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— Sim;_y <j=m;alors p’"*le,e H et p"le; ¢ H,.

On en déduit tout d’abord que (p—1)p"~'"le, € H, et compte tenu de
la condition I.2.B (p;—1)e; € H, pour 1 =j =m,. Le noyau de u qui a

pour base: {(p—1)p" """ ley, (py—1) ey, ... (P, —1) €, } est donc contenu
dans H,.

~1 zml . . G(n)
On a donc H, = u~* (S,) et est isomorphe a

Le degré de K, sur Q est donc égal a

G(I’l,.) Zmr+1
Card = Card == pF,
S, H,

mr+ 1

Comme p'~le, ¢ H, est donc un groupe cyclique. K, est donc

cyclique sur Q.

Soient H; les sous-modules de Z™ *1 ayant pour bases { p'eq, fo, /2, -
Jm, }» 1de 1 ar. Soient S; les sous-groupes de G (n,) définis par S; = u (H))
et K; les sous-corps de Q (n,) corps fixes de chacun des §;.

Pour tout i de 1 a r, H; contient H,, donc K; est un sous-corps de KX,.
L’indice de H, dans H, est p"~ ¢, donc K est le sous-corps de K, de degré p°
sur Q.

On a pr " legeH. et pleg¢ H,. Dot b5 '"'eS, et b2 '¢S,. Donc

pp-1r e g T<n,, ﬁ) ¢ S, dou K, & Q(") .
p s p .

De méme si m;_; < j=m;, on a alors cﬁr_lﬂ €S, et cj?r_l¢S,, et compte

tenu du lemme L1, ¢; € §;_; et ¢; ¢ §;, c’est-a-dire:

n, n,
Ki~1§Q<—> et Ki$£2<~>
Dj Dj

(@ (n;))1 =i —» est donc la suite de corps cyclotomiques associée & K.
Dans les cas u, = 0 et u, = r + 1, la démonstration est analogue.
1.6. SYSTEME DE GENERATEURS DE S,. CAS OU p = 2

Si K, est une extension de degré 2" sur Q, cyclique sur Q, on peut de la
méme fagon donner un systéeme de générateurs du sous-groupe S, de G (n,).
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On notera comme précédemment c; un générateur de T{n,,—|.
J

nl‘
Si u. =0, G(n,) est produit direct des sous-groupes T (nr, —>

pj
J variant de 1 a m,.

n, .
Siu, =2, a, désigne I’élément de T(n,, 5;) tel que a, = — 1(2").
. n, o
Si u. = 2, a, engendre T<n,,Z> et G (1) est produit direct de

n n’r . b
T(n,, 4—r> et des sous-groupes T(n,, —> ,jde 1 am,.

Pj

n
Si u, =3, T(n,.,2—:;> est produit direct de {a, 1} et de

n,
T nr,im .

, n
On notera a, un générateur de T (n,, —i) G (n,) est alors
2Ur 2

produit direct des sous-groupes cycliques:

n .
{ag, 1}, T<n,, —u-—r_—2> , et T<n,., ﬂ> ,
24 pj

J variant de 1 a m,.

ProrosIiTION 1.3 bis

Soit K, une extension cyclique de degré 2" sur Q, et soit
(Q (n ))1—i— la suite de corps cyclotomiques associée a K..

— Dans le cas oit3 = u, =< r + 1, il existe des nombres o, g, o,
pour 2 = j = m,, tels que S, soit engendré par:

{ o coa, cf3a;, clic;;2 =j=m, }.

oo Vérifie la condition: oy == 0 (2"~ 1).

a, vérifie la condition:

| I3.Abis: ag=0(2""1) et ay &= 0(2).

Les o, pour 2 = j =< m,, vérifient la condition:
13.Bbis:Sim;_y < j=myalorso;==0Q2" eta, = 0.




74

— Dans le cas ot u, = r + 2, il existe des nombres «;, pour
0=j=m, tels que S, soit engendré par: { ay,™a,, a(')“fcj; 1 =]
=m, }.

o, vérifie la condition: oy = 0 (2"~ 1).

Les «;, pour 1 = j = m,, vérifient la condition 1.3.B bis.

— Dans le cas o u, = 2, 1l existe des nombres o;, pour 2 =
= m,, vérifiant la condition 1.3.B bis et tels que S, soit engendré par:
{ ¢ lag, clic;;2 =<j<=m, }.

— Dans le cas ou u, = 0, 1l existe des nombres «;, pour 2 =j
= m,, vérifiant la condition 1.3.B bis et tels que S, soit engendré par:

r a. s e
{ e, clic;;2 =j=m,}.

On démontre tout d’abord le lemme suivant:

LeMME 1.2 bis

. ,2l‘—l+1 lzr—l
— Dans le cas ol u, = 3, a, = 1 et a, ¢ S,.

— Dans le cas ot u, = 2, ay ¢ S,.

) . r—i+1 r—i
— Sim;_, <j=m;alors c; €S, etc; ¢S,

En effet si u, > 3, la condition 1.2.A bis implique u, = r — [ 4+ 3. 2"~ !*!

l
€ S,, alors:

n @r=h n
T(n,, ‘—‘—’;—2* =T n,, - - S,. .
21 2

D’ou K, < Q (;) et Q (n,) ne serait pas le plus petit corps cyclotomique

est donc de Pordre de a, et d’autre part, si aj

: ) n
contenant K,. De méme si u, = 2 et a, € S, alors on aurait K, < Q (4—’) .

Le reste de la démonstration est identique a la démonstration de I.3.

I.7. CONSTRUCTION D’EXTENSIONS CYCLIQUES DE DEGRE 2' SUR Q
PrOPOSITION 1.4 bis

Réciproquement, soit r un entier positif et (Q (n;));_;_, une
suite de corps cyclotomiques vérifiant les conditions [.2.A bis et
1.2.B bis.

— Si 3=u, =r + 1, soient des nombres: o, = 02" 1), g,
vérifiant 1.3.A bis, «;, pour 2 = j = m,, vérifiant 1.3.B bis. Soit S,
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