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est p” (lemme 1.2), on a donc:

r

B p
“ PGCD(p", V(9)

g, = PGCD(p", V(q)).

I1.4. INDICE DE RAMIFICATION DANS UNE EXTENSION K,

" PROPOSITION 11.2.

Soient K, une extension cyclique de degré p" sur QO et
(Q (1))~ la suite de corps cyclotomiques associée a K,. Pour
tout ide 1 arettoutjtel quem;_; < j==m, 'indice de ramification
de p; dans K, est p"~ "1
Si u, # 0, I'indice de ramification de p dans K, est p

r—1+1

Soit j tel que m;_{ < j=m;. p; divise donc n; et ne divise pas n;_ .

- Clest-a-dire que p; se ramifie dans @ (n;) et ne se ramifie pas dans Q (n;_ ).
~ D’apres le lemme I1.1, ceci implique que p; se ramifie dans K; et ne se ramifie
- pas dans K;_ ;. K;_ est donc le corps d’inertie de p; dans K, et I'indice de
~ramification de p; dans K, est égal a: [K, : K;_4].

De méme si v, # 0, K,_; est le corps d’inertie de p dans K.

I1.5. DISCRIMINANT DE K,

- ProrosiTioN 11.3.

K, est une extension cyclique de degré p" sur Q et (Q ()) | =izr
la suite de corps cyclotomiques associée. Le discriminant de K,
sur Q est:

— Dans le cas ott u, = 0:

— Dans le cas ot p est impair et u, = 2:
—1+1
-1 r—i+1_P" -1 1, r—i
p (r—1+2)p - -1 pi— l(pr—i+tl_y
p ( p—1 ) [] [] ph )

1<i<r mp_q<j<m;




84 —

— Dans le cas ot p = 2 et u, = 2:

22r H H p?i—l(zr-—i-kl_l)

1<i<r m;_q{<j<m;

— Dans le cas ot p = 2 et u, = 3:

I—1,(n_ r—1+1 2i—1pr—i+1
72 ((r—1+2)2 -1) H 1—[ ¥ (2 -1)
1<j<m !

1<i<r mi_

Supposons tout d’abord u, = (. Désignons par A I’anneau des entiers
de K,. Pour tout j de 1 & m, soit p;A = [] p;ila décomposition de

l=v=g;j
p;A dans K, et soit f; le degré résiduel de p; dans K,. Les p; étant les seuls
nombres premiers ramifiés dans K, et leurs indices de ramification e; étant
premiers a p;, la différente ¢ de K, sur Q est:

o= I Il »3*

1<j<m, ISUSQJ‘

Le déterminant D,, de K, sur Q, est donc D = Ng ,,(0) et comme

Nk..0 (0;,) = p’; on obtient:
D= [[ plieiti

1<j<m,

qui s’écrit également:

D=1 I e,

1<i<r m;_;<jsm;

Sim;_ | <j=m, alors e; = p"~""1 d’aprés la proposition 1.2 et comme

e;f;g; = p', on obtient le résultat annoncé.

Supposons maintenant p impair et u, == 2.

Dans ce cas u, et [ sont liés par la relation u, = r — [ + 2. On notera
toujours D le discriminant de K, sur Q et on introduit la décomposition

0 = 0¢dy ... 0,,, de la différente de K, sur Q, en idéaux: dy, 4, ... 0

soit une puissance de p;. D s’écrira alors D = DyD, ... D,, . Le calcul de
DD, ... D, seffectue comme dans la démonstration précédente. Pour
calculer D, on introduit la différente 6" de Q2 (,) sur K, décomposée de la
méme fagon en &' = §¢d; ... 8, et D" = DyD; ... D,, le discriminant de
Q (n,) sur Q.

La formule de transitivité sur les différentes donne:

DI() - NQ("r)/Q (5056) = N.Q(nr)/Q (52))NKr/Q (559('”):“])

mps>

tels que Dy = Nk o (0,) soit une puissance de p et tels que D; = Ng 0 (9))

s i
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o (nr)

D/(/) = NQ(n,)/Q((SE)) Do 7

%‘% .
i d’ou

' Caleul de Nogyy 10 (50):

Soient A et A, les anneaux d’entiers respectifs de K, et Q (n,) et soit pA
= [l vp;la décomposition de p4 dans K, et f le degré résiduel de p

1=v=yg

dans K,. Soient:

pde = ] p, la décomposition de p,4, dans Q () et /7 le degré
1=v' =g’
résiduel de p, dans Q (n,). L’indice de ramification e de p dans K, est p’
~ (proposition 11.2) et puisque Iindice de ramification ee’ de p dans Q (n,)
est @ (p7) = (p—1)p"~'"!, on a donc ¢ = p — 1 et ¢ est premier a p.
- On en déduit que: |

—l+1

/ p—2
50 = H puv’
1<v<g
1Svlsg/

et comme Ng, y/0 (Ppy) = pf, on aura donc:

(p—2)p(ny)
4 . ’ ’ __2) _ ( _1) r—l+1
NQ(nr)/Q (60) = Pﬂr 99'(p = pPmF

1
~ D’autre part on a D, = p®U"" (r_’” B 5'—_1) d’ou I’égalité:

" (p—2)p(ny) @(nr)

p(p(n,-)(r—l+2—})j—1) — p(p—l)pl"—H-lDO pr

dont on extrait la valeur de D,.

Dans le cas p = 2 et u, = 2; gardant les mémes notations on a ¢ = 1
et 5, = 1. On utilise alors comme précédemment la valeur D, = 2°0'7),

Supposons maintenant p = 2 et u, = 3:

~ On garde les mémes notations que précédemment. On a cette fois: u, = r
— [ 4+ 3 et I'indice de ramification ee’ de 2 dans Q (n,) est maintenant
27712 ol ¢ = 2. &, ne peut donc étre obtenue comme précédemment.
On introduit un corps £ compris entre K, et Q (n,) de la fagon suivante:
reprenant les notations introduites dans la proposition 1.3 bis posons:

Ao

h=ag Ta, et S ={h1}.

h est d’ordre 2, S est donc un sous-groupe de G (n,). Dans le cas ou / = 1,
c’est-a-dire u, = r + 2, il apparait immédiatement que S est inclus dans S..
Si [ =2, c’est-a-dire si 3 =u, =r + 1 on constate que:




a/
(2—1_0—1 +‘1>cx0 = 0(2") et qu’il existe donc un entier f tel que:

oy )
F‘l‘l d0+2/))=p1—1.
D’ou

%o
-1

b= (iag ) oaged?
qui montre que S est inclus dans S,. E désigne le corps fixe de S, E contient
donc K.

n
Le groupe d’inertie de 2 dans Q (n,) est T(nr, 51%), le groupe d’inertie

nr ol r
de p,,, sur E sera donc T(n,, E“—r> NS = S. p, nest donc pas ramifié¢ dans
E et la différente de E sur K, est premiére avec 2.

Si D’ est le discriminant de E sur Q, et D(; la plus grande puissance de 2

divisant D’, on aura alors:
¢ (nr)
2r+1

D:) = NE/Q (50) - NE/K,(DO) = Do

Il reste & calculer D,. Pour cela introduisons Ay I’anneau des entiers
de E et & une racine primitive (n,)e™e de 1. A partir de I’égalité: {2 = — &**!
+ (E4E") &, on constate par récurrence sur ¢ que &' peut toujours se mettre
sous la forme a + b¢, avec a et b dans Ay, Comme {1, ¢, ... o071}
est une base des entiers de Q (n,) sur Z, on en déduit que { 1, £ } est une
base des entiers de Q (n,) sur Az Le polynome X? — (E4+&") X + &b+
est le polynome minimal de & sur E et la différente 6” de Q (n,) sur E sera
donc I'idéal engendré par & — &P,

La formule de transitivité sur les différentes appliquée entre Q, E et
Q@ (n,) va donner:

D" = D'PIEIN G 10(8") = D'? N0 (8")

1

Pour obtenir la valeur de Ny, y,0 (6”), montrons que E"~1 est une racine

primitive (2"~ " ?)eme de 1. En effet:

n .
he T<n,, %) donch — 1 = O< ’ ) et d’autre part, 4 étant premier a 2,

Ur

onah —1=:0(2).
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| Mais & — 1 % 0(4), sinon A appartiendrait a T(n,, Z—u—r—_—2> et ce sous-

 groupe est engendré par do.

On a donc finalement

n, n,
h - 1 - 0 2r—l+2 et h - 1 $ 0 2r—l+1

On en déduit que

NQ(zr—l+2)/Q(1 - éh.—l) S5

et
@(nr)
* Sr—l+1

1 Nowmno (6") = 22r

~ Comme Dy est égal a 2°(" =12 on en déduit les égalités:

o(nr) o(nr) ¢(nr)
-1+1 r r—1l+1
— DO # @ 22

20 (r=1+2) _ pr2 22’

- D’ol 'on déduit la valeur de D,,.

: ProrosITION I1.4.

] Le discriminant de K,, extension cyclique de degré p" sur Q,
, ' ne dépend que de la suite de corps cyclotomiques associée a K.
‘ ' Réciproquement, si deux extensions cycliques de degré p, sur Q, ont
| méme discriminant sur 0, alors leurs suites de corps cyclotoniiques
- | sont égales.

C’est une conséquence de la proposition 11.3.

Précisons pour la réciproque, que si K, est une extension cyclique de degré
p"sur Q (p premier, par exemple) et si 'on connait son discriminant D
sur Q, alors les nombres premiers divisant n, sont exactement ceux qui
divisent D. L’exposant de p; dans la décomposition de D en facteurs pre-
miers n’est pas divisible par p’ si et seulement si j = m; c’est-a-dire si et
¢ seulement si p ; divise n;. Ceci permet de préciser quels sont les diviseurs de

n; distincts de p. Si p ne divise pas D, on a u, = C et alors tous les u; sont
g r—I1l+1 _

nuls. Si p divise D, et comme (r—[+2)p " '*! — p———l— — 1 est
0
| premier a p, on obtient, & partir de la valeur de I'exposant de p dans la
décomposition de D, la valeur de I, donc la suite (u;)_—;_,.
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