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Alors le corps d'inertie de p dans Q (n) est Q {n') et son groupe d'inertie

T(n,n').
Soit n l'application canonique de G (ri) sur G(K/Q) qui à tout automor-

phisme de Ü (n) fait correspondre sa restriction à K. % a pour noyau
G (Q(n)!K) et comme Q (n) est le plus petit corps cyclotomique contenant K,

on a donc:

Q (n) $ K c'est-à-dire T {n, n) $ G(a (n)/K)

7i (T (n, n qui est le groupe d'inertie de p dans K, n'est donc pas réduit à

l'identité et p se ramifie dans K.

IL3. Décomposition d'un nombre q premier, non ramifié dans Kr

Kr désigne une extension cyclique de degré pr sur Q (p premier) et

(0 (n {)) i^j^r la suite de corps cyclotomiques associée. Les notations
restent les mêmes qu'au premier chapitre, q est un nombre premier non
ramifié dans Kn c'est-à-dire d'après le lemme précédent, premier avec nr.

Si p est impair et suivant que ur 0 ou ur ^ 2,

soit qEE c^cf2... cir(nr)
ou q ...cßmr

la décomposition de q dans G (nr).

On posera alors:

— Si

2 ^ ur^r :V(q)cc0ß0 + £ oc/,. - ßt
2 < j < m r

— Si

m, r + 1 : V(q) £ cc/; - ß0
1 < j < m r

— Si

ur0 : V(q) E «A - ßi
2<j<mr

De même si p2 et suivant que ur 0, ou ur 2, ou ur ^ 3, soit

qcî' c22 ••• Cmr(nr)OUq aß0°cll ...cßmr(nr)
ou

q a^a'/oc^ ...cßm^{nr)
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la décomposition de q dans G (nr). On posera alors :

— Si

Si

- Si

Si

3^,^ + 1: V(q)a0ß0 + a'0ß'0 + £ a/,. - ßt
2 < j <mr

r + 2 : V(q) £ a - ß'0
0 <j<mr

ur 2 :V(q)=2'~1ß0 +£
2 <j<mr

Ur o : V(q)X -
2 < j <mr

Proposition II. 1.

Soient Kr une extension cyclique de degré pr sur Q et q un nombre
premier, ne divisant pas nr. Alors la décomposition de q en idéaux

premiers de Kr est de la forme:

« n
1 <v<gq

et gq est le PGCD de pr et de V (q).

Le groupe de décomposition de q dans Q (nr) est le sous-groupe de

G (nr) engendré par la classe de q modulo nr et la restriction de g, considéré

comme automorphisme de Q (nr), à Kr engendre le groupe de décomposition
de q dans Kr.

Le degré résiduel fq de q dans Kr est donc l'ordre de q Sr dans —. Suppo-
Sr

sons par exemple p impair et 2 ur r et considérons alors:

's {c\»b0y°(c\*c2p...(c«rr

- hßo/W+fif»!rßmr— ü0 C1 c2 •" cmr r

D'après la proposition 1.3, s e Sr et l'on a modulo nr\

ç/7-l _ pV(q)sq — cl

V( G(nr)
fq est donc égal à l'ordre de cx

Kq) Sr dans —— et comme l'ordre de ctSr
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est pr (lemme 1.2), on a donc:

Pr
f" PGCD(pr,V))

et

gq PGCD(f, V(q)).

II.4. Indice de ramification dans une extension Kr

Proposition II.2.

Soient Kr une extension cyclique de degré pr sur Q et

(ß la suite de corps cyclotomiques associée à Kr. Pour

tout i de 1 à r et toutj tel que mi_1 < j m h l'indice de ramification
de pj dans Kr est pr~I+
Si ur ^ 0, l'indice de ramification de p dans Kr est pr~l+1.

Soit j tel que mt_ 1 < j mt. p} divise donc nt et ne divise pas
C'est-à-dire que pj se ramifie dans Q (n t) et ne se ramifie pas dans Q (/?;_ J.
D'après le lemme II. 1, ceci implique que pj se ramifie dans Kt et ne se ramifie

pas dans Ki_1. Ki_1 est donc le corps d'inertie de pj dans Kr et l'indice de

ramification de pj dans Kr est égal à: [Kr : J.
De même si ur ^ 0, est le corps d'inertie de p dans Kr.

II.5. Discriminant de Kr

Proposition II.3.

Kr est une extension cyclique de degré// sur Q et (Q
la suite de corps cyclotomiques associée. Le discriminant de Kr
sur Q est:

— Dans le cas où ur — 0:

n n
1 <i<r

— Dans le cas où p est impair et ur ^ 2 :

ppl-1((.r-l + 2)pl-'+l-P-p/"1-! TT T-T

1<i <r
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