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Ök'/K — 0 Po" •

1 < v < m

Si ev est l'indice de ramification de pv sur Kon a: hv ^ ev — 1 et hv ev — 1

si et seulement si ev est premier avec la caractéristique du corps — Le dis-
Vv

criminant de K' sur K est NK>/K (SK'/K) et on a la formule de transitivité :

ôK"/k SK„/K,ÔK./K([2] chapitre 4, [5] chapitre 3).

Corps cyclotomiques : Dans un corps cyclotomique Q (ps), (p premier)
p est leur seul nombre premier ramifié et: p (1 — çy(ps\ ç désignant une
racine primitive (ps)eme de 1, est la décomposition de p en idéaux premiers
de Q, (ps).

p est ramifié dans un corps cyclotomique Q (n) si et seulement si p divise n.
Si n s'écrit: n ps n avec n premier avec p, alors le corps d'inertie de p
dans Q (ri) est Q (n) et l'indice de ramification de p dans Q (ri) est cp (ps).
Si q est premier avec ny la classe de q modulo n est l'automorphisme de

Frcebenius, et elle engendre dans G (ri) le groupe de décomposition de q

dans Q (ri). Le degré résiduel de q dans Q (n) est donc le plus petit entier /
tel que: qf 1 (77).

Si £ est une racine primitive /7eme de 1, { 1, 4 ••• 4~?(n)_1 } est une base

de l'anneau des entiers de Q (ri) sur Z. Le discriminant de Q (n) sur Q est:

<P(n)

n p'-1

ce dernier produit étant étendu à tous les nombres premiers p divisant n

([5] chapitre 4).

II.2. Nombres premiers ramifiés dans une extension abélienne de Q

Lemme II.l.

Soient K une extension abélienne de Q et Q (ri) le plus petit corps
cyclotomique contenant K. Alors un nombre premier p se ramifie
dans K si et seulement s'il divise n.

Si p est ramifié dans K, alors il est ramifié dans tout surcorps de K,
donc dans Q (ri) et il divise n.

Réciproquement, si p divise 77, posons n ps ri, avec ri premier avec p.
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Alors le corps d'inertie de p dans Q (n) est Q {n') et son groupe d'inertie

T(n,n').
Soit n l'application canonique de G (ri) sur G(K/Q) qui à tout automor-

phisme de Ü (n) fait correspondre sa restriction à K. % a pour noyau
G (Q(n)!K) et comme Q (n) est le plus petit corps cyclotomique contenant K,

on a donc:

Q (n) $ K c'est-à-dire T {n, n) $ G(a (n)/K)

7i (T (n, n qui est le groupe d'inertie de p dans K, n'est donc pas réduit à

l'identité et p se ramifie dans K.

IL3. Décomposition d'un nombre q premier, non ramifié dans Kr

Kr désigne une extension cyclique de degré pr sur Q (p premier) et

(0 (n {)) i^j^r la suite de corps cyclotomiques associée. Les notations
restent les mêmes qu'au premier chapitre, q est un nombre premier non
ramifié dans Kn c'est-à-dire d'après le lemme précédent, premier avec nr.

Si p est impair et suivant que ur 0 ou ur ^ 2,

soit qEE c^cf2... cir(nr)
ou q ...cßmr

la décomposition de q dans G (nr).

On posera alors:

— Si

2 ^ ur^r :V(q)cc0ß0 + £ oc/,. - ßt
2 < j < m r

— Si

m, r + 1 : V(q) £ cc/; - ß0
1 < j < m r

— Si

ur0 : V(q) E «A - ßi
2<j<mr

De même si p2 et suivant que ur 0, ou ur 2, ou ur ^ 3, soit

qcî' c22 ••• Cmr(nr)OUq aß0°cll ...cßmr(nr)
ou

q a^a'/oc^ ...cßm^{nr)
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