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choix d’un sous-groupe S,. Il suffit alors de chercher le nombre de valeurs
que peuvent prendre les «; vérifiant cette condition, I.3.A et 1.3.B.

PRrROPOSITION 1.5 bis.

Etant donnée une suite de corps cyclotomiques (Q ("))1 =iz
vérifiant les conditions I.2.A bis et 1.2.B bis, le nombre d’extensions
K., de degré 2" sur Q, cycliques sur Q, admettant comme suite de corps
cyclotomiques associée, la suite (Q (1)1 =i ©St:

— Dans le cas ou 3 =u, =<r + 1:
2r—l+1 2(r—1)(m1—1) II 2(r-i)0nr-mi—1)

2<i<r

— Dans le cas ott u, = r + 2, en posant m, = 0:
2 1"[ A (r—i)(mi—mi—y)

1<i<r
— Dans le cas ot u, = 0 ou 2:
2(r—1)(m1—1) II 2(r—i)0ni—nﬁ._ﬂ

2<i<r

I.9. CONDITIONS D’INCLUSION DE K, DANS K,

PrOPOSITION 1.6.

Soit K, une extension cyclique de degré p" sur Q (p premier
impair). Soit (Q (n 1)1 la suite de corps cyclotomiques associée
a K, et soit r’ un entier strictement supérieur a r.

11 existe une extension K, cyclique de degré p™ sur Q, contenant
K,, si et seulement si la suite (Q (n;));_;_, vérific la condition:

1.6.4: Pour tout i de 1 & ret tout j=m,, p;=1(p" """ 1.

Compte tenu de 1.2.B, la condition I.6.A est nécessaire.

Pour montrer qu’elle est suffisante, construisons une extension K.
contenant K,.

Placons-nous dans le cas oll 2 = u, = r et posons n; = n; pour 1 =i
=retn =p''m pour r <i=r'. La suite (Q (n));_;_ vérifie alors
les conditions I.2.A et 1.2.B.

Soit 7 la surjection de G (n,.) sur G (n,) qui a toute classe modulo 7,
fait correspondre la classe modulo n, qui la contient. C’est aussi ’application
qui & tout automorphisme de © (n,.) fait correspondre sa restriction 2 Q (n,).
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Soient b, 1, €y, ... €. des générateurs des sous-groupes

/ /7 Vs
n ’ n ’ 7 nrl
’ r 4 ¥
T\ny,— ), T{npy,— |, ... T\ npy—
Pt P Pm,

et soit

bo = m(be) sy = (eD) o Cpy = T(em) -

Alors b, ¢y, ... ¢, sont des générateurs de

n, n, n,
T(n,, —u—>, T(n,, —), T(n,, >
p r P1 pmr

Soit S, le sous-groupe de G (n,) admettant K, comme corps fixe. D’apres la

- proposition 1.3, il existe oy, oy, ... o, Vérifiant 1.3.A et 1.3.B et tels que S,

my

soit engendré par:
pr o o . .
{ct, e by, cic;2=j=m,}.

Soit S, le sous-groupe de G (n,.) engendré par: {c;?", c;*by, c;%ic;; 2 =
j=m,} et soit K, le sous-corps de Q (n,.) corps fixe de S,. D’aprés la
proposition 1.4, K.. est une extension cyclique de degré p" de Q.

D’autre part, on vérifie que = (S.) = S. qui prouve que K, contient X,.

Remarqgue : On a construit, en fait, plusieurs extensions K. contenant
K.. S, étant donné, les o; ne sont déterminés que modulo p" et si I’on rem-
place o; par o; tel que o;==a; (p") et «; £ a; (p") on obtiendra un autre
sous-groupe S...

Dans le cas ou u, = r + 1, la démonstration est analogue.

Dans le cas ol 4, = 0, on pose simplement »n; = n, pour tout i entre
r et r’ et application 7 est alors I'identité.

ProrosiTiON 1.6 bis.

wﬁ%vﬁﬁ:m:"ﬂmf gy e

Soit K, une extension cyclique de degré 2" sur Q, (Q (n D) 1—=izr
la suite de corps cyclotomiques associée a K. et soit ' un entier stric-
tement supérieur a r. Il existe une extension K,. cyclique de degré 2
sur Q, contenant K, si et seulement si:

1.6.4 bis : Pour toutide 1arettout j =m, p,= 1",
1.6.B bis : K, est réelle.

1.6.A bis s’obtient a partir de 1.2.B bis.
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D’autre part il est nécessaire que K, soit réelle car: (—1)* = 1€ S,
implique, d’aprés le lemme 1.1, — 1 € .S, pour tout i < r’. Donc tous les
sous-corps stricts de K. sont réels.

Pour démontrer la réciproque, on peut remarquer que:

1 4 n, ~ |
siu, = 0, —1 se décompose dans les sous-groupes T(n,, —) de la fagon

p;
sulvante:
pj—1
—1= ]] ¢ 7
1<j<m,
On déduit de la condition 1.6.A bis que sij = m;, alors by ; =02~
pj—1

et compte tenu du lemme 1.2 bis, ¢; > €S, Donc — 1€ S, et K, est réelle. i
Donc'siu, = 0, 1.6.B bis est une conséquence de 1.6.A bis et on démontre |
I’existence de K,. comme précédemment. |
, ; , n, n,

Si maintenant u, =2, — 1 se décompose dans T<n,, ‘277;> et T (n,, —)
j

sous la forme:

pj—1

— 2
—l=a ][ ¢
1<j<m,
pj—1

La condition 1.6.A bis implique donc comme précédemment, que ¢; *
e S, dou — ay€es,. |
Siu, = 2,a, ¢S, (lemme 1.2 bis) donc les conditions 1.6.A bis et 1.6.B bis
sont incompatibles.
Si u, = 3, les conditions 1.6.A bis et 1.6.B bis impliquent donc a, € S,,
d’olt ay = 0 (2").
On termine la démonstration comme précédemment.

CHAPITRE ]I
DECOMPOSITION, RAMIFICATION, DISCRIMINANT
I1.1. RAPPELS

Soient K et K’ deux corps de nombres, K’ étant abélien sur K. Soient
A et A’ leurs anneaux d’entiers respectifs et p un idéal premier de 4. pA’

se décompose en idéaux premiers de A’ sous la forme: pA’ = ( [] »,)°
1=v=yg
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