Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 18 (1972)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ÉTUDE ARITHMÉTIQUE DES CORPS CYCLIQUES DE DEGRE p'

SUR LE CORPS DES NOMBRES RATIONNELS

Autor: Oriat, Bernard

Kapitel: Chapitre II DÉCOMPOSITION, RAMIFICATION, DISCRIMINANT

DOI: https://doi.org/10.5169/seals-45361

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

D'autre part il est nécessaire que K_r soit réelle car: $(-1)^2 = 1 \in S_r$, implique, d'après le lemme I.1, $-1 \in S_i$ pour tout i < r'. Donc tous les sous-corps stricts de $K_{r'}$ sont réels.

Pour démontrer la réciproque, on peut remarquer que:

si $u_r = 0$, -1 se décompose dans les sous-groupes $T\left(n_r, \frac{n_r}{p_j}\right)$ de la façon suivante:

$$-1 = \prod_{1 \le j \le m_r} c_j^{\frac{p_j - 1}{2}}.$$

On déduit de la condition I.6.A bis que si $j \le m_i$, alors $\frac{p_j - 1}{2} \equiv 0 \ (2^{r-i+1})$

et compte tenu du lemme I.2 bis, $c_j^{\frac{p_j-1}{2}} \in S_r$. Donc $-1 \in S_r$ et K_r est réelle.

Donc si $u_r = 0$, I.6.B bis est une conséquence de I.6.A bis et on démontre l'existence de K_r comme précédemment.

Si maintenant $u_r \ge 2$, -1 se décompose dans $T\left(n_r, \frac{n_r}{2^{u_r}}\right)$ et $T\left(n_r, \frac{n_r}{p_j}\right)$ sous la forme:

$$-1 = a_0 \prod_{1 \le j \le m_r} c_j^{\frac{p_j - 1}{2}}.$$

La condition I.6.A bis implique donc comme précédemment, que $c_j^{\frac{p_j-1}{2}}$ $\in S_r$ d'où $-a_0 \in S_r$.

Si $u_r = 2$, $a_0 \notin S_r$ (lemme I.2 bis) donc les conditions I.6.A bis et I.6.B bis sont incompatibles.

Si $u_r \ge 3$, les conditions I.6.A bis et I.6.B bis impliquent donc $a_0 \in S_r$, d'où $\alpha_0 \equiv 0$ (2^r).

On termine la démonstration comme précédemment.

CHAPITRE II

DÉCOMPOSITION, RAMIFICATION, DISCRIMINANT

II.1. RAPPELS

Soient K et K' deux corps de nombres, K' étant abélien sur K. Soient A et A' leurs anneaux d'entiers respectifs et $\mathfrak p$ un idéal premier de A. $\mathfrak p A'$ se décompose en idéaux premiers de A' sous la forme: $\mathfrak p A' = (\prod_{1 \le v \le g} \mathfrak p_v)^e$

et pour tout v de 1 à g, $\frac{A'}{p_v}$ a pour dimension $f \operatorname{sur} \frac{A}{p}$. f est le degré résiduel de $p_v \operatorname{sur} K$ et e l'indice de ramification de $p_v \operatorname{sur} K$ (ou de p dans K'). On a les relations:

$$efg = [K':K]$$
 et $N_{K'/K}(\mathfrak{p}_v) = \mathfrak{p}^f$.

Les \mathfrak{p}_v , $1 \leq v \leq g$, sont exactement les idéaux premiers de A' contenant \mathfrak{p} . Soit G(K'/K) le groupe de Galois de K' sur K. L'ensemble des σ de G(K'/K) tel que $\sigma(\mathfrak{p}_v) = \mathfrak{p}_v$ est un sous-groupe de G(K'/K) ne dépendant pas de v et appelé groupe de décomposition de \mathfrak{p}_v sur K (ou de \mathfrak{p} dans K'). Son cardinal est égal à ef. S'il est égal à 1, on dit que \mathfrak{p} se décompose complètement dans K'.

L'ensemble des σ de G(K'/K) tel que $\sigma(x) - x$ appartienne à \mathfrak{p}_v pour tout x de A', est un sous-groupe de G(K'/K) ne dépendant pas de v et appelé groupe d'inertie de \mathfrak{p}_v sur K (ou de \mathfrak{p} dans K').

Son cardinal est égal à e. p est dit ramifié dans K' si $e \ge 2$ ([1] chapitre 5; [2] chapitre 5).

Soit K'' un corps de nombres, contenant K' et abélien sur K, et soit A'' son anneau d'entiers. Si $\mathfrak{p}_v A''$ se décompose en idéaux premiers de A'' sous la forme: $\mathfrak{p}_v A'' = (\prod_{1 \leq v' \leq g'} \mathfrak{p}_{vv'})^{e'}$ et si f' désigne le degré résiduel de

 $\mathfrak{p}_{vv'}$ sur K', les quantités e', g', f' sont les mêmes pour tout v entre 1 et g. L'indice de ramification de \mathfrak{p} dans K'' est ee' et son degré résiduel ff'. Si D est le groupe de décomposition de $\mathfrak{p}_{vv'}$ sur K et π l'application de G(K''/K) sur G(K'/K) qui à tout automorphisme de K'' fait correspondre sa restriction à K', alors $D \cap G(K''/K')$ est le groupe de décomposition de $\mathfrak{p}_{vv'}$ sur K' et $\pi(D)$ est le groupe de décomposition de \mathfrak{p}_v sur K. On a un résultat analogue avec les groupes d'inertie ([3] chapitre 1).

On appelle corps de décomposition de $\mathfrak p$ dans K' le sous-corps de K' laissé invariant par les éléments du groupe de décomposition de $\mathfrak p$ dans K'. C'est le plus grand corps, compris entre K et K', dans lequel $\mathfrak p$ se décompose complètement. De même le corps d'inertie de $\mathfrak p$ dans K' est le sous-corps de K' laissé invariant par les éléments du groupe d'inertie de $\mathfrak p$ dans K'. C'est le plus grand corps compris entre K et K', dans lequel $\mathfrak p$ ne se ramifie pas ([4] chapitre 2).

Différente: L'ensemble des x de K' tels que $Tr_{K'/K}(xA') \subseteq A$, est un idéal fractionnaire de K' dont l'inverse est la différente de K' sur K notée $\delta_{K'/K}$. Elle est engendrée par les F'(x), où x parcourt A' et F désigne le polynome minimal de x sur K. Si $\mathfrak{p}_1 \dots \mathfrak{p}_m$ sont les idéaux de A' ramifiés sur K, alors:

$$\delta_{K'/K} = \prod_{1 \le v \le m} \mathfrak{p}_v^{h_v}.$$

Si e_v est l'indice de ramification de \mathfrak{p}_v sur K on a: $h_v \geq e_v - 1$ et $h_v = e_v - 1$ si et seulement si e_v est premier avec la caractéristique du corps $\frac{A'}{\mathfrak{p}_v}$. Le discriminant de K' sur K est $N_{K'/K}$ ($\delta_{K'/K}$) et on a la formule de transitivité: $\delta_{K''/K} = \delta_{K''/K'} \delta_{K'/K}$ ([2] chapitre 4, [5] chapitre 3).

Corps cyclotomiques: Dans un corps cyclotomique $\Omega(p^s)$, (p premier) p est leur seul nombre premier ramifié et: $p = (1 - \xi)^{\varphi(p^s)}$, ξ désignant une racine primitive $(p^s)^{\text{eme}}$ de 1, est la décomposition de p en idéaux premiers de $\Omega(p^s)$.

p est ramifié dans un corps cyclotomique $\Omega(n)$ si et seulement si p divise n. Si n s'écrit: $n = p^s n'$ avec n' premier avec p, alors le corps d'inertie de p dans $\Omega(n)$ est $\Omega(n')$ et l'indice de ramification de p dans $\Omega(n)$ est $\varphi(p^s)$. Si q est premier avec n, la classe de q modulo n est l'automorphisme de Fræbenius, et elle engendre dans G(n) le groupe de décomposition de q dans $\Omega(n)$. Le degré résiduel de q dans $\Omega(n)$ est donc le plus petit entier f tel que: $q^f \equiv 1(n)$.

Si ξ est une racine primitive n^{eme} de 1, $\{1, \xi, ..., \xi^{\varphi(n)-1}\}$ est une base de l'anneau des entiers de $\Omega(n)$ sur Z. Le discriminant de $\Omega(n)$ sur Q est:

$$\frac{n^{\varphi(n)}}{\prod p^{\frac{\varphi(n)}{p-1}}}$$

ce dernier produit étant étendu à tous les nombres premiers p divisant n ([5] chapitre 4).

II.2. Nombres premiers ramifiés dans une extension abélienne de ${\cal Q}$ Lemme II.1.

Soient K une extension abélienne de Q et Ω (n) le plus petit corps cyclotomique contenant K. Alors un nombre premier p se ramifie dans K si et seulement s'il divise n.

Si p est ramifié dans K, alors il est ramifié dans tout surcorps de K, donc dans $\Omega(n)$ et il divise n.

Réciproquement, si p divise n, posons $n = p^s n'$, avec n' premier avec p.

Alors le corps d'inertie de p dans $\Omega(n)$ est $\Omega(n')$ et son groupe d'inertie T(n, n').

Soit π l'application canonique de G(n) sur $G(^K/_Q)$ qui à tout automorphisme de $\Omega(n)$ fait correspondre sa restriction à K. π a pour noyau $G(^{\Omega(n)}/_K)$ et comme $\Omega(n)$ est le plus petit corps cyclotomique contenant K, on a donc:

$$\Omega(n') \not \equiv K$$
 c'est-à-dire $T(n, n') \not \equiv G(\Omega(n)/K)$.

 π (T(n, n')) qui est le groupe d'inertie de p dans K, n'est donc pas réduit à l'identité et p se ramifie dans K.

II.3. Décomposition d'un nombre q premier, non ramifié dans K_r

 K_r désigne une extension cyclique de degré p^r sur Q (p premier) et $(\Omega(n_i))_{1 \le i \le r}$ la suite de corps cyclotomiques associée. Les notations restent les mêmes qu'au premier chapitre. q est un nombre premier non ramifié dans K_r , c'est-à-dire d'après le lemme précédent, premier avec n_r .

Si p est impair et suivant que $u_r = 0$ ou $u_r \ge 2$,

soit
$$q \equiv c_1^{\beta_1} c_2^{\beta_2} \dots c_{m_r}^{\beta_m} r(n_r)$$
 ou
$$q \equiv b_0^{\beta_0} c_1^{\beta_1} \dots c_{m_r}^{\beta_m} r(n_r),$$

la décomposition de q dans $G(n_r)$.

On posera alors:

— Si
$$2 \le u_r \le r : V(q) = \alpha_0 \beta_0 + \sum_{2 \le j \le m_r} \alpha_j \beta_j - \beta_1$$

— Si
$$u_r = r + 1: V(q) = \sum_{1 \le j \le m_r} \alpha_j \beta_j - \beta_0$$

— Si
$$u_r = 0: V(q) = \sum_{2 \le j \le m_r} \alpha_j \beta_j - \beta_1$$

De même si p=2 et suivant que $u_r=0$, ou $u_r=2$, ou $u_r\geq 3$, soit

$$q \equiv c_1^{\beta_1} c_2^{\beta_2} \dots c_{m_r}^{\beta_{m_r}}(n_r)$$
 ou $q \equiv a_0^{\beta_0} c_1^{\beta_1} \dots c_{m_r}^{\beta_{m_r}}(n_r)$

ou

$$q \equiv a_0^{\beta_0} a_0^{'\beta_0'} c_1^{\beta_1} \dots c_{m_r}^{\beta_{m_r}} (n_r)$$

la décomposition de q dans $G(n_r)$. On posera alors:

- Si
$$3 \le u_r \le r + 1 : V(q) = \alpha_0 \beta_0 + \alpha'_0 \beta'_0 + \sum_{2 \le j \le m_r} \alpha_j \beta_j - \beta_1$$
- Si
$$u_r = r + 2 \qquad : V(q) = \sum_{0 \le j \le m_r} \alpha_j \beta_j - \beta'_0$$
- Si
$$u_r = 2 \qquad : V(q) = 2^{r-1} \beta_0 + \sum_{2 \le j \le m_r} \alpha_j \beta_j - \beta_1$$
- Si
$$u_r = 0 \qquad : V(q) = \sum_{2 \le j \le m_r} \alpha_j \beta_j - \beta_1$$

Proposition II.1.

Soient K_r une extension cyclique de degré p^r sur Q et q un nombre premier, ne divisant pas n_r . Alors la décomposition de q en idéaux premiers de K_r est de la forme:

$$q = \prod_{1 \le v \le g_q} q_v$$

et g_q est le PGCD de p^r et de V(q).

Le groupe de décomposition de q dans $\Omega(n_r)$ est le sous-groupe de $G(n_r)$ engendré par la classe de q modulo n_r et la restriction de q, considéré comme automorphisme de $\Omega(n_r)$, à K_r engendre le groupe de décomposition de q dans K_r .

Le degré résiduel f_q de q dans K_r est donc l'ordre de q S_r dans $\frac{G(n_r)}{S_r}$. Supposons par exemple p impair et $2 \le u_r \le r$ et considérons alors:

$$\begin{split} s &= \left(c_1^{\alpha_0} \, b_0\right)^{\beta_0} \left(c_1^{\alpha_2} \, c_2\right)^{\beta_2} \dots \left(c_1^{\alpha_{m_r}} \, c_{m_r}\right)^{\beta_{m_r}} \\ &= b_0^{\beta_0} \, c_1^{V(q) + \beta_1} \, c_2^{\beta_2} \dots \, c_{m_r}^{\beta_{m_r}} \end{split}$$

D'après la proposition I.3, $s \in S_r$ et l'on a modulo n_r :

$$sq^{-1} = c_1^{V(q)}$$
.

 f_q est donc égal à l'ordre de $c_1^{V(q)}$ S_r dans $\frac{G(n_r)}{S_r}$ et comme l'ordre de c_1S_r

est p^r (lemme I.2), on a donc:

$$f_q = \frac{p^r}{PGCD(p^r, V(q))}$$

et

$$g_q = PGCD(p^r, V(q)).$$

II.4. INDICE DE RAMIFICATION DANS UNE EXTENSION K_r

Proposition II.2.

Soient K_r une extension cyclique de degré p^r sur Q et $(\Omega(n_i))_{1 \le i \le r}$ la suite de corps cyclotomiques associée à K_r . Pour tout i de 1 à r et tout j tel que $m_{i-1} < j \le m_i$, l'indice de ramification de p_j dans K_r est p^{r-i+1} .

Si $u_r \neq 0$, l'indice de ramification de p dans K_r est p^{r-l+1} .

Soit j tel que $m_{i-1} < j \le m_i$. p_j divise donc n_i et ne divise pas n_{i-1} . C'est-à-dire que p_j se ramifie dans Ω (n_i) et ne se ramifie pas dans Ω (n_{i-1}) . D'après le lemme II.1, ceci implique que p_j se ramifie dans K_i et ne se ramifie pas dans K_{i-1} . K_{i-1} est donc le corps d'inertie de p_j dans K_r et l'indice de ramification de p_j dans K_r est égal à: $[K_r:K_{i-1}]$.

De même si $u_r \neq 0$, K_{l-1} est le corps d'inertie de p dans K_r .

II.5. DISCRIMINANT DE K_r

Proposition II.3.

 K_r est une extension cyclique de degré p^r sur Q et $(\Omega(n_i))_{1 \le i \le r}$ la suite de corps cyclotomiques associée. Le discriminant de K_r sur Q est:

— Dans le cas où $u_r = 0$:

$$\prod_{1 \le i \le r} \prod_{m_{i-1} < j \le m_i} p_j^{p^{i-1} (p^{r-i+1}-1)}$$

— Dans le cas où p est impair et $u_r \ge 2$:

$$p^{p^{l-1}\left((r-l+2)p^{r-l+1}-\frac{p^{r-l+1}-1}{p-1}-1\right)}\prod_{1\leq i\leq r}\prod_{m_{i-1}< j\leq m_{i}}p_{j}^{p^{i-1}(p^{r-i+1}-1)}$$

— Dans le cas où
$$p = 2$$
 et $u_r = 2$:

$$2^{2^r} \prod_{1 \le i \le r} \prod_{m_{i-1} < j \le m_i} p_j^{2^{i-1}(2^{r-i+1}-1)}$$

— Dans le cas où p = 2 et $u_r \ge 3$:

$$2^{2^{l-1}((r-l+2)2^{r-l+1}-1)} \prod_{1 \leq i \leq r} \prod_{m_{i-1} < j \leq m_i} p_j^{2^{l-1}(2^{r-i+1}-1)}$$

Supposons tout d'abord $u_r = 0$. Désignons par A l'anneau des entiers de K_r . Pour tout j de 1 à m_r soit $p_j A = \prod_{1 \le v \le g_j} \mathfrak{p}_{jv}^{e_j}$ la décomposition de $p_j A$ dans K_r et soit f_j le degré résiduel de p_j dans K_r . Les p_j étant les seuls nombres premiers ramifiés dans K_r et leurs indices de ramification e_j étant premiers à p_j , la différente δ de K_r sur Q est:

$$\delta = \prod_{1 \le j \le m_r} \prod_{1 \le v \le g_j} \mathfrak{p}_{jv}^{e_j - 1}$$

Le déterminant D_f , de K_r sur Q, est donc $D = N_{K_r/Q}(\delta)$ et comme $N_{K_r/Q}(\mathfrak{p}_{jv}) = p_j^f$ on obtient:

$$D = \prod_{1 \le j \le m_r} p_j^{f_{j}g_{j}(e_{j}-1)}$$

qui s'écrit également:

$$D = \prod_{1 \leq i \leq r} \prod_{m_{i-1} < j \leq m_{i}} p_{j}^{f_{j}g_{j}(e_{j}-1)}.$$

Si $m_{i-1} < j \le m_i$, alors $e_j = p^{r-i+1}$ d'après la proposition II.2 et comme $e_j f_j g_j = p^r$, on obtient le résultat annoncé.

Supposons maintenant p impair et $u_r \ge 2$.

Dans ce cas u_r et l sont liés par la relation $u_r = r - l + 2$. On notera toujours D le discriminant de K_r sur Q et on introduit la décomposition $\delta = \delta_0 \delta_1 \dots \delta_{m_r}$ de la différente de K_r sur Q, en idéaux: $\delta_0, \delta_1, \dots \delta_{m_r}$, tels que $D_0 = N_{K_r/Q}(\delta_0)$ soit une puissance de p et tels que $D_j = N_{K_r/Q}(\delta_j)$ soit une puissance de p et tels que p et tels que p soit une puissance de p et tels que p soit une puissance de p et tels que p soit une puissance de p soit p soit une puissance de p soit p soit une puissance de p soit p soi

La formule de transitivité sur les différentes donne:

$$D_0'' = N_{\Omega(n_r)/Q}(\delta_0 \delta_0') = N_{\Omega(n_r)/Q}(\delta_0') N_{K_r/Q}(\delta_0^{[\Omega(n_r):K_r]})$$

d'où

$$D_0'' = N_{\Omega(n_r)/Q}(\delta_0') D_0^{\frac{\varphi(n_r)}{p^r}}$$

Calcul de $N_{\Omega(n_r)/Q}(\delta_0)$:

Soient A et A_{Ω} les anneaux d'entiers respectifs de K_r et Ω (n_r) et soit pA = $\prod_{1 \leq v \leq g} \mathfrak{p}_v^e$ la décomposition de pA dans K_r et f le degré résiduel de p dans K_r . Soient:

 $\mathfrak{p}_v A_\Omega = \prod_{1 \leq v' \leq g'} \mathfrak{p}_{vv'}^{e'}$ la décomposition de $\mathfrak{p}_v A_\Omega$ dans Ω (n_r) et f' le degré résiduel de \mathfrak{p}_v dans Ω (n_r) . L'indice de ramification e de p dans K_r est p^{r-l+1} (proposition II.2) et puisque l'indice de ramification ee' de p dans Ω (n_r) est φ $(p^{u_r}) = (p-1) p^{r-l+1}$, on a donc e' = p-1 et e' est premier à p. On en déduit que:

$$\delta'_0 = \prod_{\substack{1 \le v \le g \\ 1 \le v' \le q'}} \mathfrak{p}_{vv'}^{p-2}$$

et comme $N_{\Omega(n_r)/Q}(\mathfrak{p}_{vv'})=p^{f'}$, on aura donc:

$$N_{\Omega(n_r)/Q}(\delta_0') = p^{ff'gg'(p-2)} = p^{\frac{(p-2)\varphi(n_r)}{(p-1)p^{r-l+1}}}$$

D'autre part on a $D_0'' = p^{\varphi(n_r)} \left(r - l + 2 - \frac{1}{p-1} \right)$ d'où l'égalité:

$$p^{\varphi(n_r)(r-l+2-\frac{1}{p-1})} = p^{\frac{(p-2)\varphi(n_r)}{(p-1)p^{r-l+1}}} D_0^{\frac{\varphi(n_r)}{p^r}}$$

dont on extrait la valeur de D_0 .

Dans le cas p=2 et $u_r=2$; gardant les mêmes notations on a e'=1 et $\delta_0'=1$. On utilise alors comme précédemment la valeur $D_0''=2^{\varphi(n_r)}$.

Supposons maintenant p = 2 et $u_r \ge 3$:

On garde les mêmes notations que précédemment. On a cette fois: $u_r = r - l + 3$ et l'indice de ramification ee' de 2 dans $\Omega\left(n_r\right)$ est maintenant 2^{r-l+2} d'où e' = 2. δ_0' ne peut donc être obtenue comme précédemment. On introduit un corps E compris entre K_r et $\Omega\left(n_r\right)$ de la façon suivante: reprenant les notations introduites dans la proposition I.3 bis posons:

$$h = a_0^{\prime \frac{\alpha_0}{2^{l-1}}} a_0$$
 et $S = \{h, 1\}.$

h est d'ordre 2, S est donc un sous-groupe de $G(n_r)$. Dans le cas où l=1, c'est-à-dire $u_r=r+2$, il apparaît immédiatement que S est inclus dans S_r . Si $l \ge 2$, c'est-à-dire si $3 \le u_r \le r+1$ on constate que:

 $\left(\frac{\alpha'_0}{2^{l-1}}+1\right)\alpha_0\equiv 0\,(2^r)$ et qu'il existe donc un entier β tel que:

$$\left(\frac{\alpha'_0}{2^{l-1}}+1\right)\alpha_0 + 2^r\beta = p_1 - 1.$$

D'où

$$h = \left(c_{10}^{\alpha'} a_{0}'\right)^{\frac{\alpha_{0}}{l-1}} c_{10}^{\alpha_{0}} a_{0} c_{1}^{2r \beta}$$

qui montre que S est inclus dans S_r . E désigne le corps fixe de S, E contient donc K_r .

Le groupe d'inertie de 2 dans $\Omega\left(n_r\right)$ est $T\left(n_r, \frac{n_r}{2^{u_r}}\right)$, le groupe d'inertie de \mathfrak{p}_{vv} , sur E sera donc $T\left(n_r, \frac{n_r}{2^{u_r}}\right) \cap S = S$. \mathfrak{p}_v n'est donc pas ramifié dans E et la différente de E sur K_r est première avec 2.

Si D' est le discriminant de E sur Q, et D_0' la plus grande puissance de 2 divisant D', on aura alors:

$$D_0' = N_{E/Q}(\delta_0) = N_{E/K_r}(D_0) = D_0^{\frac{\varphi(n_r)}{2^{r+1}}}$$

Il reste à calculer D_0' . Pour cela introduisons A_E l'anneau des entiers de E et ξ une racine primitive $(n_r)^{\text{eme}}$ de 1. A partir de l'égalité: $\xi^2 = -\xi^{h+1} + (\xi + \xi^h) \xi$, on constate par récurrence sur t que ξ^t peut toujours se mettre sous la forme $a + b\xi$, avec a et b dans A_E . Comme $\{1, \xi, ..., \xi^{\varphi(n_r)-1}\}$ est une base des entiers de $\Omega(n_r)$ sur Z, on en déduit que $\{1, \xi\}$ est une base des entiers de $\Omega(n_r)$ sur A_E . Le polynome $X^2 - (\xi + \xi^h) X + \xi^{h+1}$ est le polynome minimal de ξ sur E et la différente δ'' de $\Omega(n_r)$ sur E sera donc l'idéal engendré par $\xi - \xi^h$.

La formule de transitivité sur les différentes appliquée entre Q, E et $\Omega\left(n_r\right)$ va donner:

$$D'' = D'^{[\Omega(n_r):E]} N_{\Omega(n_r)/Q}(\delta'') = D'^2 N_{\Omega(n_r)/Q}(\delta'')$$

Pour obtenir la valeur de $N_{\Omega(n_r)/Q}(\delta'')$, montrons que ξ^{h-1} est une racine primitive $(2^{r-l+2})^{\text{eme}}$ de 1. En effet:

 $h \in T\left(n_r, \frac{n_r}{2^{u_r}}\right)$ donc $h - 1 \equiv 0\left(\frac{n_r}{2^{u_r}}\right)$ et d'autre part, h étant premier à 2, on a $h - 1 \equiv 0$ (2).

Mais $h-1 \not\equiv 0$ (4), sinon h appartiendrait à $T\left(n_r, \frac{n_r}{2^{u_r-2}}\right)$ et ce sous-groupe est engendré par a_0' .

On a donc finalement

$$h - 1 \equiv 0 \left(\frac{n_r}{2^{r-l+2}} \right) \quad \text{et} \quad h - 1 \equiv 0 \left(\frac{n_r}{2^{r-l+1}} \right)$$

On en déduit que

$$N_{\Omega(2^{r-l+2})/Q}(1-\xi^{h-1}) = 2$$

et

$$N_{\Omega(n_r)/O}(\delta'') = 2^{\frac{\varphi(n_r)}{2^{r-l+1}}}$$

Comme D_0'' est égal à $2^{\varphi(n_r)(r-l+2)}$, on en déduit les égalités:

$$2^{\varphi(n_r)(r-l+2)} = D'^2 \cdot 2^{\frac{\varphi(n_r)}{2^{r-l+1}}} = D_0^{\frac{\varphi(n_r)}{2^r}} \cdot 2^{\frac{\varphi(n_r)}{2^{r-l+1}}}$$

D'où l'on déduit la valeur de D_0 .

Proposition II.4.

Le discriminant de K_r , extension cyclique de degré p^r sur Q, ne dépend que de la suite de corps cyclotomiques associée à K_r . Réciproquement, si deux extensions cycliques de degré p_r sur Q, ont même discriminant sur Q, alors leurs suites de corps cyclotomiques sont égales.

C'est une conséquence de la proposition II.3.

Précisons pour la réciproque, que si K_r est une extension cyclique de degré p^r sur Q (p premier, par exemple) et si l'on connaît son discriminant D sur Q, alors les nombres premiers divisant n_r sont exactement ceux qui divisent D. L'exposant de p_j dans la décomposition de D en facteurs premiers n'est pas divisible par p^i si et seulement si $j
eq m_i$ c'est-à-dire si et seulement si p_j divise n_i . Ceci permet de préciser quels sont les diviseurs de n_i distincts de p. Si p ne divise pas p0, on a p1 et alors tous les p2 sont p3 et alors tous les p3 et alors tous les p4 sont p5 et alors tous les p5 et alors tous les p6 et alors tous les p7 et alors tous les p8 et alors tous les p9 et alor

nuls. Si
$$p$$
 divise D , et comme $(r-l+2) p^{r-l+1} - \frac{p^{r-l+1}-1}{p-1} - 1$ est

premier à p, on obtient, à partir de la valeur de l'exposant de p dans la décomposition de D, la valeur de l, donc la suite $(u_i)_{1 \le i \le r}$.