 0,_, (2 moins qu’il ne soit
nul; remarque II1.3.C).

S’il n’est pas dans B, alors ses conjugués sur K,_,_, seront dans B et il
suffit alors d’utiliser la remarque II1.3.A.
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Considérons par exemple, la suite de corps cyclotomiques vérifiant les
| conditions 1.2.A bis et 1.2.B bis: Q (17), Q (8.17), 2 (16.17).
30nadoncr= 3;1=2my =my, =my =1;p; =17

Il y a quatre extensions Kj, cycliques de degré 8 sur Q associées a cette suite
ﬁ (proposition 1.5 bis).

| Elles ont pour discriminant sur Q: 222 177 (proposition II.3).

" T(16.17, 17) a pour éléments 1, 35, 69, 103, 137, 171, 205, 239.

“a, = 239 et ’'on peut choisir comme générateur de 7'(16.17, 4.17):

a, = 69.

- On cherche de méme les éléments de 7T (16.17, 16) et un générateur c,
- de ce sous-groupe. On peut prendre par exemple ¢, = 65. Les puissances
“ successives de ¢, sont données par le tableau suivant:

1 2 3 41 5] 6 7 8 9 10 | 11 12 | 13 14 15

65| 145 | 177 | 81 | 97 | 49 | 193 | 33 | 241 | 161 | 129 | 225 | 209 | 257 | 113

S est engendré par { c1, c{0ay, cfoay }, oo et oy vérifiant les conditions
g = 0(4); ao=0(2) et ag =0 (4) (proposition 1.4 bis). Les éléments de S,
sont de la forme:
861 +aofo +aoBo Bo Po

§ = Cq do Qo
avec fo = Ooul; Bo=0,1,20u3; B, =0oul.
Prenons par exemple: o, = 4 et oy = 2.

. Le tableau suivant donne les valeurs de s, en fonction de B,, Bo, f1. On
trouve donc a la derniére ligne les éléments de S;:

BolO|lOjoO]O][O|Oo|Oo|oO0| 1|1 ]|1]1]1]|1]1]1

gel ol 123012301213 ]0]1]|2]3

B.1 00| 0} 0|1 1 1 17010001 1 1] 1

s 1 |213 217|253 | 33 {229 89 | 189 | 47 |219|135(195|191 | 155|103 {179

;. On remarque que 3* = 81 n’appartient pas & S;, cest-a-dire que la
G (16.17)

*“flclasse de 3 modulo S5 est un générateur de S
3
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On prendra donc g = 3. Les classes de G (16.17) mod. S; sont données
dans le tableau suivant:

S 11213]217|253| 331229 89|189| 47|219|135|195[191 | 155|103 |179

383 | 3| 95(/107(215| 99|143|267| 23|141|113]133| 41| 29|193] 37|265

33Ssl 27| 39|147| 31| 75|199|227|207|181|201|109| 97261 |105| 61209

34S,| 81|117[169| 931225 53(137| 77|271| 59| 55| 19]239| 43|183]| 83

358,243 | 791235 7[131(159 139231269 |177|165| 57|173|129| 5249

368, 185|237 161 | 21 |121|205|145|149|263|259|223 /171|247 |115| 15]203

37Sg 111167211 63| 91| 71|163|175|245{233|125(241|197| 73| 45 65

B={n(),n(3),n3%n03%n2),n23),3n7@®),4n(83)} est une

3285 9| 13| 49|101| 25[157|257| 69|151| 67|127|123| 87| 35|111|251|

|

base de I’anneau des entiers de K5. On cherche le polynome minimal de
1 (1) sur K,. Le conjugué de # (1) sur K, est 1 (3*) et d’aprés la remarque

L3.A, 7 (1) + 7 (3% = 0.
D’autre part:  (1)®> = ) n (1+y9).

se Sy
Il reste a exprimer chacun des 7 (1+5) en fonction de: 7 (2), 7 (2.3), 1 (8),
et  (8.3).
Par exemple: pour s = 213: 5 (1+213) = (2.107) = 5 (2.3) car
107 €3 S;.
Pour s = 33: n(1+33) =9 (217) =0 car Q(6)nK; = Q = K,
= Q (8.17) n K;.

Pour s = 47, on écrit %7 = — 1 d’ou E817%48 = _ £48 Pest-a-dire:
n(14+47) = —n(8.23) = — n(8.3). |

Pour s = 195: n (14+195) = n (4.49) = 0 compte tenu de la remarque
IM1.3.C.

Finalement on obtient: # (1)> = — 16 — n(2) — 27 (8.3) + # (8). Le

polynome minimal de # (1) sur K, est donc:

X2+ 16 +1(2) + 27 (3.8) — 4 (8)
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; On calcule de la méme fagon le polynome minimal de 5 (2) sur K :
X% — 5 (8) — 16 et celui de 7 (8) sur Q: X* — 2X — 16.

Les 8 nombres:

1+2¢17,1_2ﬁ,\/17+\/ﬁ,\/17~\/ﬁ,

/

V1743 /T 11+ /17, V) 173 /11— 17— J17
\/—17+3\/ﬁ+\/17+\ﬂ7 et \/—17—3¢ﬁ+¢17—‘\/ﬁ

‘forment une base de ’anneau des entiers de K.

Pour les autres valeurs de o, et «, le résultat est le suivant: les polynomes
minimaux de 7 (8) et 5 (2) restent les mémes que précédemment. Pour
obtenir une base des entiers des autres extensions K; admettant la méme

~ suite de corps cyclotomiques associée: Q (17), Q (8.17), Q (16.17), il suffit
d’ajouter aux quatre nombres:

1+/17 1-J/17
2

’ 2

. —— S
: y/17+‘¢17 , V17— /17,
les quatre autres quantités:

Pour le corps K5 correspondant @ «, = 4 et ay = 6:
V = 1743174317+ ST -4/ 17— /17,
V = 17-3/17 43y 17— J11+4y/ 17+ 17,
V 1743113y 174 17 +4y 17— J17,
V o173/ -3y/ 11— 11— 4/ 17+ J17,

Pour le corps K5 correspondant a oq = 8 et oy = 2:
V17317 +y/ 17— J17, V1731V 17+ /17
V174317 -\/17- 17, \/17—-3¢’T7“+\/17+\/T7
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Pour le corps K5 correspondant a o, = 8 et 0y = 6:
\/i7—3\/1—7+3\/m—4wi7——_ﬁ,
V174317 +3)/17— J17+4y/17+ /17,
V17317 -3/ 17+ J17+4y/ 17— 17,
V174317 -3/ 17— J17—4y/17+ J17.
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