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L'ensemble des p (/}),y de 0 à mr, est un système de générateurs de Sr.

Dans les autres cas, on procède de la même façon: si ur r + 1, on

a / 1, bPQ e Hr et b^'1 $ Hr. On place donc b0 en premier, c'est-à-dire

que l'on cherche une base (/0,/i, — fmr) de Hr telle que la matrice A de

(/o>/i> -fmr) Par rapport à (e0, el9 e2 emr) soit triangulaire.

Remarque : Sr n'est pas en général, produit direct des sous-groupes

cycliques engendrés par chacun des générateurs obtenus.

1.5. Construction d'extensions cycliques Kr de degré pY sur Q

DANS LE CAS OÙ p EST IMPAIR

Proposition 1.4.

Réciproquement, soient p un nombre premier impair, r un entier

positif (ß une suite de corps cyclotomiques vérifiant
les conditions 1.2.A et 1.2.B.

— Si 2 ^ ur ^ r, soient des nombres a0, vérifiant la condition
1.3.A, et a,-, pour 2^;^ mr, vérifiant la condition I.3.B. Soit Sr le

sous-groupe de G (nr) engendré par: { c{\ c\°b0, c\icy9 2 mr}.

— Si ur r + 1, soient des nombres cq, pour 1 ^j^mn
vérifiant la condition I.3.B et soit Sr le sous-groupe de G (;nr) engendré

par: { bp0r,bpcy,1 ±= / ^ mr }.

— Si ur 0, soient des nombres ocj9 pour 2 mr, vérifiant
la condition I.3.B et soit Sr le sous-groupe de G (nr) engendré par:
{cf, cpCj-,2

Soit enfin, Kr le sous-corps de Q («r), corps fixe de Sr. Alors:

Kr est une extension cyclique sur Q, de degré pr. La suite de corps
cyclotomiques associée à Kr est la suite (Q (ni))1^i^r.

Supposons 2^ur^r, utilisons à nouveau l'application p de zmr+l
sur G (,nr) définie dans la démonstration précédente. Soit Hr le sous-module
de Z""+1 ayant pour base: (foJuavec/, //<?,, et f} + e,

pour tout y différent de 1. On a /( (Hr) Sr et d'autre part les conditions
1.3.A et 1.3.B impliquent que:

— pr~l+ 1e0 e Hret pr~'e0$ Hr.
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— Si mi_1 < j nÉ mi alors pr~I+ 1ej e Hr et pr~ lej £ Hr.

On en déduit tout d'abord que (p—\)pr~l+1e0eHr et compte tenu de

la condition I.2.B (pj— 1) ej g Hr pour 1 ^ mr. Le noyau de p. qui a

pour base: { (p— \)pr~l+ 1e0, (px- l)el9 (pmr — 1) emr } est donc contenu
dans Hr.

Zmr+1 G(nr)
On a donc Hr p (Sr) et est isomorphe à

H r Sr

Le degré de Kr sur g est donc égal à

fG{nr)\ fZmr+1
Card —-C Card

Sr J \ Hr

'2^mr + 1

Comme pr~ Îe1 $ Hn est donc un groupe cyclique. Kr est donc
H,-

cyclique sur g.
Soient Ht les sous-modules de zmr+1 ayant pour bases {ple1,f0,f2,

fmr }, i de 1 à r. Soient St les sous-groupes de G (nr) définis par St p (Ht)
et Kt les sous-corps de Q (nr) corps fixes de chacun des St.

Pour tout / de l à r, Ht contient Hn donc Kt est un sous-corps de Kr.
L'indice de Hr dans Ht est pr~ \ donc Kt est le sous-corps de Kr de degré p1

sur g.
On a pr~l+1e0eHr et pr~le0$Hr. D'où bp0r

1+1
g Sr et ègr

1

$ Sr. Donc

$ Sr d'où Kr $ Q —

_
\P

De même si < j ^ mi9 on a alors cf 1

g Sr et cf
1

<£ Sn et compte
tenu du lemme 1.1, Cj e 1 et Cj £ Sh c'est-à-dire:

r —r jt

b(0p-^r-ltSr, T(nr,^j

«i-iSûÇ) et Ki$Q{~

(Q (ni))1^i^r est donc la suite de corps cyclotomiques associée à Kr.
Dans les cas ur 0 et ur r + 1, la démonstration est analogue.

1.6. Système de générateurs de Sr. Cas où p 2

Si Kr est une extension de degré 2r sur g, cyclique sur g, on peut de la

même façon donner un système de générateurs du sous-groupe Sr de G
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