Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 18 (1972)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ÉTUDE ARITHMÉTIQUE DES CORPS CYCLIQUES DE DEGRE p'

SUR LE CORPS DES NOMBRES RATIONNELS

Autor: Oriat, Bernard

Kapitel: Chapitre III BASES D'ENTIERS

DOI: https://doi.org/10.5169/seals-45361

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CHAPITRE III

BASES D'ENTIERS

III.1. RAPPELS

Bases d'entiers normales

Soit K une extension abélienne de Q. On dit qu'un élément θ de K engendre une base normale des entiers de K si l'anneau des entiers de K admet pour base, sur Z, l'ensemble des conjugués de θ .

Si K possède une base d'entiers normale, engendrée par θ , alors:

— Tout sous-corps L de K possède également une base d'entiers normale engendrée par $Tr_{K/L}(\theta)$.

En effet, tout entier x de L, s'écrit:

$$x = \sum_{\sigma \in G(K/Q)} \lambda_{\sigma} \sigma(\theta), \ \lambda_{\sigma} \text{ appartenant à } Z.$$

Puisque x est invariant par tout L-automorphisme de K, alors $\lambda_{\sigma} = \lambda_{\sigma}$, pour tous σ et σ' situés dans la même classe modulo G(K/L).

— La trace de θ sur Q est égale à ± 1 .

En effet Z n'a pas d'autre base d'entiers que $\{1\}$ ou $\{-1\}$.

Corps cyclotomiques

 ξ étant une racine primitive n^{eme} de 1, on notera $\Phi_n(X)$ le n^{eme} polynome cyclotomique, c'est-à-dire le polynome minimal de ξ sur Q. On rappelle qu'on a la relation: $X^n - 1 = \prod_{k \mid n} \Phi_k(X)$.

Si $n = p_1^{u_1} \dots p_m^{u_m}$ est la décomposition de n en facteurs premiers, on a:

$$\Phi_n(X) = \Phi_{p_1 \dots p_m} \left(X^{p_1^{u_1-1} \dots p_m^{u_m-1}} \right)$$

([6] chapitre 8).

III.2. BASES D'ENTIERS DANS LES CORPS CYCLOTOMIQUES

LEMME III.1.

Soit d un entier sans facteur carré et ξ une racine primitive $d^{\rm eme}$ de 1. On a alors $Tr_{\Omega(d)/Q}(\xi) = (-1)^m$, m étant le nombre de facteurs premiers de d.

On peut raisonner par récurrence sur m, en utilisant: $\Phi_d = \frac{X^d - 1}{\prod\limits_{\substack{k \mid d \\ k \neq d}} \Phi_k}$.

Pour tout diviseur k de d soit m_k le nombre de facteurs premiers de k. D'après l'hypothèse de récurrence, les Φ_k sont de la forme:

$$X^{\varphi(k)} - (-1)^{m_k} X^{\varphi(k)-1} + \dots$$

et $\prod_{\substack{k \mid d \\ k \neq d}} \Phi_k$ sera de la forme:

$$X^{\varphi(d)-d} - s X^{\varphi(d)-d-1} + \dots$$
 avec $s = \sum_{\substack{k | d \ k \neq d}} (-1)^{mk}$.

Comme le nombre de diviseurs k de d, possèdant m_k facteurs premiers est $C_m^{m_k}$, on aura donc:

$$s = \sum_{0 \le j \le m-1} (-1)^j C_m^j = -(-1)^m.$$

 Φ_d sera donc de la forme:

$$X^{\varphi(d)} - (-1)^m X^{\varphi(d)-1} + \dots$$

LEMME III.2.

Soient n et d deux entiers tels que d soit sans facteur carré et premier avec n. Soit ξ une racine primitive $(nd)^{\text{eme}}$ de 1. Soient F l'ensemble des racines primitives $(nd)^{\text{eme}}$ de 1 et F'' l'ensemble des ξ^b tels que: $0 \le b < \varphi(nd)$ et $PGCD(b, n) \ne 1$.

Alors le module engendré sur Z par $F \cup F''$ est l'anneau des entiers de Ω (nd).

Comme $\{1, \xi, \xi^2, ..., \xi^{\varphi(nd)-1}\}$ est une base de l'anneau des entiers de Ω (nd), il suffit de montrer que si c est premier avec n et non premier avec d, alors ξ^c appartient au module engendré par F.

Soit v = PGCD(c, d). $\xi^{\overline{v}}$ est une racine primitive v^{eme} de 1 et v est sans facteur carré. D'après le lemme III.1, on a la relation:

$$\pm 1 = \sum_{\substack{0 < k < v \\ PGCD(k,v) = 1}} \xi^{\frac{ndk}{v}} \text{ d'où: } \xi^{c} = \pm \sum_{\substack{0 < k < v \\ PGCD(k,v) = 1}} \xi^{\frac{ndk}{v} + c}$$

On vérifie que $\frac{ndk}{v} + c$ et nd sont premiers entre eux, c'est-à-dire que les $\frac{ndk}{v} + c$ appartiennent à F.

LEMME III.3.

 $\Omega\left(d\right)$ possède une base d'entiers normale si et seulement si d est sans facteur carré.

En effet si d est sans facteur carré, alors d'après le lemme III.2, appliqué à n=1, les conjugués de ξ , racine primitive $d^{\rm eme}$ de 1, engendrent l'anneau des entiers de Ω (d). Comme ils sont en nombre égal à $[\Omega(d):Q]$, ils forment donc une base de l'anneau des entiers de $\Omega(d)$. Réciproquement soit p un nombre premier et ξ une racine primitive $(p^2)^{\rm eme}$ de 1. Comme $\Phi_{p2}(X) = \Phi_p(X^p)$, on a $Tr_{\Omega(p2)/Q}(\xi) = 0$. D'autre part:

$$Tr_{\Omega(p^2)/Q}(\xi^p) = p Tr_{\Omega(p)/Q}(\xi^p) = -p$$

et la trace de toute racine $(p^2)^{\rm eme}$ de 1, non primitive, est multiple de p. Ainsi la trace de tout entier de $\Omega(p^2)$ est multiple de p, donc ne peut être égale à 1. $\Omega(p^2)$ n'a pas de base d'entiers normale, non plus que tout surcorps de $\Omega(p^2)$. En particulier $\Omega(d)$ n'a pas de base d'entiers normale si d possède un facteur carré.

III.3. Conditions pour qu'une extension abélienne de Q possède une base d'entiers normale

Notation: Si K est une extension cyclique sur Q, θ un élément de K, σ un automorphisme de K, t un entier positif, $B(\theta, \sigma, t)$ désignera l'ensemble des t premiers conjugués successifs de θ par σ , c'està-dire:

$$B(\theta, \sigma, t) = \{ \sigma^{k}(\theta), 0 \le k < t \}$$

Proposition III.1.

Soit K_r une extension cyclique de degré p^r sur Q (p premier). Soit Ω (n_r) le plus petit corps cyclotomique contenant K_r . On suppose que u_r est différent de 0, que ξ est une racine primitive (n_r)^{eme} de 1 et B_{r-1} est une base de l'anneau des entiers de K_{r-1} . Soient $\theta = \sum_{s \in S_r} \xi^s$ et σ un générateur de $G(K_r/Q)$. Alors:

 $B_{r-1} \cup B(\theta, \sigma, \varphi(p^r))$ est une base de l'anneau des entiers de K_r .

Soit g un automorphisme de $\Omega(n_r)$ prolongeant σ . Les classes de $G(n_r)$ modulo S_r sont $g^k S_r$, $0 \le k < p^r$.

Introduisons les ensembles suivants:

F est l'ensemble des racines primitives n_r^{eme} de 1 c'est-à-dire:

$$F = \left\{ \xi^{a}; a \in G(n_{r}) \right\},$$

$$F' = \left\{ \xi^{a}; a \in \bigcup_{\substack{0 \le k \le \varphi(p^{r})}} g^{k} S_{r} \right\}$$

et

$$F'' = \{ \xi^b; 0 \le b < \varphi(n_r) \quad \text{et} \quad p \mid b \}.$$

Puisque p^{ur} est le plus grand facteur carré divisant n_r , le lemme III.2 permet d'affirmer que le module engendré sur Z par $F \cup F''$ est l'anneau des entiers de $\Omega(n_r)$. Montrons que $F' \cup F''$ est une base de cet anneau. Pour cela il suffit de constater que:

- Card $F' \cup F'' = \varphi(n_r)$.
- Tout élément de F F' appartient au module engendré par F'.

La première assertion résulte d'un dénombrement immédiat des éléments de $F' \cup F''$. Pour démontrer la deuxième, on écrit tout d'abord que:

$$\sum_{0 \le k \le p-1} \xi^{\frac{n_r}{p} k} = 0$$

 $(\xi^{\frac{nr}{p}}$ est une racine primitive p^{eme} de 1).

Soit en multipliant cette égalité par ξ , on obtient:

(1)
$$\sum_{a \in T\left(n_r, \frac{n_r}{p}\right)} \xi^a = 0$$

Examinons comment sont répartis les éléments de $T\left(n_r, \frac{n_r}{p}\right)$ dans les

classes de $G(n_r)$ modulo S_r .

Puisque $K_r \not \equiv \Omega\left(\frac{n_r}{p}\right)$ on a $\Omega\left(n_r\right) = K_r$. $\Omega\left(\frac{n_r}{p}\right)$ et puisque $K_{r-1} \subseteq \Omega\left(\frac{n_r}{p}\right)$ (condition I.2.A sur la suite $(u_i)_{1 \le i \le r}$), on a:

$$K_{r-1} = K_r \cap \Omega\left(\frac{n_r}{p}\right).$$

Les sous-groupes correspondants de $G(n_r)$ vont donc vérifier les égalités:

$$T\left(n_r, \frac{n_r}{p}\right)$$
. $S_r = S_{r-1}$ et $T\left(n_r, \frac{n_r}{p}\right) \cap S_r = \{1\}$,

qui montrent que S_{r-1} , groupe des K_{r-1} -automorphismes de Ω (n_r) , est produit direct de S_r et de $T\left(n_r,\frac{n_r}{p}\right)$. Dans toute classe de S_{r-1} modulo S_r il existe donc un seul élément de $T\left(n_r,\frac{n_r}{p}\right)$. Ces classes sont $g^{kp^{r-1}}$ S_r , $0 \le k \le p-1$. Si $sg^{p^{r-1}}$ est l'unique élément de $g^{p^{r-1}}$ $S_r \cap T\left(n_r,\frac{n_r}{p}\right)$, alors pour tout k entre 0 et p-1, $s^k g^{kp^{r-1}}$ est l'unique élément de $g^{kp^{r-1}}$ $S_r \cap T\left(n_r,\frac{n_r}{p}\right)$ et les éléments de $T\left(n_r,\frac{n_r}{p}\right)$ sont donc $s^k g^{kp^{r-1}}$, $0 \le k \le p-1$. L'égalité (1) va donc s'écrire:

(2)
$$\sum_{0 \le k \le p-1} \xi^{s^k g^{kp^{r-1}}} = 0,$$

s appartenant à S_r .

Tout élément de F - F'' peut s'écrire sous la forme:

$$\xi^{s's^{p-1}g^{t+(p-1)p^{r-1}}}$$
 avec $s' \in S_r$ et $0 \le t < p^{r-1}$.

Transformant alors l'égalité (2) par l'automorphisme $s'g^t$, on obtiendra:

$$\xi^{s's^{p-1}} g^{t+(p-1)p^{r-1}} = -\sum_{0 \le k \le p-2} \xi^{s's^k} g^{t+kp^{r-1}}.$$

Les racines primitives de 1, intervenant sous le signe \sum sont dans F'. $F' \cup F''$ est donc une base des entiers de $\Omega(n_r)$.

Soit x un entier de K_r . On a x=x'+x'' avec x' (respectivement x'') appartenant au module engendré zur Z, par F' (respectivement F''). Soit s un K-rautomorphisme. Comme F'' est une base de l'anneau des entiers de $\Omega\left(\frac{n_r}{p}\right)$. s(x'') appartient encore à $\Omega\left(\frac{n_r}{p}\right)$, donc au module engendré par F''. De même s(x') appartient encore au module engendré par F', car s permute entre eux les éléments de F'. Comme enfin s(x)=x, on aura donc s(x')=x' et s(x'')=x''.

x'' étant invariant par tout K_r -automorphisme, appartient à $\Omega\left(\frac{n_r}{p}\right) \cap K_r$ c'est-à-dire à K_{r-1} .

Quant à x', il s'écrit:

$$\sum_{\substack{a \in O \leq k < \varphi(p^r)}} \int_{g^k S_r} \lambda_a \xi^a, \ \lambda_a \in Z$$

De x' = s(x') on déduit que $\lambda_a = \lambda_{a'}$ si a et a' sont congrus modulo S_r . Posant alors $\mu_k = \lambda_{gk}$, on obtient:

$$x' = \sum_{0 \le k < \varphi(p^r)} \mu_k \left(\sum_{a \in S_r} \xi^{ag^k} \right) = \sum_{0 \le k < \varphi(p^r)} \mu_k \sigma^k(\theta)$$

Remarque III.1.

On n'utilise pas complètement le fait que $\Omega\left(n_r\right)$ est le plus petit corps cyclotomique contenant Kr, mais seulement que n_r est de la forme $p^{u_r}n'$, avec n' premier avec p, sans facteur carré, $K_r \subseteq \Omega\left(n_r\right)$ et $K_r \not\subseteq \Omega\left(\frac{n_r}{p}\right)$.

Proposition III.2.

Soit K une extension abélienne de Q. Les conditions suivantes sont équivalentes:

III.2.A: K possède une base d'entiers normale.

III.2.B: Il existe un entier θ de K tel que $Tr_{K/Q}(\theta) = 1$.

III.2.C: Le plus petit corps cyclotomique contenant K possède une base d'entiers normale.

III.2.D: K est modérément ramifiée.

 $C \Rightarrow A$ et $A \Rightarrow B$ résultent des rappels effectués au paragraphe III.1.

 $B \Rightarrow C$ résulte pour les extensions cycliques de degré p^r sur Q de la proposition III.1. Reprenant les mêmes notations, si $\Omega(n_r)$ ne possède pas de base d'entiers normale, alors, d'après le lemme III.3, n_r possède un facteur carré, donc $u_r \ge 2$.

Comme $\Phi_{n_r}(X) = \Phi_{n_r \atop n}(X^{p^u r^{-1}})$, la trace de ξ sur Q est nulle, donc celle

de θ également. Si x est un entier de K_r , x se décompose comme précédemment en x = x' + x'' et l'on a:

$$Tr_{K_{r}/Q}(x) = Tr_{K_{r}/Q}(x'') = p Tr_{K_{r-1}/Q}(x'').$$

La trace d'un entier de K_r ne peut donc être égale à 1.

Soit maintenant K une extension abélienne de Q et $\Omega(n)$ le plus petit corps cyclotomique contenant K. Supposons qu'il existe un entier θ de K tel que: $Tr_{K/O}(\theta) = 1$.

Le groupe de Galois de K sur Q est produit direct de m groupes cycliques d'ordre $p_i^{r_i}$.

Soit K_i le corps fixe de $G_1 \times ... \times G_{i-1} \times \{1\} \times G_{i+1} \times ... \times G_m$. K_i est cyclique de degré $p_i^{r_i}$ sur Q et $K = K_1 K_2 ... K_m$.

Soit $\theta_i = Tr_{K/K_i}(\theta)$. θ_i est un entier de K_i tel que $Tr_{K_i/Q}(\theta_i) = 1$.

Si $\Omega(n_i)$ est le plus petit corps cyclotomique contenant K_i alors n_i est sans facteur carré d'après la démonstration précédente.

n est le PPCM des n_i , donc il est sans facteur carré.

Soit p un nombre premier se ramifiant dans K, c'est-à-dire divisant n. Si n est sans facteur carré, alors l'indice de ramification de p dans $\Omega(n)$ est p-1 et l'indice de ramification de p dans K, divise p-1, donc est premier à p.

Réciproquement, si n possède un facteur carré, alors n est de la forme $n = p^s n'$, avec p premier, ne divisant pas n' et $s \ge 2$. Soit π l'application de G(n) sur G(K/Q) qui à tout automorphisme de $\Omega(n)$ fait correspondre

sa restriction à K. Puisque $K \nsubseteq \Omega\left(\frac{n}{p}\right)$, alors

$$Ker \pi = G(\Omega(n)/K) \not\supseteq T\left(n, \frac{n}{p}\right).$$

Donc $\pi\left(T\left(n,\frac{n}{p}\right)\right)$ a pour ordre p et il est inclus dans $\pi\left(T\left(n,n'\right)\right)$ qui est le groupe d'inertie de p dans K. L'indice de ramification de p dans K est donc multiple de p.

III.4. Bases d'entiers dans les extensions K_r

Proposition III.3.

Soit K_r une extension cyclique de degré p^r sur Q, $\Omega(n_r)$ le plus petit corps cyclotomique contenant K_r .

On suppose que $u_r \ge 2$; c'est-à-dire que K_r ne possède pas de base d'entiers normale. ξ désignant une racine primitive n_r^{eme} de 1, on pose $\theta_i = \sum_{s \in S_r} \xi^{sp^r-i}$ pour tout i de l à r.

Si p est impair ou si p = 2 et $u_r = 2$, on pose:

$$\theta_{l-1} = \sum_{s \in S_r} \xi^{sp^{r-l+1}}$$

Si p = 2 et $u_r \ge 3$, on pose:

$$\theta_{l-1} = \frac{1}{2} \sum_{s \in S_r} \xi^{s2^{r-l+2}}$$

 σ est un générateur du groupe de Galois de K_r sur Q. Alors:

$$B(\theta_{l-1}, \sigma, p^{l-1}) \cup \left(\bigcup_{1 \le i \le r} B(\theta_i, \sigma, \varphi(p^i))\right)$$

est une base de l'anneau des entiers de K_r .

On montre tout d'abord que $B(\theta_{l-1}, \sigma, p^{l-1})$ est une base de l'anneau des entiers de K_{l-1} .

Dans le cas où p est impair ou p=2 et $u_r=2$, on a: $u_r=r-l+2$, $K_{l-1}\subseteq \Omega\left(\frac{n_r}{p^{r-l+1}}\right)\cdot \frac{n_r}{p^{r-l+1}}$ est sans facteur carré, donc $\xi^{p^{r-l+1}}$ engendre

une base normale des entiers de $\Omega\left(\frac{n_r}{p^{r-l+1}}\right)$.

 $Tr_{\Omega\left(\frac{n_r}{p^{r-l+1}}\right)/K_{l-1}}(\xi^{p^{r-l+1}})$ engendre donc une base normale des entiers de K_{l-1} . Il reste donc à montrer que cette quantité est égale à θ_{l-1} . Pour cela introduisons l'application π_{l-1} de $G\left(n_r\right)$ dans $G\left(\frac{n_r}{p^{r-l+1}}\right)$ qui à toute classe modulo n_r fait correspondre la classe modulo $\frac{n_r}{p^{r-l+1}}$ qui la contient. S_r étant le groupe des K_r -automorphismes de $\Omega\left(n_r\right)$, $\pi_{l-1}\left(S_r\right)$ sera le groupe

 $\operatorname{des} K_r \cap \Omega\left(\frac{n_r}{p^{r-l+1}}\right) \text{-automorphismes de } \Omega\left(\frac{n_r}{p^{r-l+1}}\right).$

Comme $K_l \not\equiv \Omega\left(\frac{n_r}{p^{r-l+1}}\right)$, (condition I.2.A; $u_l = 2$) on a donc

$$K_{l-1} = K_r \cap \Omega\left(\frac{n_r}{p^{r-l+1}}\right)$$

 π_{l-1} (S_r) est donc le groupe des K_{l-1} -automorphismes de $\Omega\left(\frac{n_r}{p^{r-l+1}}\right)$ On aura donc l'égalité:

$$Tr_{\Omega(\frac{n_r}{p^{r-l+1}})/K_{l-1}}(\xi^{p^{r-l+1}}) = \sum_{s' \in \pi_{l-1}(S_r)} \xi^{s'p^{r-l+1}}$$

D'autre part, on déduit des égalités:

$$\left[K_r \cdot \Omega\left(\frac{n_r}{p^{r-l+1}}\right) \colon \Omega\left(\frac{n_r}{p^{r-l+1}}\right)\right] = \left[K_r \colon K_r \cap \Omega\left(\frac{n_r}{p^{r-l+1}}\right)\right] = p^{r-l+1}$$

et

$$\left[\Omega\left(n_r\right):\Omega\left(\frac{n_r}{p^{r-l+1}}\right)\right] = p^{r-l+1},$$

que

$$\Omega(n_r) = K_r \cdot \Omega\left(\frac{n_r}{p^{r-l+1}}\right).$$

Les sous-groupes de $G(n_r)$ correspondants vont donc vérifier:

$$T\left(n_r, \frac{n_r}{p^{r-l+1}}\right) \cap S_r = 1$$

La restriction de π_{l-1} à S_r est donc bijective. On en déduit:

$$\sum_{s' \in \pi_{l-1}(S_r)} \xi^{s'p^{r-l+1}} = \sum_{s \in S_r} \xi^{\pi_{l-1}(s)p^{r-l+1}}.$$

Cette dernière quantité est égale à θ_{l-1} puisque, par définition de π_{l-1} :

on a

$$s \equiv \pi_{l-1}(s) \left(\frac{n_r}{p^{r-l+1}} \right)$$

d'où

$$sp^{r-l+1} \equiv \pi_{l-1}(s) p^{r-l+1}(n_r)$$

Dans le cas où p=2 et $u_r \ge 3$, on a alors: $u_r=r-l+3$ et l'on utilise alors l'application π_{l-2} de $G(n_r)$ sur $G\left(\frac{n_r}{2^{r-l+2}}\right)$. La démonstration est identique à la précédente, à ceci près que:

$$\left[\Omega\left(n_r\right): K_r \cdot \Omega\left(\frac{n_r}{2^{r-l+2}}\right)\right] = 2$$

c'est-à-dire que $T\left(n_r, \frac{n_r}{2^{r-l+2}}\right) \cap S_r$ possède deux éléments. On aura cette fois:

$$\sum_{s' \in \pi_{l-2}(S_r)} \xi^{s'2^{r-l+2}} = \frac{1}{2} \sum_{s \in S_r} \xi^{\pi_{l-2}(s)} 2^{r-l+2}$$

On montre ensuite par récurrence sur t que:

$$B_{t} = B(\theta_{l-1}, \sigma, p^{l-1}) \cup \left(\bigcup_{1 \leq i \leq t} B(\theta_{i}, \sigma, \varphi(p^{i})) \right)$$

est une base de K_t . Supposons donc que B_{t-1} soit une base de l'anneau des entiers de K_{t-1} . Soit π_t l'application canonique de $G(n_r)$ sur $G\left(\frac{n_r}{p^{r-t}}\right)$.

Comme $K_t \subseteq \Omega\left(\frac{n_r}{p^{r-t}}\right)$ et $K_{t+1} \not \subseteq \Omega\left(\frac{n_r}{p^{r-t}}\right)$ (proposition I.2; condition I.2.A; $u_{i+1} = u_i + 1$), on a

$$K_t = \Omega\left(\frac{n_r}{p^{r-t}}\right) \cap K_r$$

et $\pi_t\left(S_r\right)$ est le groupe des K_t -automorphismes de $\Omega\left(\frac{n_r}{p^{r-t}}\right)$. Si $\theta_t^{'} = \sum\limits_{s' \in \pi_t\left(S_r\right)} \xi^{s'p^r-t}$, la proposition III.1 et la remarque III.1, appliquées à $\Omega\left(\frac{n_r}{p^{r-t}}\right)$ et K_t permettent de conclure que: $B_{t-1} \cup B\left(\theta_t^{'},\sigma,\,\phi\left(p^t\right)\right)$ est une base de l'anneau des entiers de K_t . Il reste alors à montrer que $\theta_t^{'} = \theta_t$. Ceci se déduit comme précédemment de l'égalité $T\left(n_r, \frac{n_r}{p^{r-t}}\right) \cap S_r = 1$, toujours vraie si $l \leq t \leq r$.

On utilisera dans le paragraphe suivant les remarques:

Remarque III.3.A

Pour tout $i \ge l \operatorname{Tr}_{K_i/K_{i-1}}(\theta_i) = 0$. En effet:

$$Tr_{K_{i}/K_{i-1}}(\theta_{i}) = Tr_{\Omega\left(\frac{n_{r}}{p^{r-i}}\right)/K_{i-1}}\left(\xi^{p^{r-i}}\right)$$

$$= Tr_{\Omega\left(\frac{n_{r}}{p^{r-i+1}}\right)/K_{i-1}}\left(Tr_{\Omega\left(\frac{n_{r}}{p^{r-i}}\right)/\Omega\left(\frac{n_{r}}{p^{r-i+1}}\right)}\left(\xi^{p^{r-i}}\right)\right)$$

Cette quantité est nulle car $X^p - \xi^{p^{r-i+1}}$ est le polynome minimal de $\xi^{p^{r-i}}$ sur $\Omega\left(\frac{n_r}{p^{r-i+1}}\right)$.

Remarque III.3.B

$$Tr_{K_{l-1}/Q}(\theta_{l-1}) = (-1)^{m_r+1}$$

Il suffit d'appliquer le lemme III.1 à $\Omega\left(\frac{n_r}{p^{r-l+1}}\right)$ ou $\Omega\left(\frac{n_r}{2^{r-l+2}}\right)$, suivant les cas.

Remarque III.3.C

Dans le cas où p = 2 et $u_r \ge 3$, on a:

$$\sum_{s \in S_r} \xi^{s2^{r-l+1}} = 0$$

En effet:

$$\sum_{s \in S_r} \xi^{s2^{r-l+1}} = Tr_{\Omega\left(\frac{n_r}{2^{r-l+1}}\right)/K_{l-1}} \left(\xi^{2^{r-l+1}}\right)$$

et d'autre part

$$K_{l-1} \subseteq \Omega\left(\frac{n_r}{2^{r-l+3}}\right)$$

et

$$Tr_{\Omega\left(\frac{n_r}{2^{r-l+1}}\right)/\Omega\left(\frac{n_r}{2^{r-l+3}}\right)} \left(\xi^{2^{r-l+1}}\right) = 0$$

car $X^2 - \xi^{2^{r-l+2}}$ est le polynome minimal de $\xi^{2^{r-l+1}}$ sur $\Omega\left(\frac{n_r}{2^{r-l+3}}\right)$.

III.5. Exemple

Soit B la base introduite à la proposition III.3. On se propose de chercher les polynomes caractéristiques des θ_i . Pour cela, il faut pouvoir calculer les coordonnées, par rapport à B, des produits mutuels d'éléments de B.

Les θ_i sont des périodes de Gauss ([7] chapitre 7). On pose pour tout entier $a: \eta(a) = \sum_{s \in S_a} \xi^{as}$.

On a en particulier:

$$\theta_i = \eta(p^{r-i}) \quad \text{pour} \quad l \leq i \leq r$$

et suivant les cas:

$$\theta_{l-1} = \eta(p^{r-l+1})$$
 ou $\frac{1}{2}\eta(2^{r-l+2})$.

Pour tout b appartenant à $G(n_r)$, le transformé de $\eta(a)$ par b est $\eta(ab)$. En particulier les conjugués de θ_i , pour $l \le i \le r$, seront:

$$\sigma^k(\theta_i) = \eta(g^k p^{r-i}).$$

Le produit de deux périodes $\eta(a)$ et $\eta(a')$ est donné par: $\eta(a) \eta(a')$ = $\sum_{s \in S_r} \eta(a+a's)$. Appliquant cette formule à deux éléments de B, on est alors ramené au problème suivant: donner les coordonnées de $\eta(a)$, a entier quelconque, dans la base B.

c et c' désignent dans ce qui suit, des nombres premiers avec p.

1. Dans le cas p impair ou p=2 et $u_r=2$, $\eta(p^uc)$, avec $u \ge r-l+2$, peut s'exprimer comme somme de périodes de la forme $\eta(p^{r-l+1}c')$. Il suffit d'écrire l'égalité:

$$\sum_{0 < k < p} \xi^{\frac{n_r}{p}k} = -1;$$

multipliant alors cette égalité par ξ^{puc} on obtient:

$$\sum_{0 < k < p} \eta \left(\frac{n_r}{p} k + p^u c \right) = - \eta \left(p^u c \right).$$

Les quantités $\frac{n_r}{p}k + p^u c$ sont de la forme $p^{r-l+1}c'$.

Dans le cas où p=2 et $u_r\geq 3$, η (2^uc), avec $u\geq r-l+3$, est l'opposé d'une période η (2^{r-l+2}c').

2. $\eta(p^uc)$, avec $u \le r - l + 1$ (ou $u \le r - l + 2$, suivant les cas) peut s'exprimer comme somme de périodes de la forme $\eta(p^uc')$, c' appartenant à $G(n_r)$, en procédant de la même façon qu'au lemme III.2. C'està-dire: si v désigne le PGCD de c et de n_r , et m_v le nombre de diviseurs premiers de v, on a:

$$\sum_{\substack{0 < k < v \\ PGCD(k,v) = 1}} \xi^{\frac{n_r}{v}k} = (-1)^{m_v}$$

d'où:

$$(-1)^{m_v} \eta (p^u c) = \sum_{\substack{0 < k < v \\ PGCD(k,v) = 1}} \eta \left(\frac{n_r}{v} k + p^u c \right)$$

Les quantités $\frac{n_r}{v}k + p^u c$ sont de la forme $p^u c'$, avec c' premier avec n_r .

Cas particulier:

Si
$$K_r \cap \Omega\left(\frac{n_r}{v}\right) \subset K_r \cap \Omega\left(\frac{n_r}{p^u}\right)$$
 et $u \leq r - l$, alors $\eta\left(p^u c\right) = 0$.

En effet on a: $PGCD\left(\frac{n_r}{p^u}, \frac{n_r}{v}\right) = \frac{n_r}{p^u v}$.

D'où $K_r \cap \Omega\left(\frac{n_r}{v}\right) \subset \Omega\left(\frac{n_r}{p^u v}\right)$. En employant la même méthode que dans la démonstration de la proposition III.3, $\eta\left(p^u c\right)$ est égal, à un coefficient près, à:

$$Tr_{\Omega\left(\frac{n_r}{p^{u_v}}\right)/K_r \cap \Omega\left(\frac{n_r}{v}\right)}(\xi^{p^{u_c}})$$

Comme $K_r \cap \Omega\left(\frac{n_r}{p^u}\right) \supset K_r \cap \Omega\left(\frac{n_r}{v}\right)$ et comme $u \leq r - l$, on aura donc:

$$K_r \cap \Omega\left(\frac{n_r}{p^{u+1}}\right) \supseteq K_r \cap \Omega\left(\frac{n_r}{v}\right).$$

 $\Omega\left(\frac{n_r}{p^{u+1}v}\right)$ sera donc compris entre $K_r \cap \Omega\left(\frac{n_r}{v}\right)$ et $\Omega\left(\frac{n_r}{p^uv}\right)$ et l'on a

$$Tr_{\Omega\left(\frac{n_r}{p^{u_v}}\right)/\Omega\left(\frac{n_r}{p^{u+1}v}\right)}(\xi^{p^{u_c}}) = 0$$

3. $\eta(p^uc)$, avec $u \le r - l + 1$ (ou $u \le r - l + 2$ suivant le cas) et c premier avec n_r , est un conjugué de $\eta(p^u) = \theta_{r-u}$ (à moins qu'il ne soit nul; remarque III.3.C).

S'il n'est pas dans B, alors ses conjugués sur K_{r-u-1} , seront dans B et il suffit alors d'utiliser la remarque III.3.A.

Considérons par exemple, la suite de corps cyclotomiques vérifiant les conditions I.2.A bis et I.2.B bis: Ω (17), Ω (8.17), Ω (16.17).

On a donc r = 3; l = 2; $m_1 = m_2 = m_3 = 1$; $p_1 = 17$.

Il y a quatre extensions K_3 , cycliques de degré 8 sur Q associées à cette suite (proposition I.5 bis).

Elles ont pour discriminant sur $Q: 2^{22} 17^7$ (proposition II.3).

T (16.17, 17) a pour éléments 1, 35, 69, 103, 137, 171, 205, 239.

 $a_0 = 239$ et l'on peut choisir comme générateur de T(16.17, 4.17):

$$a_0^{'} = 69.$$

On cherche de même les éléments de T(16.17, 16) et un générateur c_1 de ce sous-groupe. On peut prendre par exemple $c_1 = 65$. Les puissances successives de c_1 sont données par le tableau suivant:

 S_3 est engendré par $\{c_1^8, c_1^{\alpha_0}a_0, c_1^{\alpha'_0}a_0^{'}\}$, α_0 et α'_0 vérifiant les conditions $\alpha_0 \equiv 0$ (4); $\alpha'_0 \equiv 0$ (2) et $\alpha'_0 \equiv 0$ (4) (proposition I.4 bis). Les éléments de S_3 sont de la forme:

$$s = c_{1} \qquad a_{0}\beta_{0} + \alpha_{0}'\beta_{0}' \quad \beta_{0} \quad \beta_{0}'$$

avec $\beta_0 = 0$ ou 1; $\beta'_0 = 0$, 1, 2 ou 3; $\beta_1 = 0$ ou 1.

Prenons par exemple: $\alpha_0 = 4$ et $\alpha_0' = 2$.

Le tableau suivant donne les valeurs de s, en fonction de β_0 , β_0' , β_1 . On trouve donc à la dernière ligne les éléments de S_3 :

$eta_0' egin{pmatrix} 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 \\ \end{bmatrix}$		11
	1 2	3
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1	1
s 1 213 217 253 33 229 89 189 47 219 135 195 191	155 103	179

On remarque que $3^4=81$ n'appartient pas à S_3 , c'est-à-dire que la classe de 3 modulo S_3 est un générateur de $\frac{G(16.17)}{S_3}$.

On prendra donc g = 3. Les classes de G(16.17) mod. S_3 sont données dans le tableau suivant:

S_3	1	213	217	253	33	229	89	189	47	219	135	195	191	155	103	179
3S ₃	3	95	107	215	99	143	267	23	141	113	133	41	29	193	37	265
3^2S_3	9	13	49	101	25	157	257	69	151	67	127	123	87	35	111	251
3^3S_3	27	39	147	31	75	199	227	207	181	201	109	97	261	105	61	209
3^4S_5	81	117	169	93	225	53	137	77	271	59	55	19	239	43	183	83
$3^{5}S_{3}$	243	79	235	7	131	159	139	231	269	177	165	57	173	129	5	249
3^6S_3	185	237	161	21	121	205	145	149	263	259	223	171	247	115	15	203
3^7S_3	11	167	211	63	91	71	163	175	245	233	125	241	197	73	45	65

 $B = \{ \eta(1), \eta(3), \eta(3^2), \eta(3^3), \eta(2), \eta(2.3), \frac{1}{2}\eta(8), \frac{1}{2}\eta(8.3) \}$ est une base de l'anneau des entiers de K_3 . On cherche le polynome minimal de $\eta(1)$ sur K_2 . Le conjugué de $\eta(1)$ sur K_2 est $\eta(3^4)$ et d'après la remarque III.3.A, $\eta(1) + \eta(3^4) = 0$.

D'autre part: $\eta(1)^2 = \sum_{s \in S_3} \eta(1+s)$.

Il reste à exprimer chacun des η (1+s) en fonction de: η (2), η (2.3), η (8), et η (8.3).

Par exemple: pour s=213: $\eta(1+213)=\eta(2.107)=\eta(2.3)$ car $107 \in 3$ S_3 .

Pour s = 33: $\eta(1+33) = \eta(2.17) = 0$ car $\Omega(16) \cap K_3 = Q \subset K_2 = \Omega(8.17) \cap K_3$.

Pour s=47, on écrit $\xi^{8.17}=-1$ d'où $\xi^{8.17+48}=-\xi^{48}$ c'est-à-dire: $\eta(1+47)=-\eta(8.23)=-\eta(8.3)$.

Pour s = 195: $\eta (1+195) = \eta (4.49) = 0$ compte tenu de la remarque III.3.C.

Finalement on obtient: $\eta(1)^2 = -16 - \eta(2) - 2\eta(8.3) + \eta(8)$. Le polynome minimal de $\eta(1)$ sur K_2 est donc:

$$X^2 + 16 + \eta(2) + 2\eta(3.8) - \eta(8)$$

On calcule de la même façon le polynome minimal de η (2) sur K_1 : $X^2 - \eta$ (8) - 16 et celui de η (8) sur Q: $X^2 - 2X - 16$.

Les 8 nombres:

$$\frac{1+\sqrt{17}}{2}, \frac{1-\sqrt{17}}{2}, \sqrt{17+\sqrt{17}}, \sqrt{17-\sqrt{17}},$$

$$\sqrt{-17+3\sqrt{17}-\sqrt{17+\sqrt{17}}}, \sqrt{-17-3\sqrt{17}-\sqrt{17}-\sqrt{17}}$$

$$\sqrt{-17+3\sqrt{17}+\sqrt{17}+\sqrt{17}} \text{ et } \sqrt{-17-3\sqrt{17}+\sqrt{17}-\sqrt{17}}$$

forment une base de l'anneau des entiers de K_3 .

Pour les autres valeurs de α_0 et α_0' le résultat est le suivant: les polynomes minimaux de η (8) et η (2) restent les mêmes que précédemment. Pour obtenir une base des entiers des autres extensions K_3 admettant la même suite de corps cyclotomiques associée: Ω (17), Ω (8.17), Ω (16.17), il suffit d'ajouter aux quatre nombres:

$$\frac{1+\sqrt{17}}{2}$$
, $\frac{1-\sqrt{17}}{2}$, $\sqrt{17+\sqrt{17}}$, $\sqrt{17-\sqrt{17}}$,

les quatre autres quantités:

Pour le corps K_3 correspondant à $\alpha_0 = 4$ et $\alpha_0' = 6$:

$$\sqrt{-17+3\sqrt{17}+3\sqrt{17}-4\sqrt{17}-4\sqrt{17}-\sqrt{17}},$$

$$\sqrt{-17-3\sqrt{17}+3\sqrt{17}-\sqrt{17}+4\sqrt{17}+\sqrt{17}},$$

$$\sqrt{-17+3\sqrt{17}-3\sqrt{17}+\sqrt{17}+4\sqrt{17}-\sqrt{17}},$$

$$\sqrt{-17-3\sqrt{17}-3\sqrt{17}-\sqrt{17}-4\sqrt{17}+\sqrt{17}},$$

Pour le corps K_3 correspondant à $\alpha_0 = 8$ et $\alpha'_0 = 2$:

$$\sqrt{17+3\sqrt{17}+\sqrt{17}-\sqrt{17}}, \sqrt{17-3\sqrt{17}-\sqrt{17}+\sqrt{17}}$$

$$\sqrt{17+3\sqrt{17}-\sqrt{17}-\sqrt{17}}, \sqrt{17-3\sqrt{17}+\sqrt{17}+\sqrt{17}}$$

Pour le corps K_3 correspondant à $\alpha_0 = 8$ et $\alpha_0' = 6$:

$$\sqrt{17-3\sqrt{17}+3\sqrt{17}-4\sqrt{17}-4\sqrt{17}-\sqrt{17}},$$

$$\sqrt{17+3\sqrt{17}+3\sqrt{17}-\sqrt{17}+4\sqrt{17}+\sqrt{17}},$$

$$\sqrt{17-3\sqrt{17}-3\sqrt{17}-\sqrt{17}+4\sqrt{17}-\sqrt{17}},$$

$$\sqrt{17+3\sqrt{17}-3\sqrt{17}-\sqrt{17}-4\sqrt{17}+\sqrt{17}}.$$

BIBLIOGRAPHIE

- [1] SAMUEL, P. Théorie algébrique des nombres (Hermann).
- [2] Mac Carthy, P. J. Algebraic extensions of fields (Blaisdell Publishing Company).
- [3] HERBRAND, J. Développement moderne de la théorie des corps algébriques. Mémorial des Sciences Mathématiques (fasc. LXXV, 1936).
- [4] Chevalley, C. Théorie du corps de classes dans les corps finis et les corps locaux. Journ. of the Faculty of Sciences, Tokyo 1933, 365.
- [5] LANG, S. Algebraic Numbers (Addison-Wesley Publishing Company).
- [6] Algebra (Addison-Wesley Publishing Company).
- [7] VAN DER WAERDEN, B. L. Modern Algebra, vol. I (F. Ungar Publishing Company).

(Reçu le 26 octobre 1971)

Bernard Oriat
Faculté des sciences
Route de Gray
F-25 — Besançon