Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 18 (1972)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ÉTUDE ARITHMÉTIQUE DES CORPS CYCLIQUES DE DEGRE p'

SUR LE CORPS DES NOMBRES RATIONNELS

Autor: Oriat, Bernard

Kapitel: II.3. DÉCOMPOSITION D'UN NOMBRE q PREMIER, NON RAMIFIÉ

DANS \$K_r\$

DOI: https://doi.org/10.5169/seals-45361

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Alors le corps d'inertie de p dans $\Omega(n)$ est $\Omega(n')$ et son groupe d'inertie T(n, n').

Soit π l'application canonique de G(n) sur $G(^K/_Q)$ qui à tout automorphisme de $\Omega(n)$ fait correspondre sa restriction à K. π a pour noyau $G(^{\Omega(n)}/_K)$ et comme $\Omega(n)$ est le plus petit corps cyclotomique contenant K, on a donc:

$$\Omega(n') \supseteq K$$
 c'est-à-dire $T(n, n') \subseteq G(\Omega(n)/K)$.

 π (T(n, n')) qui est le groupe d'inertie de p dans K, n'est donc pas réduit à l'identité et p se ramifie dans K.

II.3. Décomposition d'un nombre q premier, non ramifié dans K_r

 K_r désigne une extension cyclique de degré p^r sur Q (p premier) et $(\Omega(n_i))_{1 \le i \le r}$ la suite de corps cyclotomiques associée. Les notations restent les mêmes qu'au premier chapitre. q est un nombre premier non ramifié dans K_r , c'est-à-dire d'après le lemme précédent, premier avec n_r .

Si p est impair et suivant que $u_r = 0$ ou $u_r \ge 2$,

soit
$$q \equiv c_1^{\beta_1} c_2^{\beta_2} \dots c_{m_r}^{\beta_m} r(n_r)$$
 ou
$$q \equiv b_0^{\beta_0} c_1^{\beta_1} \dots c_{m_r}^{\beta_m} r(n_r),$$

la décomposition de q dans $G(n_r)$.

On posera alors:

— Si
$$2 \le u_r \le r : V(q) = \alpha_0 \beta_0 + \sum_{2 \le j \le m_r} \alpha_j \beta_j - \beta_1$$

— Si
$$u_r = r + 1: V(q) = \sum_{1 \le j \le m_r} \alpha_j \beta_j - \beta_0$$

— Si
$$u_r = 0: V(q) = \sum_{2 \le j \le m_r} \alpha_j \beta_j - \beta_1$$

De même si p=2 et suivant que $u_r=0$, ou $u_r=2$, ou $u_r\geq 3$, soit

$$q \equiv c_1^{\beta_1} c_2^{\beta_2} \dots c_{m_r}^{\beta_{m_r}}(n_r)$$
 ou $q \equiv a_0^{\beta_0} c_1^{\beta_1} \dots c_{m_r}^{\beta_{m_r}}(n_r)$

ou

$$q \equiv a_0^{\beta_0} a_0^{'\beta_0'} c_1^{\beta_1} \dots c_{m_r}^{\beta_{m_r}} (n_r)$$

la décomposition de q dans $G(n_r)$. On posera alors:

- Si
$$3 \le u_r \le r + 1 : V(q) = \alpha_0 \beta_0 + \alpha'_0 \beta'_0 + \sum_{2 \le j \le m_r} \alpha_j \beta_j - \beta_1$$
- Si
$$u_r = r + 2 \qquad : V(q) = \sum_{0 \le j \le m_r} \alpha_j \beta_j - \beta'_0$$
- Si
$$u_r = 2 \qquad : V(q) = 2^{r-1} \beta_0 + \sum_{2 \le j \le m_r} \alpha_j \beta_j - \beta_1$$
- Si
$$u_r = 0 \qquad : V(q) = \sum_{2 \le j \le m_r} \alpha_j \beta_j - \beta_1$$

Proposition II.1.

Soient K_r une extension cyclique de degré p^r sur Q et q un nombre premier, ne divisant pas n_r . Alors la décomposition de q en idéaux premiers de K_r est de la forme:

$$q = \prod_{1 \le v \le g_q} q_v$$

et g_q est le PGCD de p^r et de V(q).

Le groupe de décomposition de q dans $\Omega(n_r)$ est le sous-groupe de $G(n_r)$ engendré par la classe de q modulo n_r et la restriction de q, considéré comme automorphisme de $\Omega(n_r)$, à K_r engendre le groupe de décomposition de q dans K_r .

Le degré résiduel f_q de q dans K_r est donc l'ordre de q S_r dans $\frac{G(n_r)}{S_r}$. Supposons par exemple p impair et $2 \le u_r \le r$ et considérons alors:

$$\begin{split} s &= \left(c_1^{\alpha_0} \, b_0\right)^{\beta_0} \left(c_1^{\alpha_2} \, c_2\right)^{\beta_2} \dots \left(c_1^{\alpha_{m_r}} \, c_{m_r}\right)^{\beta_{m_r}} \\ &= b_0^{\beta_0} \, c_1^{V(q) + \beta_1} \, c_2^{\beta_2} \dots \, c_{m_r}^{\beta_{m_r}} \end{split}$$

D'après la proposition I.3, $s \in S_r$ et l'on a modulo n_r :

$$sq^{-1} = c_1^{V(q)}$$
.

 f_q est donc égal à l'ordre de $c_1^{V(q)}$ S_r dans $\frac{G(n_r)}{S_r}$ et comme l'ordre de c_1S_r

est p^r (lemme I.2), on a donc:

$$f_q = \frac{p^r}{PGCD(p^r, V(q))}$$

et

$$g_q = PGCD(p^r, V(q)).$$

II.4. Indice de ramification dans une extension K_r

Proposition II.2.

Soient K_r une extension cyclique de degré p^r sur Q et $(\Omega(n_i))_{1 \le i \le r}$ la suite de corps cyclotomiques associée à K_r . Pour tout i de 1 à r et tout j tel que $m_{i-1} < j \le m_i$, l'indice de ramification de p_j dans K_r est p^{r-i+1} .

Si $u_r \neq 0$, l'indice de ramification de p dans K_r est p^{r-l+1} .

Soit j tel que $m_{i-1} < j \le m_i$. p_j divise donc n_i et ne divise pas n_{i-1} . C'est-à-dire que p_j se ramifie dans Ω (n_i) et ne se ramifie pas dans Ω (n_{i-1}) . D'après le lemme II.1, ceci implique que p_j se ramifie dans K_i et ne se ramifie pas dans K_{i-1} . K_{i-1} est donc le corps d'inertie de p_j dans K_r et l'indice de ramification de p_j dans K_r est égal à: $[K_r:K_{i-1}]$.

De même si $u_r \neq 0$, K_{l-1} est le corps d'inertie de p dans K_r .

II.5. DISCRIMINANT DE K_r

Proposition II.3.

 K_r est une extension cyclique de degré p^r sur Q et $(\Omega(n_i))_{1 \le i \le r}$ la suite de corps cyclotomiques associée. Le discriminant de K_r sur Q est:

— Dans le cas où $u_r = 0$:

$$\prod_{1 \le i \le r} \prod_{m_{i-1} < j \le m_i} p_j^{p^{i-1} (p^{r-i+1}-1)}$$

— Dans le cas où p est impair et $u_r \ge 2$:

$$p^{p^{l-1}\left((r-l+2)p^{r-l+1}-\frac{p^{r-l+1}-1}{p-1}-1\right)}\prod_{1\leq i\leq r}\prod_{m_{i-1}< j\leq m_{i}}p_{j}^{p^{l-1}(p^{r-i+1}-1)}$$