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— Si mi_1 < j nÉ mi alors pr~I+ 1ej e Hr et pr~ lej £ Hr.

On en déduit tout d'abord que (p—\)pr~l+1e0eHr et compte tenu de

la condition I.2.B (pj— 1) ej g Hr pour 1 ^ mr. Le noyau de p. qui a

pour base: { (p— \)pr~l+ 1e0, (px- l)el9 (pmr — 1) emr } est donc contenu
dans Hr.

Zmr+1 G(nr)
On a donc Hr p (Sr) et est isomorphe à

H r Sr

Le degré de Kr sur g est donc égal à

fG{nr)\ fZmr+1
Card —-C Card

Sr J \ Hr

'2^mr + 1

Comme pr~ Îe1 $ Hn est donc un groupe cyclique. Kr est donc
H,-

cyclique sur g.
Soient Ht les sous-modules de zmr+1 ayant pour bases {ple1,f0,f2,

fmr }, i de 1 à r. Soient St les sous-groupes de G (nr) définis par St p (Ht)
et Kt les sous-corps de Q (nr) corps fixes de chacun des St.

Pour tout / de l à r, Ht contient Hn donc Kt est un sous-corps de Kr.
L'indice de Hr dans Ht est pr~ \ donc Kt est le sous-corps de Kr de degré p1

sur g.
On a pr~l+1e0eHr et pr~le0$Hr. D'où bp0r

1+1
g Sr et ègr

1

$ Sr. Donc

$ Sr d'où Kr $ Q —

_
\P

De même si < j ^ mi9 on a alors cf 1

g Sr et cf
1

<£ Sn et compte
tenu du lemme 1.1, Cj e 1 et Cj £ Sh c'est-à-dire:

r —r jt

b(0p-^r-ltSr, T(nr,^j

«i-iSûÇ) et Ki$Q{~

(Q (ni))1^i^r est donc la suite de corps cyclotomiques associée à Kr.
Dans les cas ur 0 et ur r + 1, la démonstration est analogue.

1.6. Système de générateurs de Sr. Cas où p 2

Si Kr est une extension de degré 2r sur g, cyclique sur g, on peut de la

même façon donner un système de générateurs du sous-groupe Sr de G



73

On notera comme précédemment c} un générateur de Tyir, — J

n>
Si ur 0, G(nr) est produit direct des sous-groupes Tytr,—

j variant de 1 à mr.

Si ur ^ 2, a0 désigne l'élément de T^nr, tel que a0 — 1 (2Ur).

Si ur 2, a0 engendre T^nr,~^j et G (jir) est produit direct de

T\ nry — J et des sous-groupes T\ nry — j de 1 à mr.
\ 4 / V PjJ

Si ur^ 3, est produit direct de { a0, 1 } et de

T\nr, ur~2 f

On notera a0 un générateur de T\ nr, ^ G {nr) est alors
' 2Ur~2

produit direct des sous-groupes cycliques :

{«0,1}, 7"(v2 et

j variant de 1 à mr.

Proposition 1.3 bis

Soit Kr une extension cyclique de degré 2r sur g, et soit
(ß («;)) i^ j-^r ^ suite de corps cyclotomiques associée a Kr.

— Dans le cas où 2 ^ur + 1, il existe des nombres a0, a0, ajy
pour 2 ^ y ±= rar, tels que soit engendré par:

{ cjr, c^ao,2 -= / wr }.

a0 vérifie la condition: a0 0 (2r~ ').

a0 vérifie la condition:

1.3.A bis : a'00 (2'~ et cc0 ^ 0 (2').

Les ctj, pour 2 —j —mnvérifientla condition:
1.3.B bis : Si mi_1< j -2 m u alors a;ss 0(2'' et ay ^ 0 (2').
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— Dans le cas où ur r + 2, il existe des nombres otj9 pour
mn tels que Sr soit engendré par: { a0a°a0, aftcj] 1 y

— mr }•

a0 vérifie la condition: a0 ees 0 (2r~1).
Les a,-, pour 1 ^ mn vérifient la condition 1.3.B bis.

— fe c&y où w,. 2, il existe des nombres a /5 pour 2 ^ /
^ m,., vérifiant la condition 1.3.B bis et tels que Sr soit engendré par:
{ c*r~1a0,cpcj-,2-Sj-=mr}.

— Dans le cas où ur 0, il existe des nombres oq, pour 2 ^j
^ mr, vérifiant la condition 1.3.B bis et tels que Sr soit engendré par:
{ cf,c'JCj;2 j ^ mr

On démontre tout d'abord le lemme suivant:

Lemme 1.2 bis

,2r~l+1 ,2r~l
Dans le cas où ur ^ 3, a0 =1 et a0 $ Sr.

Dans le cas où ur 2, a0 $ Sr.

~. 2r~~î+ 1 r-f 2r~i I r-fSi 77 z
£ _ jl < j d^nii alors c,- e Sr et c} f Sr.

En effet si ur ^ 3, la condition 1.2.A bis implique ur r — l + 3. 2r~l+1
,2r~l

est donc de l'ordre de a0 et d'autre part, si a0 e Sr, alors:

DV* *, o (*) e, û <„J ne serai. paS ,e p,„s pe„. corps c,cl„,oq„e
/nt

contenant Kr. De même si ur 2 et a0 e Sr alors on aurait Kr ç Q —

Le reste de la démonstration est identique à la démonstration de 1.3.

1.7. Construction d'extensions cycliques de degré 2r sur Q

Proposition 1.4 bis

Réciproquement, soit r un entier positif et (ß (7zf))1;£Éi^r une
suite de corps cyclotomiques vérifiant les conditions 1.2.A bis et
1.2.B bis.

— Si 3 ^ ur ^ r + 1, soient des nombres: a0 0 (2r~x), oc'0,

vérifiant I.3.A bis, aj9 pour 2 vérifiant 1.3.B to. Soit Sr
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