Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 18 (1972)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ÉTUDE ARITHMÉTIQUE DES CORPS CYCLIQUES DE DEGRE p'

SUR LE CORPS DES NOMBRES RATIONNELS

Autor: Oriat, Bernard

Kapitel: I.7. Construction d'extensions cycliques de degré \$2^r\$ sur Q

DOI: https://doi.org/10.5169/seals-45361

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

— Dans le cas où $u_r = r + 2$, il existe des nombres α_j , pour $0 \le j \le m_r$, tels que S_r soit engendré par: $\{a_0^{'\alpha_0}a_0, a_0^{'\alpha_j}c_j; 1 \le j \le m_r\}$.

 α_0 vérifie la condition: $\alpha_0 \equiv 0 \ (2^{r-1})$.

Les α_i , pour $1 \le j \le m_r$, vérifient la condition I.3.B bis.

- Dans le cas où $u_r = 2$, il existe des nombres α_j , pour $2 \le j \le m_r$, vérifiant la condition I.3.B bis et tels que S_r soit engendré par: $\{c_1^{2^{r-1}}a_0, c_1^{\alpha}ic_j; 2 \le j \le m_r\}$.
- Dans le cas où $u_r = 0$, il existe des nombres α_j , pour $2 \le j \le m_r$, vérifiant la condition I.3.B bis et tels que S_r soit engendré par: $\{c_1^{2r}, c_1^{\alpha} j c_j; 2 \le j \le m_r\}$.

On démontre tout d'abord le lemme suivant:

LEMME I.2 bis

- Dans le cas où $u_r \ge 3$, $a_0'^{2^{r-l+1}} = 1$ et $a_0'^{2^{r-l}} \notin S_r$.
- Dans le cas où $u_r = 2$, $a_0 \notin S_r$.
- Si $m_{i-1} < j \le m_i$ alors $c_j^{2^{r-i+1}} \in S_r$ et $c_j^{2^{r-i}} \notin S_r$.

En effet si $u_r \ge 3$, la condition I.2.A bis implique $u_r = r - l + 3$. 2^{r-l+1} est donc de l'ordre de a_0 et d'autre part, si $a_0^{r-l+1} \in S_r$, alors:

$$\left(T\left(n_r,\frac{n_r}{2^{u_r-2}}\right)\right)^{(2^r-l)} = T\left(n_r,\frac{n_r}{2}\right) \subseteq S_r.$$

D'où $K_r \subseteq \Omega\left(\frac{n_r}{2}\right)$ et $\Omega\left(n_r\right)$ ne serait pas le plus petit corps cyclotomique

contenant K_r . De même si $u_r = 2$ et $a_0 \in S_r$ alors on aurait $K_r \subseteq \Omega\left(\frac{n_r}{4}\right)$.

Le reste de la démonstration est identique à la démonstration de I.3.

I.7. Construction d'extensions cycliques de degré $2^{\rm r}$ sur Q Proposition I.4 bis

Réciproquement, soit r un entier positif et $(\Omega(n_i))_{1 \le i \le r}$ une suite de corps cyclotomiques vérifiant les conditions I.2.A bis et I.2.B bis.

— Si $3 \le u_r \le r + 1$, soient des nombres: $\alpha_0 \equiv 0 \ (2^{r-1}), \ \alpha'_0$, vérifiant I.3.A bis, α_j , pour $2 \le j \le m_r$, vérifiant I.3.B bis. Soit S_r

le sous-groupe de $G(n_r)$ engendré par:

$$\{c_1^{2r}, c_1^{\alpha_0}a_0, c_1^{\alpha_0}a_0', c_1^{\alpha_j}c_j; 2 \leq j \leq m_r\}.$$

- $Si \ u_r = r + 2$, soient des nombres $\alpha_0 \equiv 0 \ (2^{r-1})$ et α_j , pour $1 \leq j \leq m_r$ vérifiant I.3.B bis. Soit S_r le sous-groupe de $G(n_r)$ engendré par: $\{a_0^{'\alpha_0}a_0, a_0^{'\alpha_j}c_j; 1 \leq j \leq m_r\}$.
- Si $u_r = 2$, soient des nombres α_j , pour $2 \le j \le m_r$, vérifiant I.3.B bis. Soit S_r le sous-groupe de $G(n_r)$ engendré par:

$$\{c_1^{2^{r-1}}a_0, c_1^{\alpha_j}c_j; 2 \leq j \leq m_r\}.$$

— $Si \ u_r = 0$, soient des nombres α_j , pour $2 \le j \le m_r$, vérifiant I.3.B bis. Soit S_r le sous-groupe de $G(n_r)$ engendré par:

$$\{c_1^{2^r}, c_1^{\alpha j}c_j; 2 \leq j \leq m_r\}.$$

Soit enfin, K_r le sous-corps de $\Omega(n_r)$, corps fixe de S_r . Alors: K_r est une extension cyclique sur Q, de degré 2^r . La suite de corps cyclotomiques associée à K_r est la suite $(\Omega(n_i))_{1 \le i \le r}$.

I.8. Nombre d'extensions associées a une même suite de corps cyclotomiques

Proposition I.5.

Soit p un nombre premier impair et $(\Omega(n_i))_{1 \leq i \leq r}$ une suite de corps cyclotomiques vérifiant les conditions I.2.A et I.2.B. Le nombre d'extensions K_r de degré p^r sur Q, cycliques sur Q, admettant la suite $(\Omega(n_i))_{1 \leq i \leq r}$ comme suite de corps cyclotomiques associée est:

— Dans le cas où
$$2 \le u_r \le r$$
:
$$\varphi(p^{r-l+1}) \varphi(p^r)^{m_1-1} \prod_{2 \le i \le r} \varphi(p^{r-i+1})^{m_i-m_{i-1}}$$

— Dans le cas où
$$u_r = r + 1$$
, et en posant $m_0 = 0$:
$$\prod_{1 \le i \le r} \varphi(p^{r-i+1})^{m_i - m_{i-1}}$$

— Dans le cas où
$$u_r = 0$$
:

$$\varphi(p^r)^{m_1-1} \prod_{2 \le i \le r} \varphi(p^{r-i+1})^{m_i-m_{i-1}}$$

Si par exemple, $2
leq u_r
leq r$, on peut remplacer dans le système de générateurs de S_r donné en I.3, $c_1^{\alpha_0}b_0$ par $c_1^{\alpha_0+k_0p^r}b_0$, $c_1^{\alpha_2}c_2$ par $c_1^{\alpha_2+k_2p^r}c_2$, ... et choisir ainsi des α_i , compris entre 0 et p^r . Vérifiant cette condition supplémentaire, les valeurs de α_i sont alors déterminées de façon unique par le