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D'autre part il est nécessaire que Kr soit réelle car: (—l)2 1 e Sr,

implique, d'après le lemme 1.1, — 1 e St pour tout i < r\ Donc tous les

sous-corps stricts de Kr, sont réels.

Pour démontrer la réciproque, on peut remarquer que:
nr\

si ur 0,-1 se décompose dans les sous-groupes T[ nr, — de la façon
Pj.

suivante :

pj-1
-1 n

1 <j<mr

On déduit de la condition I.6.A bis que si j ^ mh alors Pj 0 (2r *+ *)

Pj'1
et compte tenu du lemme 1.2 bis, Cj

2 e Sr. Donc — 1 e Sr et Kr est réelle.

Donc si ur — 0,1.6.B bis est une conséquence de 1.6.A bis et on démontre
l'existence de Kr, comme précédemment.

Si maintenant ur^. 2, — 1 se décompose dans T\ nr, — et T\ nr, —
\ 2"7 V Pj.

sous la forme:
pj-1

- 1 a0n1 <j<mr
Pj-1

La condition 1.6.A bis implique donc comme précédemment, que Cj
2

e Sr d'où — a0 g Sr.

Si ur — 2, a0 $ Sr (lemme 1.2 bis) donc les conditions 1.6.A bis et 1.6.B bis

sont incompatibles.
Si ur ^ 3, les conditions 1.6.A bis et I.6.B bis impliquent donc a0 e Sr,

d'où a0 0 (2r).

On termine la démonstration comme précédemment.

Chapitre II

DÉCOMPOSITION, RAMIFICATION, DISCRIMINANT

II. 1. Rappels

Soient K et K' deux corps de nombres, K' étant abélien sur K. Soient

A et A' leurs anneaux d'entiers respectifs et p un idéal premier de A. pA'
se décompose en idéaux premiers de Ä sous la forme: pA' J~[ pv)e

1
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et pour tout v de 1 à g, — a pour dimension / sur —. / est le degré résiduel
Pi; P

de sur K et e l'indice de ramification de pv sur K (ou de p dans K'). On

a les relations:

ef9 [K':K] et NK'iK(pv) p^

Les py, 1 ^ v ^ g, sont exactement les idéaux premiers de Ä contenant p.

Soit G (.K'jK) le groupe de Galois de K' sur K. L'ensemble des a de

G {K'jK) tel que a (p„) pv est un sous-groupe de G {K'jK) ne dépendant

pas de v et appelé groupe de décomposition de pv sur K (ou de p dansiC).
Son cardinal est égal à ef S'il est égal à 1, on dit que p se décompose complètement

dans K'.
L'ensemble des a de G {K'jK) tel que a (x) — x appartienne à pv pour tout
x de A\ est un sous-groupe de G (.K'jK) ne dépendant pas de v et appelé

groupe d'inertie de py sur K (ou de p dans K').
Son cardinal est égal k e. p est dit ramifié dans K' si e ^ 2 ([1] chapitre 5;

[2] chapitre 5).

Soit K" un corps de nombres, contenant K' et abélien sur K, et soit^4"

son anneau d'entiers. Si yvA" se décompose en idéaux premiers de A"
sous la forme: Py^t" VwY et sif désigne le degré résiduel de

Pyy, sur K\ les quantités eg\f sont les mêmes pour tout v entre 1 et g.
L'indice de ramification de p dans K" est ee' et son degré résiduel ff'. Si

D est le groupe de décomposition de pvv, sur Ketn l'application de G (.K"jK)
sur G {K'/K) qui à tout automorphisme de K" fait correspondre sa restriction
à K\ alors D n G(K"/K') est le groupe de décomposition de Pyy, sur K'
et n (D) est le groupe de décomposition de pv sur K. On a un résultat analogue
avec les groupes d'inertie ([3] chapitre 1).

On appelle corps de décomposition de p dans K' le sous-corps de K'
laissé invariant par les éléments du groupe de décomposition de p dansiG.
C'est le plus grand corps, compris entre K et K\ dans lequel p se décompose
complètement. De même le corps d'inertie de p dans K' est le sous-corps de

K' laissé invariant par les éléments du groupe d'inertie de p dans K'. C'est
le plus grand corps compris entre K et K', dans lequel p ne se ramifie pas
([4] chapitre 2).

Différente : L'ensemble des x de K' tels que TrK,/K (xA') ç A, est un
idéal fractionnaire de K' dont l'inverse est la différente de K' sur K notée
SK,/K. Elle est engendrée par les F' (x), où x parcourt A' et F désigne le

polynome minimal de x sur K. Si pt pm sont les idéaux de A' ramifiés
sur K, alors :
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Ök'/K — 0 Po" •

1 < v < m

Si ev est l'indice de ramification de pv sur Kon a: hv ^ ev — 1 et hv ev — 1

si et seulement si ev est premier avec la caractéristique du corps — Le dis-
Vv

criminant de K' sur K est NK>/K (SK'/K) et on a la formule de transitivité :

ôK"/k SK„/K,ÔK./K([2] chapitre 4, [5] chapitre 3).

Corps cyclotomiques : Dans un corps cyclotomique Q (ps), (p premier)
p est leur seul nombre premier ramifié et: p (1 — çy(ps\ ç désignant une
racine primitive (ps)eme de 1, est la décomposition de p en idéaux premiers
de Q, (ps).

p est ramifié dans un corps cyclotomique Q (n) si et seulement si p divise n.
Si n s'écrit: n ps n avec n premier avec p, alors le corps d'inertie de p
dans Q (ri) est Q (n) et l'indice de ramification de p dans Q (ri) est cp (ps).
Si q est premier avec ny la classe de q modulo n est l'automorphisme de

Frcebenius, et elle engendre dans G (ri) le groupe de décomposition de q

dans Q (ri). Le degré résiduel de q dans Q (n) est donc le plus petit entier /
tel que: qf 1 (77).

Si £ est une racine primitive /7eme de 1, { 1, 4 ••• 4~?(n)_1 } est une base

de l'anneau des entiers de Q (ri) sur Z. Le discriminant de Q (n) sur Q est:

<P(n)

n p'-1

ce dernier produit étant étendu à tous les nombres premiers p divisant n

([5] chapitre 4).

II.2. Nombres premiers ramifiés dans une extension abélienne de Q

Lemme II.l.

Soient K une extension abélienne de Q et Q (ri) le plus petit corps
cyclotomique contenant K. Alors un nombre premier p se ramifie
dans K si et seulement s'il divise n.

Si p est ramifié dans K, alors il est ramifié dans tout surcorps de K,
donc dans Q (ri) et il divise n.

Réciproquement, si p divise 77, posons n ps ri, avec ri premier avec p.
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