Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 18 (1972)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ÉTUDE ARITHMÉTIQUE DES CORPS CYCLIQUES DE DEGRE p'

SUR LE CORPS DES NOMBRES RATIONNELS

Autor: Oriat, Bernard

Kapitel: I.5. Construction d'extensions cycliques \$K_r\$ de degré \$p^r\$ sur Q

DANS LE CAS OÙ p EST IMPAIR

DOI: https://doi.org/10.5169/seals-45361

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

L'ensemble des $\mu(f_j)$, j de 0 à m_r , est un système de générateurs de S_r . Dans les autres cas, on procède de la même façon: si $u_r = r + 1$, on a l = 1, $b_0^{pr} \in H_r$ et $b_0^{pr-1} \notin H_r$. On place donc b_0 en premier, c'est-à-dire que l'on cherche une base $(f_0, f_1, \dots f_{m_r})$ de H_r telle que la matrice A de $(f_0, f_1, \dots f_{m_r})$ par rapport à $(e_0, e_1, e_2 \dots e_{m_r})$ soit triangulaire.

 $Remarque: S_r$ n'est pas en général, produit direct des sous-groupes cycliques engendrés par chacun des générateurs obtenus.

I.5. Construction d'extensions cycliques K_r de degré $p^{\rm r}$ sur Q dans le cas où p est impair

Proposition I.4.

Réciproquement, soient p un nombre premier impair, r un entier positif $(\Omega(n_i))_{1 \le i \le r}$ une suite de corps cyclotomiques vérifiant les conditions I.2.A et I.2.B.

- $Si \ 2 \leq u_r \leq r$, soient des nombres α_0 , vérifiant la condition I.3.A, et α_j , pour $2 \leq j \leq m_r$, vérifiant la condition I.3.B. Soit S_r le sous-groupe de $G(n_r)$ engendré par: $\{c_1^{p_r}, c_1^{\alpha_0}b_0, c_1^{\alpha_j}c_j; 2 \leq j \leq m_r\}$.
- Si $u_r = r + 1$, soient des nombres α_j , pour $1 \le j \le m_r$, vérifiant la condition I.3.B et soit S_r le sous-groupe de $G(n_r)$ engendré par: $\{b_0^{pr}, b_0^{\alpha_j} c_j; 1 \le j \le m_r\}$.
- $Si \ u_r = 0$, soient des nombres α_j , pour $2 \le j \le m_r$, vérifiant la condition I.3.B et soit S_r le sous-groupe de $G(n_r)$ engendré par: $\{c_1^{pr}, c_1^{\alpha j}c_j; 2 \le j \le m_r\}$.

Soit enfin, K_r le sous-corps de $\Omega(n_r)$, corps fixe de S_r . Alors: K_r est une extension cyclique sur Q, de degré p^r . La suite de corps cyclotomiques associée à K_r est la suite $(\Omega(n_i))_{1 \le i \le r}$.

Supposons $2
leq u_r
leq r$, utilisons à nouveau l'application μ de Z^{m_r+1} sur $G(n_r)$ définie dans la démonstration précédente. Soit H_r le sous-module de Z^{m_r+1} ayant pour base: $(f_0, f_1, ... f_{m_r})$ avec $f_1 = p^r e_1$, et $f_j = \alpha_j e_1 + e_j$ pour tout j différent de 1. On a $\mu(H_r) = S_r$ et d'autre part les conditions I.3.A et I.3.B impliquent que:

$$-p^{r-l+1}e_0 \in H_r$$
 et $p^{r-l}e_0 \notin H_r$.

— Si
$$m_{i-1} < j \le m_i$$
 alors $p^{r-i+1}e_i \in H_r$ et $p^{r-i}e_i \notin H_r$.

On en déduit tout d'abord que (p-1) $p^{r-l+1}e_0 \in H_r$ et compte tenu de la condition I.2.B (p_j-1) $e_j \in H_r$ pour $1 \le j \le m_r$. Le noyau de μ qui a pour base: $\{(p-1)$ $p^{r-l+1}e_0, (p_1-1)$ $e_1, ... (p_{m_r}-1)$ $e_{m_r}\}$ est donc contenu dans H_r .

On a donc
$$H_r = \mu^{-1}(S_r)$$
 et $\frac{Z^{m_r+1}}{H_r}$ est isomorphe à $\frac{G(n_r)}{S_r}$.

Le degré de K_r sur Q est donc égal à

$$\operatorname{Card}\left(\frac{G\left(n_{r}\right)}{S_{r}}\right) = \operatorname{Card}\left(\frac{Z^{m_{r}+1}}{H_{r}}\right) = p^{r}.$$

Comme $p^{r-1}e_1 \notin H_r$, $\frac{Z^{m_r+1}}{H_r}$ est donc un groupe cyclique. K_r est donc cyclique sur Q.

Soient H_i les sous-modules de Z^{m_r+1} ayant pour bases $\{p^ie_1, f_0, f_2, ... f_{m_r}\}$, i de 1 à r. Soient S_i les sous-groupes de $G(n_r)$ définis par $S_i = \mu(H_i)$ et K_i les sous-corps de $\Omega(n_r)$ corps fixes de chacun des S_i .

Pour tout i de 1 à r, H_i contient H_r , donc K_i est un sous-corps de K_r . L'indice de H_r dans H_i est p^{r-i} , donc K_i est le sous-corps de K_r de degré p^i sur Q.

On a
$$p^{r-l+1}e_0 \in H_r$$
 et $p^{r-l}e_0 \notin H_r$. D'où $b_0^{p^{r-l+1}} \in S_r$ et $b_0^{p^{r-l}} \notin S_r$. Donc $b_0^{(p-1)p^{r-l}} \notin S_r$, $T\left(n_r, \frac{n_r}{p}\right) \nsubseteq S_r$ d'où $K_r \nsubseteq \Omega\left(\frac{n_r}{p}\right)$.

De même si $m_{i-1} < j \le m_i$, on a alors $c_j^{p^{r-i+1}} \in S_r$ et $c_j^{p^{r-i}} \notin S_r$, et compte tenu du lemme I.1, $c_j \in S_{i-1}$ et $c_j \notin S_i$, c'est-à-dire:

$$K_{i-1} \subseteq \Omega\left(\frac{n_r}{p_j}\right)$$
 et $K_i \not\subseteq \Omega\left(\frac{n_r}{p_j}\right)$

 $(\Omega(n_i))_{1 \le i \le r}$ est donc la suite de corps cyclotomiques associée à K_r . Dans les cas $u_r = 0$ et $u_r = r + 1$, la démonstration est analogue.

I.6. Système de générateurs de S_r . Cas où p=2

Si K_r est une extension de degré 2^r sur Q, cyclique sur Q, on peut de la même façon donner un système de générateurs du sous-groupe S_r de $G(n_r)$.