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Chapitre III

BASES D'ENTIERS

III. 1. Rappels

Bases d'entiers normales

Soit K une extension abélienne de Q. On dit qu'un élément 9 de K
engendre une base normale des entiers de K si l'anneau des entiers de K
admet pour base, sur Z, l'ensemble des conjugués de 6.

Si K possède une base d'entiers normale, engendrée par 9, alors :

— Tout sous-corps L de K possède également une base d'entiers normale
engendrée par TrKjL (9).

En effet, tout entier x de L, s'écrit:

x J] ^ (0), appartenant à Z.
a e G (K/q)

Puisque x est invariant par tout L-automorphisme de K, alors Xa Xa,

pour tous a et g' situés dans la même classe modulo G(k/l)-
— La trace de 9 sur Q est égale à + 1.

En effet Z n'a pas d'autre base d'entiers que { 1 } ou { — 1 }.

Corps cyclotomiques

Ç étant une racine primitive neme de 1, on notera <Pn (Z) le 7?emepolynome

cyclotomique, c'est-à-dire le polynome minimal de £ sur Q. On rappelle
qu'on a la relation: X" — 1 *= $k (Z).

k\n

Si 77 p\x... pumm est la décomposition de n en facteurs premiers, on a:

([6] chapitre 8).

III.2. Bases d'entiers dans les corps cyclotomiques

Lemme III. 1.

Soit d un entier sans facteur carré et £ une racine primitive deme

de 1. On a alors TrQ(d)/0 (£) (— l)m, m étant le nombre de facteurs

premiers de d.



Xd - 1

On peut raisonner par récurrence sur m, en utilisant :
j-| (pk
k\d
kïd

Pour tout diviseur k de dsoitmk le nombre de facteurs premiers de

D'après l'hypothèse de récurrence, les <Pk sont de la forme:

et n sem f°rme-
k\d
kïd

xv(d)-d _ sX<Hd)-d-i+ _ avec s £ (-l)mfc.
k\d

k + d

Comme le nombre de diviseurs k de d, possédant mk facteurs premiers est

Ck, on aura donc:

5= X (-iyci
0 < j < m — 1

<Pd sera donc de la forme:

X<P(d) _ 1 -j-

Lemme III.2.

Soient n et d deux entiers tels que d soit sans facteur carré et

premier avec n. Soit £ une racine primitive (nd)eme de 1. Soient F
l'ensemble des racines primitives (nd)eme de 1 et F" l'ensemble des

tels que: 0 ^b < (p (nd) et PGCD (b, n) A 1.

Alors le module engendré sur Z par F U F" est l'anneau des

entiers de Q (nd).

Comme { 1, Ç, £2?..., ^(nd)-i j eS£ une base l'anneau des entiers de

Q (nd), il suffit de montrer que si c est premier avec n et non premier avec d,

alors £c appartient au module engendré par F.
nd

Soit v PGCD (c, d). £v est une racine primitive veme de 1 et v est sans
facteur carré. D'après le lemme III. 1, on a la relation:

ndk ndk

+ 1 £ d'où: <f ± X ç~+c
0 <k<v 0 <k<v
PGCD (k,v) 1 PGCD (k,v) 1

L'Enseignement mathém., t. XVIII, fasc. 1. 7
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On vérifie que h c et nd sont premiers entre eux, c'est-à-dire que les
v

ndk
+ c

V

Ç appartiennent à F.

Lemme III.3.

Q (d) possède une base d'entiers normale si et seulement si d
est sans facteur carré.

En effet si d est sans facteur carré, alors d'après le lemme III.2, appliqué
à n 1, les conjugués de £, racine primitive deme de 1, engendrent l'anneau
des entiers de Q (d). Comme ils sont en nombre égal à [ß (d): Q], ils forment
donc une base de l'anneau des entiers de Q (d). Réciproquement soit p un
nombre premier et £ une racine primitive (p2)eme de 1. Comme $p2 (X)

<Pp(Xp), on a Trmp2)jQ(0 0. D'autre part:

TrQ(P2)/Q (^P) ~ P n^rQ(p)IQ (^P) ~ ~P
et la trace de toute racine (/>2)eme de 1, non primitive, est multiple de p.
Ainsi la trace de tout entier de Q (p2) est multiple de p, donc ne peut être

égale à 1. Q (p2) n'a pas de base d'entiers normale, non plus que tout
surcorps de Q (p2). En particulier Q (d) n'a pas de base d'entiers normale si d
possède un facteur carré.

III.3. Conditions pour qu'une extension abélienne de Q
POSSÈDE UNE BASE D'ENTIERS NORMALE

Notation : Si K est une extension cyclique sur g, 9 un élément de K,
a un automorphisme de K, t un entier positif, B (9, er, t) désignera
l'ensemble des t premiers conjugués successifs de 9 par a, c'est-
à-dire :

5(0,(7,0 { 0^(0), 0 ^ k < t}

Proposition III. 1.

Soit Kr une extension cyclique de degré pr sur Q (p premier).
Soit Q (nr) le plus petit corps cyclotomique contenant Kr. On suppose

que ur est différent de 0, que £ est une racine primitive (wr)eme de
1 et Br_x est une base de l'anneau des entiers de Kr_x. Soient 9

Yj et g un générateur de G (KrjQ).
se Sr
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Alors:

Br_l u B(9, g, (p(pr)) est une base de l'anneau des entiers de Kr.

Soit g un automorphisme de Q (nr) prolongeant g. Les classes de G (nr)

modulo Sr sont gk Sr, 0 ^ k < pr.

Introduisons les ensembles suivants:

F est l'ensemble des racines primitives nerme de 1 c'est-à-dire:

F {Ça;ae G (nr) }

F'{ <T; a6u gk }

y Puisque pUr est le plus grand facteur carré divisant nr, le lemme III.2

| permet d'affirmer que le module engendré sur Z par F u F" est l'anneau des

|! entiers de Q (nr). Montrons que F' u F" est une base de cet anneau. Pour

— Card F' u F" <p (nr).

— Tout élément de F — F' appartient au module engendré par F'.
La première assertion résulte d'un dénombrement immédiat des élé-

jj ments de F' u F". Pour démontrer la deuxième, on écrit tout d'abord que:

0 <k<(p(pr^
l et

F" { 0 ^ b < cp (nr) et p | b }

1 cela il suffit de constater que :

-rk
Z r 0

| (Çp est une racine primitive peme de 1).

Soit en multipliant cette égalité par on obtient:

Z ^ o

Examinons comment sont répartis les éléments de T dans les

|] classes de G (nr) modulo Sr.
h

•I
Puisque Kr $ Q ^ on a Q (nr) Kr. Q

(condition 1.2.A sur la suite oron a:

et puisque Kr_x ç Q
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Les sous-groupes correspondants de G vont donc vérifier les égalités :

r(n„^.Sr Sr_t et r|«f(^nsr {l},
qui montrent que Sr_l9 groupe des Kr_ i-automorphismes de Q(nr), est

produit direct de Sr et de T^nn — Dans toute classe de Sr-X modulo Sr

il existe donc un seul élément de T\ nr9 — ]. Ces classes sont gkpr l
Sn 0 ^

V P

k — 1. Si sgpr
1

est l'unique élément de gpV
1

Sr n T\nr, — alors
V P/

pour tout k entre 0 et p — 1, sk gkpr est l'unique élément de gkpV
1

Sr n
/ nA

T\ nr, — et les éléments de j
V p/

L'égalité (1) va donc s'écrire:

Tyir, —j et les éléments de Tynr, — ] sont donc skgkpf \ 0 ^ k ^p — 1.

(2) X 1= °>
0 <k<p — 1

5* appartenant à Sr.

Tout élément de F — F" peut s'écrire sous la forme:

Çs'sP 1gt+(p avec s'eSr et 0 < pr 1

Transformant alors l'égalité (2) par l'automorphisme s'g\ on obtiendra:

Çs'sP"
^ gt+(P~ ^

^s'sk gt~^~kpr ^

0<k<p-2

Les racines primitives de 1, intervenant sous le signe £ sont dans F'. F' U F"
est donc une base des entiers de Q (nr).

Soit x un entier de Kr. On a x x' + x" avec x' (respectivement x")
appartenant au module engendré zur Z, par F' (respectivement F"). Soit
£ un F-rautomorphisme. Comme F" est une base de l'anneau des entiers de

Q — s (x") appartient encore à Q — donc au module engendré par F".
\Pj \PJ

De même s (x') appartient encore au module engendré par F', car s permute
entre eux les éléments de F'. Comme enfin s (x) x, on aura donc s (x')
— x' et s (x") — x".
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x" étant invariant par tout i^-automorphisme, appartient à Q D Kr

c'est-à-dire à Ä"r_ t.
Quant à x', il s'écrit:

X AflÉ8,AfleZ
ae u gkSr

0 <k<(p(pr)

De x' s (x') on déduit que Xa Xa. si a et a' sont congrus modulo Sr
Posant alors ßk Xgk,on obtient:

*'= X ft(X^")= X ^(0)
0<k<(p(pr) aeSr 0 <k<(p(pr)

Remarque IIIA.

On n'utilise pas complètement le fait que Q (jnr) est le plus petit corps
cyclotomique contenant Kr, mais seulement que nr est de la forme pUrn\

avec n premier avec p, sans facteur carré, Kr c Q (/?,.) et Kr $ Q

Proposition III.2.

Soit K une extension abélienne de Q. Les conditions suivantes sont

équivalentes :

III.2.A: K possède une base d'entiers normale.

III.2.B: Il existe un entier 9 de K tel que TrK/Q (0) 1.

III.2.C: Le plus petit corps cyclotomique contenant K possède

une base d'entiers normale.

| III.2.D : K est modérément ramifiée.

C => A et A => B résultent des rappels effectués au paragraphe III. 1.

B => C résulte pour les extensions cycliques de degré pr sur Q de la
proposition III. 1. Reprenant les mêmes notations, si Q (nr) ne possède pas de
base d'entiers normale, alors, d'après le lemme III.3, nr possède un facteur
carré, donc ur 2.

' Comme $nr (X) A>„r (X^-1), la trace de £ sur Q est nulle, donc celle
Uf 1

fi p

jde 0 également. Si x est un entier de Kr, x se décompose comme
précédemment en x x' + x" et l'on a;
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TrKflQ(x) TrKrlQ(x")

La trace d'un entier de Kr ne peut donc être égale à 1.

Soit maintenant K une extension abélienne de Q et Q (n) le plus petit
corps cyclotomique contenant K. Supposons qu'il existe un entier 9 de K
tel que: TrK/Q (9) 1.

Le groupe de Galois de K sur Q est produit direct de m groupes cycliques
d'ordre p\l.
Soit K{ le corps fixe de Gx x x Gi_1 x { 1 } x Gi+1 x x Gm. Kt
est cyclique de degré sur Q et K KXK2 Km.

Soit 9i TrKfKi (9). 0t est un entier de Kt tel que TrK./Q (0f) 1.

Si Q (nt) est le plus petit corps cyclotomique contenant Kt alors nt est

sans facteur carré d'après la démonstration précédente.

n est le PPCM des nh donc il est sans facteur carré.

Soit p un nombre premier se ramifiant dans K, c'est-à-dire divisant n.

Si n est sans facteur carré, alors l'indice de ramification de p dans Q (n)
est p — 1 et l'indice de ramification de p dans K, divise p — 1, donc est

premier à p.
Réciproquement, si n possède un facteur carré, alors n est de la forme

n psn\ avec p premier, ne divisant pas n' et s 2. Soit n l'application
de G (n) sur G (k/q) qui à tout automorphisme de Q {n) fait correspondre

Donc 7i a pour ordre p et il est inclus dans n (T (n, n)} qui est le

groupe d'inertie de p dans K. L'indice de ramification de p dans K est donc

multiple de p.

sa restriction à K. Puisque K $ Q alors

III.4. Bases d'entiers dans les extensions Kr

Proposition III.3.

Soit Kr une extension cyclique de degré pr sur Q, Q (nr) le plus
petit corps cyclotomique contenant Kr.
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On suppose que ur^2; c'est-à-dire que Kr ne possède pas de base

d'entiers normale. £ désignant une racine primitive n^me de 1, on

pose 6i Yj £,spr~l pour tout i de / à r.
se S r

Si p est impair ou si p 2 et ur — 2, on pose:

0,-i s K"i+1
se Sr

Si p 2 et ur ^ 3, on pose:

0,-i i s ^r"+2
se Sr

g est un générateur du groupe de Galois de Kr sur Q.

Alors :

B(6l.uc7,pl~1)(j(u
l<i<r

est une base de l'anneau des entiers de Kr.

On montre tout d'abord que B (6t^x, g, pl~x) est une base de l'anneau
des entiers de t.

Dans le cas où p est impair ou p 2 et ur 2, on a: ur r — l + 2,

ç Q ' r^i+1 est sans facteur carré, donc ïf 1+1
engendre

une base normale des entiers de Q

r — l + l
f~l+1

/ r-/+1\
nÇ }

V - / engendre donc une base normale des entiers

de Ki-i. Il reste donc à montrer que cette quantité est égale à 6t_ 1. Pour

cela introduisons l'application 7zl_1 de G (nr) dans G ^ r_[+1^ qui à toute

nr
classe modulo nr fait correspondre la classe modulo r_l+1 qui la contient.

Sr étant le groupe des Ä^-automorphismes de Q (,nr), nl_1 (Sr) sera le groupe

des Kr n Q ^ -automorphismes de Q ^ r_[+i^ •

Comme Kt $ £2^ r_[+1^9 (condition 1.2.A; u{ 2) on a donc

Kt-iKrnQ(-^
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7ij_x (Sr) est donc le groupe des 1-automorphismes de Qy r_z+1

On aura donc l'égalité:

Tr

D'autre part, on déduit des égalités:

(É' z
s'eît/-i (Sr)

£S'pr-'+1

X,. ß : Q Kr:KrnQ\ r_(+1

et

fiW:filpHïï] />r-l+l

que

ß («,)

Les sous-groupes de Cr (/tr) correspondants vont donc vérifier:

ny
T n

'»pr-l+l nS= 1

La restriction de 71^ à est donc bijective. On en déduit:

z {
s,eitl_1(Sr)

s,pr l + l _ ^ ^7t/_1(s)pr Z+1z r
s ç Sf

Cette dernière quantité est égale à 6l^1 puisque, par définition de 7rx :

on a
s S

d'où spr~t+1 Jt,_1(s)p,-'+1(«r)

jOör/i.s' le cas où p — 2 et ur^ 3, on a alors: wr r — / + 3 et l'on

utilise alors l'application 7iz_2 de C(//r)sur G (^r_rl+^j. La démonstration

est identique à la précédente, à ceci près que:

n
Q(nr):Kr.Ql—^ 2
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c'est-à-dire que T^nr, 2^1+ 2^ n Sr possède deux éléments. On aura cette

fois:

^ 2r~l + 2
_ x. £ ^/-2(s)2r_/ + 2

s'e 7t^ _2(Sr) seSr

On montre ensuite par récurrence sur t que:

B, B(ei_1,a,pl~1)u(u (p1)))
l<i<t

est une base de Supposons donc que soit une base de l'anneau

nr \des entiers deAT,«. Soit nt l'application canonique de G (nr) sur G ——-
\P J

Comme Kt ç Q\ —r— et Kt+1 $ Qt —— (proposition 1.2; condition 1.2.A;
\PrJ \P J

ui+1 ut + 1), on a

Kt fl|^)nKr
/ nr

et 7it (Sr) est le groupe des ^-automorphismes de Q —-
\p

Si 6t Yj^s'pr~\la proposition III. 1 et la remarque III. 1, appliquées
s'®ïzt(Sr)

à £2 ^"7=7^ et Kt permettent de conclure que: Bt^1 u B (0't, a, cp (pr)) est

une base de l'anneau des entiers de Kt. II reste alors à montrer que 0t 9r

Ceci se déduit comme précédemment de l'égalité T^nr, fl Sr= 1,

toujours vraie si / ^ t r.
On utilisera dans le paragraphe suivant les remarques:

Remarque 111.3.A

Pour tout i l TrKi/K._i (0f) 0.

En effet:

- Trn(YriyKi-i ^"r '1

(Ar)—(rr»(^)'»(7^Un)

Tr "t — ix

Tr
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Cette quantité est nulle car Xp — £pT 1+1 est le polynome minimal de £pT

Remarque 1II.3.B

(-1y-+1

Il suffit d'appliquer le lemme III. 1 à Q ^ r_Zi^ ou Q (^r_[+ suivant

les cas.

Remarque 1II.3.C

Dans le cas où p 2 et ur 3, on a :

Z e2r~'+1 0
se Sr

En effet:

s ^~'+1 Tv-^wse Sr \2r~l + 1 / /_1

et d'autre part

car X2 — £2r_i+2 est le polynome minimal de £2r-i + 1
sur Q f r^r+3"'] •

III. 5. Exemple

Soit B la base introduite à la proposition III.3. On se propose de chercher
les polynômes caractéristiques des 6t Pour cela, il faut pouvoir calculer les

coordonnées, par rapport à B, des produits mutuels d'éléments de B.

Les 6t sont des périodes de Gauss ([7] chapitre 7). On pose pour tout
entier a: q (a) Z "•

s e Sj-
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On a en particulier:

0. pour I ^ i ^ r

et suivant les cas:

0|-1 n (Pr'l +1)ou(2r_i + 2).

Pour tout bappartenant à G (nr), le transformé de 17 (a) par b est i] (ab).

En particulier les conjugués de 9b pour / ^ z ^ r, seront:

ak(dd r]

Le produit de deux périodes rj (a) et t] (a') est donné par: k\ (a) r\ (a')
Yj ^ (a + a's). Appliquant cette formule à deux éléments de B, on

s e Sr

est alors ramené au problème suivant: donner les coordonnées de rj (a), a
entier quelconque, dans la base B.

c et c' désignent dans ce qui suit, des nombres premiers avec p.
1. Dans le cas p impair ou p 2 et ur — 2,rj (puc), avec u ^ r — l + 2,

peut s'exprimer comme somme de périodes de la forme rj (pr~l+ V). Il
suffit d'écrire l'égalité:

}la

X ipk - 1;
0 <k<p

multipliant alors cette égalité par £pU° on obtient:

X n (—k + puc] - t]
0 <k<p \p

77

Les quantités — k + puc sont de la forme pr~l+ïc'.
P

Dans le cas où p 2 et ur ^ 3, tj (2V), avec u ^ r - 1 + 3, est l'opposé
d'une période rj (2r~l+2c').

2. ri (puc), avec u - l + 1 (ou ut£r - l + 2, suivant les cas)
peut s'exprimer comme somme de périodes de la forme r\ (puc'), c' appartenant

à G (wr), en procédant de la même façon qu'au lemme III.2. C'est-
à-dire: si v désigne le PGCD de c et de nr, et mv le nombre de diviseurs
premiers de 77, on a:

«r

X Ç"k(-1
0 <k<v
PGCD(k,v) 1
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d'où:

- l)m" 1 (p"c)X
0<k<v \V J
PGCD(k,v) 1

/7r
Les quantités — k + puc sont de la forme puc\ avec c premier avec nr.

v

Cas particulier :

Si Kr n Q ^ czKr n Q et u iär — l, alors rj (puc) 0.

En effet on a: PGCD
fnr nr\ nr

\pu
'

v J puv
'

D'où Kr n Q —- ] c: Q —L En emplovant la même méthode que dans
W \pUvJ

la démonstration de la proposition III.3, rj (puc) est égal, à un coefficient

près, à:

Comme lnß(-| DLnßf - ] et comme u^r — L on aura donc:
PJ \ v

KrnQiJ^j^KrnQ\^\.

Q sera donc compris entre K. n ß — | et Q\ — et l'on a
\j> V \w/ vW

I>,pvä^f) »
\puvj \pu+ lv/

3. 77 (p"c), avec w ±= /* — / + 1 (ou w ^ r — / + 2 suivant le cas) et

c premier avec nn est un conjugué de 77 (pu) Qr_u (à moins qu'il ne soit

nul; remarque III.3.C).
S'il n'est pas dans B, alors ses conjugués sur seront dans B et il
suffit alors d'utiliser la remarque III.3.A.
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I Considérons par exemple, la suite de corps cyclotomiques vérifiant les

j conditions I.2.A bis et I.2.B bis: Q (17), Q (8.17), Q (16.17).
1 On a donc r 3; / 2; m1 m2 m3 1 ; 17.

1 II y a quatre extensions 7£3, cycliques de degré 8 sur g associées à cette suite

| (proposition 1.5 bis).
Elles ont pour discriminant sur Q: 222 177 (proposition 11.3).

T(16.17, 17) a pour éléments 1, 35, 69, 103, 137, 171, 205, 239.

a0 — 239 et l'on peut choisir comme générateur de T(16.17, 4.17):

a0 69.

On cherche de même les éléments de T(16.17, 16) et un générateur
de ce sous-groupe. On peut prendre par exemple c1 65. Les puissances

h successives de c1 sont données par le tableau suivant:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

65 145 177 81 97 49 193 33 241 161 129 225 209 257 113

S3 est engendré par { cl, cl°a0, cl'o a0 }, a0 et oc'0 vérifiant les conditions

a0 0 (4); a0 0 (2) et a0 =j= 0 (4) (proposition 1.4 bis). Les éléments de S3

sont de la forme:
8/?i + oc0ß0 + a0ß0 ß0 ß0

S C i Cl q ü o

avec ß0 0 ou 1 ; ß'0 0, 1, 2 ou 3; ßx — 0 ou 1.

Prenons par exemple : a0 4 et a0 2.

Le tableau suivant donne les valeurs de v, en fonction de ß0, ß0, ß1. On
trouve donc à la dernière ligne les éléments de S3 :

ßo 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

p; 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Pi 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

s 1 213 217 253 33 229 89 189 47 219 135 195 191 155 103 179

On remarque que 34 81 n'appartient pas à S3, c'est-à-dire que la
G 16 171

classe de 3 modulo S3 est un générateur de —.^3
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On prendra donc g 3. Les classes de G (16.17) mod. S3 sont données
dans le tableau suivant:

S3 1 213 217 253 33 229 89 189 47 219 135 195 191 155 103 179

3S3 3 95 107 215 99 143 267 23 141 113 133 41 29 193 37 265

32Ss 9 13 49 101 25 157 257 69 151 67 127 123 87 35 111 251

33S3 27 39 147 31 75 199 227 207 181 201 109 97 261 105 61 209

34S5 81 117 169 93 225 53 137 77 271 59 55 19 239 43 183 83

35S3 243 79 235 7 131 159 139 231 269 177 165 57 173 129 5 249

36S3 185 237 161 21 121 205 145 149 263 259 223 171 247 115 15 203

37S3 11 167 211 63 91 71 163 175 245 233 125 241 197 73 45 65

B { n (1), ri (3), n (32), r, (3%n (2), (2.3), i ri (8), * (8.3)} est une
base de l'anneau des entiers de K3. On cherche le polynome minimal de

)/ (1) sur K2. Le conjugué de rj(1)sur K2 est i] (34) et d'après la remarque
III.3.A, r](1)+ ri(34)0.

D'autre part: rç (l)2 £ rj(1+F).
se S3

Il reste à exprimer chacun des rj (!++) en fonction de: (2), rj (2.3), tf (8),
et rj (8.3).

Par exemple: pour s 213: rç (1+213) (2.107) 2.3) car
107 g 3 iS*3.

Pour s —33: >7(1+33) rj (2A7)0 car 0(16)0^
Q(8.17) n K3.

Pour j 47, on écrit ^817 — 1 d'où £8-17 + 48 _ ,»48 c'est-à-dire:
rj (1 +47) - ri(8.23)- n (8.3).

Pour s 195: rj(1+195) rç (4.49) 0 compte tenu de la remarque
III.3.C.

Finalement on obtient: q(l)2— 16 — >7 (2) - 2/? (8.3) + >/ (8). Le

polynome minimal de rj (1) sur K2 est donc:

X2 + 16 + >7 (2) + 2/7 (3.8) - >7 (8)
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On calcule de la même façon le polynome minimal de t\ (2) sur Kx :

X2 — r\ (8) — 16 et celui de rj (8) sur Q: X2 — 2X — 16.

Les 8 nombres:

——X— ~2^'V7!7 + > /l7 - /Ï7

y/ -17 + 3^17-^17 + 717 y/-17-3/Ï7-y/l7-/l7

\/-\1 + 3Jïî+\/Il + JJnet\/-17-3>/r7 + \/l7->/Ï7
forment une base de l'anneau des entiers de K3.

Pour les autres valeurs de a0 et a0 le résultat est le suivant: les polynômes
minimaux de rj (8) et rj (2) restent les mêmes que précédemment. Pour
obtenir une base des entiers des autres extensions K3 admettant la même
suite de corps cyclotomiques associée: Q (17), ß(8.17), Q (16.17), il suffit
d'ajouter aux quatre nombres:

1 + 717 1-717 / 7= / 7=—,—— > v/l7+V17> v17-/17 '

les quatre autres quantités:

Pour le corps K3 correspondant à a0 — 4 et a0 6:

y/ —17 + + 3y/17 + +17 — 4^17 — +17

y/-17-3yÏ7 + 3y/l7-yÏ7 + 4\/l7 + yT7,

\/- 17 + 3yi7 - 3\/l7 + x/n + 4\/l7 -+17

y/-17-3/17-3/17-/17-4/17 + 717,

Pour le corps K3 correspondant à oc0 — 8 et a0 — 2:

/l7 + 3/Ï7 + /l7-/Ï7, /l7-3/Ï7-/l7 + /Ï7

/17 + 3/Ï7-/l7-/Ï7, /l7 - 37Ï7+ /l7 +7i7



Pour le corps K3 correspondant à oc0 8 et oc0 6:

\/Il -ifïï + 2\/\1 + flî-4\/ Il - fF
y/17 + 3TÏ7 + 3y/l7-7Î7+4\/l7 + 7l7,

y/17-3717-3^/17 + 717+4^17-717,

y/17 + 37/7 — 3 y/17 — 7Ï7—4y/17 + 7Ï7 •
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