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choix d'un sous-groupe Sr. Il suffit alors de chercher le nombre de valeurs

que peuvent prendre les ocj vérifiant cette condition, 1.3.A et 1.3.B.

Proposition 1.5 bis.

Etant donnée une suite de corps cyclotomiques (Q (ni))1^i^r
vérifiant les conditions I.2.A bis et I.2.B bis, le nombre d'extensions

Kn de degré 2r sur Q, cycliques sur Q, admettant comme suite de corps
cyclotomiques associée, la suite (Q (ni))l^i^r est:

— Dans le cas où 3 ^ ur r + 1 :

2r-i+i Y\
2 <i<r

— Dans le cas où ur r + 2, en posant m0 — 0:

l<i<r

— Dans le cas où ur 0 ou 2:

2(r i)(mi — i) JQ 2^r~i^mi~mi~^
2 < i < r

1.9. Conditions d'inclusion de Kr dans Kr.

Proposition 1.6.

Soit Kr une extension cyclique de degré pr sur Q (p premier
impair). Soit (Q la suite de corps cyclotomiques associée

à Kr et soit r' un entier strictement supérieur à r.

Il existe une extension Kr> cyclique de degré pr' sur g, contenant

Kr, si et seulement si la suite (ß vérifie la condition:

1.6.A : Pour tout / de 1 à r et tout j ^ mb pj 1 (pr'~l+ *).

Compte tenu de 1.2.B, la condition 1.6.A est nécessaire.

Pour montrer qu'elle est suffisante, construisons une extension Kr,
contenant Kr.

Plaçons-nous dans le cas où 2 ^ ur ^ r et posons n[ nt pour 1 ^ i

^ r et n'i pl~rnr pour r < i ^r'. La suite (û (n-))1^i^ vérifie alors

les conditions I.2.A et I.2.B.
Soit re la surjection de G (nr) sur G (nr) qui à toute classe modulo nr>

fait correspondre la classe modulo nr qui la contient. C'est aussi l'application
qui à tout automorphisme de Q {n 'r) fait correspondre sa restriction ?iQ(nr).
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Soient b0,c\,c2,... cmr des générateurs des sous-groupes

et soit
b0 71 (b0) Cl 71 (Ci) Cmr 71 (cmr).

Alors b0, cu cmr sont des générateurs de

Soit Sr le sous-groupe de G (nr) admettant Kr comme corps fixe. D'après la

proposition 1.3, il existe a0, a2, oeWr vérifiant 1.3.A et I.3.B et tels que Sr

soit engendré par:
{ cï ci° b0, cp cj; 2 ^ mr }

Soit S'r, le sous-groupe de G (nr) engendré par: { c[pT\ c'^bQ, c*icj\ 2 ^
j ^mr) et soit Kr, le sous-corps de Q (nr) corps fixe de SrD'après la

proposition 1.4, Kr, est une extension cyclique de degré pr' de Q.

D'autre part, on vérifie que iz (S'r>) c= Sr qui prouve que Kr> contient Kr.

Remarque : On a construit, en fait, plusieurs extensions Kr, contenant
Kr. Sr étant donné, les af ne sont déterminés que modulo pr et si l'on
remplace par a- tel que a- (pr) et at- ^ a- (pr') on obtiendra un autre

sous-groupe 5^.
Dans le cas où ur r + 1, la démonstration est analogue.
Dans le cas où ur 0, on pose simplement nt — nr pour tout / entre

r et r' et l'application ti est alors l'identité.

Proposition 1.6 bis.

Soit Kr une extension cyclique de degré T sur Q, (Q (ni))1^i^r
la suite de corps cyclotomiques associée à Kr et soit r' un entier
strictement supérieur à r. Il existe une extension Kr, cyclique de degré 2r'

sur g, contenant Kr si et seulement si:

1.6.A bis : Pour tout i de 1 à r et tout j ^ mb p} 1 (2r'~i+1).
1.6.B bis : Kr est réelle.

1.6.A bis s'obtient à partir de I.2.B bis.
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D'autre part il est nécessaire que Kr soit réelle car: (—l)2 1 e Sr,

implique, d'après le lemme 1.1, — 1 e St pour tout i < r\ Donc tous les

sous-corps stricts de Kr, sont réels.

Pour démontrer la réciproque, on peut remarquer que:
nr\

si ur 0,-1 se décompose dans les sous-groupes T[ nr, — de la façon
Pj.

suivante :

pj-1
-1 n

1 <j<mr

On déduit de la condition I.6.A bis que si j ^ mh alors Pj 0 (2r *+ *)

Pj'1
et compte tenu du lemme 1.2 bis, Cj

2 e Sr. Donc — 1 e Sr et Kr est réelle.

Donc si ur — 0,1.6.B bis est une conséquence de 1.6.A bis et on démontre
l'existence de Kr, comme précédemment.

Si maintenant ur^. 2, — 1 se décompose dans T\ nr, — et T\ nr, —
\ 2"7 V Pj.

sous la forme:
pj-1

- 1 a0n1 <j<mr
Pj-1

La condition 1.6.A bis implique donc comme précédemment, que Cj
2

e Sr d'où — a0 g Sr.

Si ur — 2, a0 $ Sr (lemme 1.2 bis) donc les conditions 1.6.A bis et 1.6.B bis

sont incompatibles.
Si ur ^ 3, les conditions 1.6.A bis et I.6.B bis impliquent donc a0 e Sr,

d'où a0 0 (2r).

On termine la démonstration comme précédemment.

Chapitre II

DÉCOMPOSITION, RAMIFICATION, DISCRIMINANT

II. 1. Rappels

Soient K et K' deux corps de nombres, K' étant abélien sur K. Soient

A et A' leurs anneaux d'entiers respectifs et p un idéal premier de A. pA'
se décompose en idéaux premiers de Ä sous la forme: pA' J~[ pv)e

1
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