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Montrons que u; = 3. Si [/ = 1 c’est une conséquence immédiate de la
proposition L1 bis. Si [ =2, soit he T (n,, 2°p; ... p,,,). h est le carré d’un
elément t €7 (n,, py ... Pp,)-

Or S,y 2T, py ... Pm,), donc 1€ S;_; et he S, d’aprés le lemme I.1.
D’ou:
T(n,,2°p;...pw) =SS, et K, = Q2% ...0m,) - |

Montrons que si [ < r, alors u; = 3. |
En effet supposons u; = 2, alors K; € Q(2%p, ... p, ) C'est-a-dire S,
= T (n, 2°p; ... py). Or T(n,p;..p,) est produit direct de T (n,

22p1...pmr) et d’un sous-groupe {1, g, } d’ordre 2. On a donc ag =1 et
aye S, Dol a5 € S, d’aprés le lemme I.1. D’oli:

T, py...Pm,) €S, et K, = Q(p;...Pm,)

ce qui contredit la définition de .
Pour montrer que u;,; = u; + 1 pour tout i entre / et r — 1, on utilise
comme précédemment I’égalité:

T(n,, 2"py ... pw)® = T(n,, 2" py o Py

La démonstration de la condition 1.2.B bis est analogue a celle de la
condition 1.2.B.

I.4. SYSTEME DE GENERATEURS DE S,. CAS OU p EST IMPAIR

n
Si u, # 0, G (n,) est produit direct des sous-groupes T(n,, :)
p r

nr . . b
et T(n,, —~>J variant de 1 & m,.

bj

n
Si u, = 0, G (n,) est produit direct des sous-groupes T(n,, —r>,
pj

j variant de 1 a m,. 7
n, )
—W) et pour tout j entre

/

b, désignera un générateur de T(nr,

n
1 et m,, ¢; un générateur de T <nr, —r>.

Dj
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 PRoOPOSITION 1.3.

Soit K, une extension cyclique de degré p" sur Q (p premier
impair) et soit (Q (n )1 =i 1asuite de corps cyclotomiques associée
ak.

— Dans le cas ou 2 =u, =r, il existe des nombres «;, pour
j=0cet2=j=m, tels que S, soit engendré par:

(el cloby,cie;; 2 Sj < m, ).
oo vérifie la condition:
I3.4:0,=0(p" 1 et ap % 0 (ph.
Les o, pour 2 = j =< m,, vérifient la condition:
1.3.B: Sim;_; <j=m, alors o;=0(p" ") et «; % 0(p").

— Dans le cas ou u, = r + 1, il existe des nombres «;, pour
1 =j =m,, tels que S, soit engendré par: { b§’, boic;; 1 =<j =m, ;.
Les o;, pour 1 == == m,, vérifient la condition I.3.B.

— Dans le cas ou u, = 0, il existe des nombres «;, pour 2 =
= m,, tels que S, soit engendré par: {c{’,c{c;;2=j=m,}. Les
a;, pour 2 = j = m,, vérifient la condition 1.3.B.

Démontrons tout d’abord le lemme suivant:

‘ LeEmME 1.2.

| pr—l+1 pr—1

— Siu, #0,5" eS etbl '¢S.

. ) r—i+1 r—i
| — Sim;_; <j=m;alors c} eS,etci ¢85,

Supposons par exemple 2 = u, = r. On aura alors, d’aprés la condition
12A u, =r—1+4+2cet2=1[=r Il découle de la définition de / que

n, n,
Kl_1§Q<u> et KZ$Q<“>>
p P

‘ L
. Cest-a-dire:

n, n,
ki Sl—l =2 T(I’lr, T> et Sl $ T(n,, > .
; p*r p*

¥

ji 9 N ) . e eqe
{ Dot by e §,_ et by ¢S, et 'on obtient le résultat en utilisant le lemme I.1.




. ni’ nr
De méme, si m;_; <j=m,; alors K,_, = Q(—) et K; & Q<~>
Pj Pj

n, n, C, 5
D’ou T(n,, —> c S;_; et T(n,, —) ¢ S;. Ce qui équivaut encore a :
Pj

Dj

c;eESi_yetc; ¢S,

Démonstration de la proposition 1.3

Soit {eg, ey, ... e, } une base du Z-module Z™ ! et u lapplication
Z-linéaire de Z™ ™1 sur G(n,) telle que p(e,) = b, et u(e;) = c; pour
tout i entre 1 et m,.

Pour tout sous-groupe S de G (n,), les groupes-quotients de Z™*! par
pn~ 1 (S) d’une part et de G par S d’autre part sont isomorphes. Posons
H, = p~'(S,) et cherchons une base {fo,fi, ...
que possible.

Les conditions du lemme 1.2 sont équivalentes a:

“leg ¢ H.,.

r—i+1

mr

r—1+1

— P
— Sim;_; <j=m; alors p

eo€ H, et p"
e;€ H, et p’—iej ¢ H,.

On peut préciser de plus, que 2 = [ implique n, premier & p et comme on
ne peut avoir ny = 1, py divise donc ny et my = 1. On aura donc p'e, € H,

et p""le, ¢ H,.
Cherchons une base de H,: {fo,fi, .- f,,,r} telle que la matrice de
(f1,f0> f2s - fin,) Par rapport a (ey, e, e,, ... €, ) soit triangulaire c’est-
a-dire:
Ji = aj e
fi= 2 aje
0<k<j
On a
Zmr+1 G nr
Detd = |] Iajjl——-Card( >=Card ( )= -
0<j<m, Hr ¥
Donc a,; divise p" et comme d’autre part p"~ ‘e, ¢ H,, on en déduit que :,i.

| aqq | = p" et | ajj] = 1 pour tout j différent de 1.
On peut donc choisir a;; = p', a;; =
pour tout j différent de 1.

Si m;_; <j=m,; multipliant ’égalité f; = o,e; + e;, par p
p'~ %, on constate que a;p" " *Tle; e H, et o;p
et o; == 0(p’). On obtient de méme oy =0 (p

r—i+1

1) et ag E 0(p)

} de H, aussi simple |

1 et f; de la forme f; = a;e; + ¢;

ou
"“le, ¢ H,. Do o;=0(p'™ ")

|

S S A i S e

T,

TN
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L’ensemble des u (f;), j de 0 a m,, est un systeme de générateurs de S,.

Dans les autres cas, on procéde de la méme fagon: si v, = r + I, on
al=1,b5eH, et bg’* ¢ H.. On place donc b, en premier, c’est-a-dire
| que 'on cherche une base (fo, /1, ... fm,) de H, telle que la matrice 4 de
| (f0, f15 - fu,) Par rapport & (e, €y, €5 ... e,,) soit triangulaire.

: Remarque : S, n’est pas en général, produit direct des sous-groupes
b cycliques engendrés par chacun des générateurs obtenus.

1.5. CONSTRUCTION D’EXTENSIONS CYCLIQUES K, DE DEGRE p' SUR QO
DANS LE CAS OU p EST IMPAIR

gl

~ ProposITION L4,

Réciproquement, soient p un nombre premier impair,  un entier
positif (2 (n ))1—i—, une suite de corps cyclotomiques vérifiant
les conditions I.2.A et 1.2.B.

— Si 2 =u, = r, soient des nombres «,, vérifiant la condition
1.3.A, et «;, pour 2 = j = m,, vérifiant la condition I.3.B. Soit S, le
sous-groupe de G (n,) engendré par: { c§’, coby, cVec;;2 =j=m,}.

, — Si u, = r + 1, soient des nombres «; pour 1 =j;=m,
| vérifiant la condition 1.3.B et soit S, le sous-groupe de G (n,) engendré
par: { b5, bgic;;1 =j=m,}.

— Si u, = 0, soient des nombres o;, pour 2 = j = m,, vérifiant
la condition 1.3.B et soit S, le sous-groupe de G (n,) engendré par:
{cf,cfie;;2 =j=m,}.

Soit enfin, K, le sous-corps de Q(n,), corps fixe de S,. Alors:

1 K, est une extension cyclique sur Q, de degré p". La suite de corps
cyclotomiques associée a K, est la suite (Q (1)) ;-

- Supposons 2 =u, ==r, utilisons a nouveau I’application p de Z™ *!
sur G (n,) définie dans la démonstration précédente. Soit H. le sous-module
- de Z™ ™! ayant pour base: (fo, f1, ... fn,) aVec fy = pley, et f; = aze; + e;
. pour tout j différent de 1. On a u (H,) = S, et d’autre part les conditions
- 1.3.A et 1.3.B impliquent que:

— p e e H et p ey ¢ H..

e Ta
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