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Montrons que iq 3. Si / 1 c'est une conséquence immédiate de la

proposition LI bis. Si 1 ^ 2, soit h e T(nr, 23p1 pm). h est le carré d'un
élément teT{nr,p1p„r).
Or Sl_1 ^ T{n„pi pmr),doncte,S;_xet d'après le lemme 1.1.

D'où:

T(nr, 23p1...pm)sS, et K, ^ Q(23p1 pmr)

Montrons que si 1er, alors ut 3.

En elfet supposons ut — 2, alors Kt ç Q(22pl pmr) c'est-à-dire St

3 T(nn 22p1 ...pm). Or T(nnp1...pmr) est produit direct de T(nn
22p1...pmr) et d'un sous-groupe { 1, a0 } d'ordre 2. On a donc al 1 et

öfo G Si+i- D'où a0 g St d'après le lemme 1.1. D'où:

T(nr9p1 ...pmr) s S, et Kt <= ...pmr)

ce qui contredit la définition de /.

Pour montrer que ui+l — ut + 1 pour tout i entre / et r — 1, on utilise

comme précédemment l'égalité:

T(nrI2»;Pl...P%f» T(nn2»i + 1Pl...P%)

La démonstration de la condition 1.2.B bis est analogue à celle de la
condition I.2.B.

1.4. Système de générateurs de Sr. Cas où p est impair

Si ur ^ 0, G (inr) est produit direct des sous-groupes T\nr, —
V pUr

et T\ nr, — j variant de 1 à mr.
\ PjJ

n,
Si ur 0, C(^) est produit direct des sous-groupes T nn

j variant de 1 à mr.

Pj

b0 désignera un générateur de Tlnr,-^-\ et pour tout j entre
P /

1 et mr, C: un générateur de T( nr, —
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I Proposition 1.3.

Soit Kr une extension cyclique de degré pr sur Q (p premier
j impair) et soit (Q (nj)^^,. la suite de corps cyclotomiques associée

: à Kr.

— Dans le cas ou 2 ^ ur ^5 r, il existe des nombres aj9 pour

j 0 et 2 ^ mr, tels que Sr soit engendré par:

{ c[r, cî» b0 c\U;2

oc0 vérifie la condition:

1.3.A : oc0 0 (pl~*) et a0 =}= 0 (/?').

Les ay, pour 2 j m,., vérifient la condition :

1.3.B : Si < j alors ay 0(/?l_1) et ay eJeO(j?1).

— /e cas ou ur r + 1, il existe des nombres ocj9 pour
1 ^ tels que ^ soit engendré par: { bpCj\ 1 ^mr).
Les a,-, pour 1 ^ / ±^mr, vérifient la condition I.3.B.

— Dans le cas ou ur 0, il existe des nombres ocj, pour 2

mn tels que Sr soit engendré par: { c{r, capCj\ 2 =£= mr }. Les

aj, pour 2 ^ mr, vérifient la condition 1.3. B.

Démontrons tout d'abord le lemme suivant:

j Lemme 1.2.

t; — Si ur/0, bp0r'l+1 eSr et bp0r~l $ Sr

— Si m,. < j^mtalorscf '+1
e et cf ' ^ Sr.

Supposons par exemple 2 ^ ur ^ r. On aura alors, d'après la condition
1.2.A: ur r — l + 2 et 2 ^ ^ r. Il découle de la définition de / que

c'est-à-dire:

s-2T("-f) et

j D'où ù0 e >!>,_ t et b0 é Stet l'on obtient le résultat en utilisant le lemme 1.1.
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De même, si mi_l < j ^mi alors Ki_1 ç Q\— et Kt $ Q{~ Y
\PjJ \PjJ

D'où T\ nr, — )^ Si_1 et Tl nr, — 4 St. Ce qui équivaut encore à
V PjJ \ PjJ

cjeSi_1 et CjÇSi.

Démonstration de la proposition 1.3

Soit {e0,eu emr] une base du Z-module zmr+1 et jj, l'application
Z-linéaire de zmr+1 sur G(nr) telle que p(e0) b0 et p(ei) — ct pour
tout i entre 1 et mr.

Pour tout sous-groupe S de G(nr), les groupes-quotients de zmr+1 par
pT1 (S) d'une part et de G par S d'autre part sont isomorphes. Posons

Hr fi"1 (Sr) et cherchons une base {/0,/i, *.*fmr} de Hr aussi simple

que possible.
Les conditions du lemme 1.2 sont équivalentes à:

— pr~l+1e0 eHr et pr~le0 $ Hr.

— Si m;_ < jmt alors pr~I+ e Hr et 'ej $

On peut préciser de plus, que 2 ^ / implique n1 premier à p et comme on
ne peut avoir n1 1, px divise donc n1 et m1 ^ 1. On aura donc prel e Hr
et pr-lex£Hr.
Cherchons une base de Hr\ {f0,fu ~'fmr} Pue la matrice de

(fi>ft»f2>-fnr) Par apport à {eu e0, e2, em) soit triangulaire c'est-

à-dire :

fi an ei

fj I akj ek
o <k<j

On a

_ /Zmr+1\ G(n)
DetA fil aJjICard Card —^ Pr

o<j<mr \ rir J ùr

Donc a1JL divise pr et comme d'autre part pr~1e 1 $ Hn on en déduit que
| an | Pr et | ajj | 1 pour tout j différent de 1.

On peut donc choisir axl /?**, ajj 1 et j) de la forme fj 4-

pour tout j différent de 1.

Si mi-1 < j — mh multipliant l'égalité f) — ajei + ep par pr~l+1 ou

pr~ \ on constate que ccjpr~I+ 1e1 e Hr et ocjpr~ le1 £ Hr. D'où olj 0 {pl~*)
et aj =|= 0 (p1). On obtient de même a0 0 (pl~*) et a0 =j= 0 (pl).
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L'ensemble des p (/}),y de 0 à mr, est un système de générateurs de Sr.

Dans les autres cas, on procède de la même façon: si ur r + 1, on

a / 1, bPQ e Hr et b^'1 $ Hr. On place donc b0 en premier, c'est-à-dire

que l'on cherche une base (/0,/i, — fmr) de Hr telle que la matrice A de

(/o>/i> -fmr) Par rapport à (e0, el9 e2 emr) soit triangulaire.

Remarque : Sr n'est pas en général, produit direct des sous-groupes

cycliques engendrés par chacun des générateurs obtenus.

1.5. Construction d'extensions cycliques Kr de degré pY sur Q

DANS LE CAS OÙ p EST IMPAIR

Proposition 1.4.

Réciproquement, soient p un nombre premier impair, r un entier

positif (ß une suite de corps cyclotomiques vérifiant
les conditions 1.2.A et 1.2.B.

— Si 2 ^ ur ^ r, soient des nombres a0, vérifiant la condition
1.3.A, et a,-, pour 2^;^ mr, vérifiant la condition I.3.B. Soit Sr le

sous-groupe de G (nr) engendré par: { c{\ c\°b0, c\icy9 2 mr}.

— Si ur r + 1, soient des nombres cq, pour 1 ^j^mn
vérifiant la condition I.3.B et soit Sr le sous-groupe de G (;nr) engendré

par: { bp0r,bpcy,1 ±= / ^ mr }.

— Si ur 0, soient des nombres ocj9 pour 2 mr, vérifiant
la condition I.3.B et soit Sr le sous-groupe de G (nr) engendré par:
{cf, cpCj-,2

Soit enfin, Kr le sous-corps de Q («r), corps fixe de Sr. Alors:

Kr est une extension cyclique sur Q, de degré pr. La suite de corps
cyclotomiques associée à Kr est la suite (Q (ni))1^i^r.

Supposons 2^ur^r, utilisons à nouveau l'application p de zmr+l
sur G (,nr) définie dans la démonstration précédente. Soit Hr le sous-module
de Z""+1 ayant pour base: (foJuavec/, //<?,, et f} + e,

pour tout y différent de 1. On a /( (Hr) Sr et d'autre part les conditions
1.3.A et 1.3.B impliquent que:

— pr~l+ 1e0 e Hret pr~'e0$ Hr.


	I.4. Système de générateurs de $S_r$. Cas où est impair

