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Alors le corps d’inertie de p dans Q (n) est Q (n') et son groupe d’inertie

T (n, n'). :

Soit 7 I’application canonique de G (n) sur G (K/Q) qui a tout automor-

phisme de Q (n) fait correspondre sa restriction a K. @ a pour noyau
G (™M) et comme Q (n) est le plus petit corps cyclotomique contenant K,

on a donc:

iskuscbia

Q) 2 K cesta-dire T(n,n') € GE /).

i S AN

? (T (n, n')) qui est le groupe d’inertie de p dans K, n’est donc pas réduit a
lldentlte et p se ramifie dans K.

I1.3. DECOMPOSITION D’UN NOMBRE ¢ PREMIER, NON RAMIFIE DANS K,

K, désigne une extension cyclique de degré p" sur Q (p premier) et
(Q (n;))1-:i— la suite de corps cyclotomiques associée. Les notations
- restent les mémes qu’au premier chapitre. ¢ est un nombre premier non
ramifié dans K,, c’est-d-dire d’aprés le lemme précédent, premier avec n,.
Si p est impair et suivant que u, = 0 ou u, = 2,

soit q = cf1c§2...cff,’r"r(n,)

ou q = bgocfl...cﬁ'r"r(nr),
la décomposition de ¢ dans G (n,).

On posera alors:

— Si
2=2u, Sr:V(g) = opfy + Z O‘jﬁj—ﬁl
2<j<m,
— B
u, =r+1:V@ = Y of —Bo
1<j<m,
— Si

u, =0:V(g) = ) ;=5

2<j<m,
De méme si p = 2 et suivant que u, = 0, ou u, = 2, ou u, = 3, soit

g g =cic cur(n,) ou g = ag"cfl...c,’f,'r”r(n,)
ou

q = afas’ocl .. chme(n,)




8 .

la décomposition de g dans G (n,). On posera alors:

— Si
3su, Sr+1:V(Q) = afo + aocBo+ Y wf; — B
2<jsm,
— Si
u, =r + 2 V() = ) ijﬁj—ﬂz)
0<j<m,
— Si
u, =2 V(g =27 B+ Y, B — By
' 2<j<m,
— Si
u, =0 :V(g) = Z O‘jﬁj — By
2Lj<m,

ProrosiTioN II.1.

Soient K, une extension cyclique de degré p" sur Q et ¢ un nombre
premier, ne divisant pas n,. Alors la décomposition de ¢ en idéaux
premiers de K, est de la forme:

qg= J] a

ISUqu

et g, estle PGCD de p" et de V' (q).

Le groupe de décomposition de g dans Q2 (n,) est le sous-groupe de |

G (n,) engendré par la classe de ¢ modulo n, et la restriction de g, considéré

comme automorphisme de Q (n,), a K, engendre le groupe de décomposition

~de g dans K,.

G (nl‘)

Le degré résiduel f, de g dans K, est donc I'ordre de ¢ S, dans

r

sons par exemple p impair et 2 = u, = r et considérons alors:

s = (cTbo)o(ces )2 ... (cimr ¢y, )

— bgo CY(QH—[}I ng Cglrrn,
D’aprés la proposition 1.3, s € S, et ’on a modulo #,:
sq7! = c1@.

G (n,)

f, est donc égal & ordre de ¢; @ S, dans

r

. Suppo-

et comme ’'ordre de ¢S,
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est p” (lemme 1.2), on a donc:

r

B p
“ PGCD(p", V(9)

g, = PGCD(p", V(q)).

I1.4. INDICE DE RAMIFICATION DANS UNE EXTENSION K,

" PROPOSITION 11.2.

Soient K, une extension cyclique de degré p" sur QO et
(Q (1))~ la suite de corps cyclotomiques associée a K,. Pour
tout ide 1 arettoutjtel quem;_; < j==m, 'indice de ramification
de p; dans K, est p"~ "1
Si u, # 0, I'indice de ramification de p dans K, est p

r—1+1

Soit j tel que m;_{ < j=m;. p; divise donc n; et ne divise pas n;_ .

- Clest-a-dire que p; se ramifie dans @ (n;) et ne se ramifie pas dans Q (n;_ ).
~ D’apres le lemme I1.1, ceci implique que p; se ramifie dans K; et ne se ramifie
- pas dans K;_ ;. K;_ est donc le corps d’inertie de p; dans K, et I'indice de
~ramification de p; dans K, est égal a: [K, : K;_4].

De méme si v, # 0, K,_; est le corps d’inertie de p dans K.

I1.5. DISCRIMINANT DE K,

- ProrosiTioN 11.3.

K, est une extension cyclique de degré p" sur Q et (Q ()) | =izr
la suite de corps cyclotomiques associée. Le discriminant de K,
sur Q est:

— Dans le cas ott u, = 0:

— Dans le cas ot p est impair et u, = 2:
—1+1
-1 r—i+1_P" -1 1, r—i
p (r—1+2)p - -1 pi— l(pr—i+tl_y
p ( p—1 ) [] [] ph )

1<i<r mp_q<j<m;
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