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n/
T(n’, —> a pour ordre p — 1 et comme p — 1 est premier a p", on en déduit

nl
T<n’,—> cS.
p

ProrositioN 1.1 bis.

Soit r un entier positif et K une extension abélienne de degré 2"
sur Q, Q (n) le plus petit corps cyclotomique contenant K. Alors n
est de la forme n = 2°p,p, ... p,, et vérifie la condition

— 0=s=7r + 2.

— Les p; sont des nombres premiers impairs distincts.

La démonstration est analogue a la précédente. Pour montrer que s = r + 2,
on constate que si u =r + 3 et si n’ = 2% pi* ... p,™, alors

n’ n'\?*"
T\n', o—=|=T\{n, | .
2u r 214

I.3. SUITE DE CORPS CYCLOTOMIQUES
ASSOCIEE A UNE EXTENSION CYCLIQUE K,

DEFINITION ;

Soit K, une extension cyclique de degré p" (p premier) sur Q.
Pour i entre 1 et r soit K; I’unique sous-corps de K, de degré p' sur Q.
Soit Q (n;) le plus petit corps cyclotomique contenant K ;. On appellera
« suite de corps cyclotomiques associée a K, » la suite des r corps
Q (n)).

PropoSITION 1.2.

Soit  un entier positif et p un nombre premier impair. Soit K,
une extension cyclique de degré p" sur Q. Soit (Q (n ))141 _, la suite
de corps cyclotomiques associée a K,.

Alors les n; vérifient les conditions suivantes:

1.2.A. Pour tout i de 1 a r, la décomposition de n; en facteurs
premiers est n; = p“p; ... p,,; la suite (m;); ; ., est non décrois-
sante. La suite (u;), _; , est non décroissante, éventuellement nulle.
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Si les u; ne sont pas tous nuls, soit / le plus petit entier tel que u; # 0.
On a alors u; = 2 et u;,; = u; + 1 pour tout 7 entre [ et r — 1.

I[2.B. Sij=m;alors p,=1(p"~""").

Démontrons tout d’abord le

LemMme I.1.

Soit K une extension abélienne de Q. K. un sous-corps de K
de degré p" sur Q, cyclique sur Q; pour 1 =i =r, soit K; 'unique
sous-corps de K, de degré p* sur Q.

Soit ¢ un automorphisme de K. Alors pour tout 7 entre 1 et r, o' est
un K,-automorphisme si et seulement si ¢ est un K, _;-automorphisme.

Notons S; le sous-groupe de G (K/Q) (groupe de Galois de K sur Q),

- formé des K;-automorphismes. Soit o € S,_;; S. est d’indice p’ dans S,_;

r—i»

donc ¢?' € S.. Réciproquement, si o” e S,, alors la restriction de o & K,
o ( K,, est un élément d’ordre inférieur ou égal & p* dans G (K./Q). Puisque
- ce groupe est cyclique d’ordre p', alKr est une puissance (p"~P)eme et

-

O-ELS

r— i

Démonstration de la proposition 1.2

S; désigne maintenant le sous-groupe de G (n,) formé des K -auto-
morphismes.

Condition 1.2.A. D’aprés la proposition 1.1, les n; sont de la forme

;= p“py..p,,. Puisque K; K, alors Q (n,) < Q (n;,,) et n; divise
 n;44. Les suites (u;) et (m;) sont donc non décroissantes.

Supposons que les u; ne soient pas tous nuls et montrons que u; = 2.

- Si aucun des u; n’est nul, c’est-a-dire si / = 1 alors u;, = 2 est une consé-
 quence immédiate de la proposition 1.1. Si / = 2, on a donc

u_y =0 et Kl—l = Q(p1pz~~~Pm,)

- C’est-a-dire

|

Sl—l = T(”r? P1P> "'pmr) .

{ Soit i€ T(1,, p"pps .. p,); h st une puissance (p—1) p)eme d'un élément
T de T'(n,, p1ps - Pu,). Or t€S,_, et d’aprés le lemme L1, 7 € S, donc
 he S,

L’Enseignement mathém., t. XVIII, fasc. 1. 5
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On a donc
T(n,, p’p1Ps .- Pm,) S S
d’ou

K, = Q(p°p, o Pm,) et U =2, |

D’autre part, d’aprés la proposition I.1, u; # 0 implique u;, = 2. |
Supposons u; =2 et montrons que u;,; = u; + 1. Cette égalité
équivaut aux deux relations

Kivi € Q2(p“pipa --'Pm,)
et

N

Ky Q(Pui+1P1P2 -~-,Pm,)

Premiere relation :

Supposons que
Kivy = Q(p"'p1ps - Pm,)
c’est-a-dire
Siv1 2 T(ny, p""p1D2 - P,) -
Soit
heT(n, p" " 'pips ... D)) -

Comme u; =2, ”»e T (n,, p““pips ... P,) d00 "€ §,;,, et he S,; d’apres
le lemme I.1. Ceci prouverait que K; < Q (p“ " 'p,p, ... Pm,)» €€ qui contredit
la définition de u;.

Deuxieme relation :

On a
K; = Q(p"'pips - Pm,)
d’ou
S; 2 T(n,, p**p1P; - Pm,)
et

Si?” 2 T(n,, p"'pipy -+ Pw)? = T(ny P 'p1P2 - D))

D’autre part d’apres le lemme I.1: S;.; 2 S,
On a donc:

Siv1 2 T(n, P 'pips oo D))
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et

K1 = Q""" 'pips cev Dm,)

nr
Condition 1.2.B. Si j=m,, alors K; & Q(—

) c’est-a-dire
Pj

n, . e
S; P T(n,,—) D’aprés le lemme I.1, ceci implique que
| J
n \@=H n, (p7) o
S, & T<nr, —r—> et comme S, 2 T(n,,——) on en déduit que

lp_]

(p7—1) . \@" n

nl‘ . . r r
T(n,, —) contient strictement T(n,, ——) . Or T (n,,; est un

Dj J

(p?)
4 n, ,
groupe cyclique d’ordre p; — 1 et T(n,, p-—) est d’ordre
f J
pPj — 1
 PGCD (p;— 1, p%)

.

On a donc:

PGCD(p;—1,p") >PGCD (p;—1,p" ™
1f?d’0il
pj = 1(pr—i+1)

. PrROPOSITION 1.2 bis.

Soit 7 un entier positif et K, une extension cyclique de degré 2"

sur Q. Soit (2 (n ))1=i =, la suite de corps cyclotomiques associée
a K.. Alors les n; vérifient les conditions suivantes:

1.2.4 bis. Pour tout i de 1 a r, la décomposition de n; en fac-
teurs premiers est n; = 2“p,p, ... p,.; la suite des (m;); _;_, est
non décroissante. La suite des u; est non décroissante, éventuellement
nulle. Si les u; ne sont pas tous nuls, soit / le plus petit entier tel que
u, #0:

— si [ = r alors u; = 2 ou 3.

— st [ <ralors u; = 3 et u;., = u; + 1 pour tout i tel que
r>i=|

I12.Bbis. Sij=m;alorsp;=1Q2 71,
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Montrons que u; = 3. Si [/ = 1 c’est une conséquence immédiate de la
proposition L1 bis. Si [ =2, soit he T (n,, 2°p; ... p,,,). h est le carré d’un
elément t €7 (n,, py ... Pp,)-

Or S,y 2T, py ... Pm,), donc 1€ S;_; et he S, d’aprés le lemme I.1.
D’ou:
T(n,,2°p;...pw) =SS, et K, = Q2% ...0m,) - |

Montrons que si [ < r, alors u; = 3. |
En effet supposons u; = 2, alors K; € Q(2%p, ... p, ) C'est-a-dire S,
= T (n, 2°p; ... py). Or T(n,p;..p,) est produit direct de T (n,

22p1...pmr) et d’un sous-groupe {1, g, } d’ordre 2. On a donc ag =1 et
aye S, Dol a5 € S, d’aprés le lemme I.1. D’oli:

T, py...Pm,) €S, et K, = Q(p;...Pm,)

ce qui contredit la définition de .
Pour montrer que u;,; = u; + 1 pour tout i entre / et r — 1, on utilise
comme précédemment I’égalité:

T(n,, 2"py ... pw)® = T(n,, 2" py o Py

La démonstration de la condition 1.2.B bis est analogue a celle de la
condition 1.2.B.

I.4. SYSTEME DE GENERATEURS DE S,. CAS OU p EST IMPAIR

n
Si u, # 0, G (n,) est produit direct des sous-groupes T(n,, :)
p r

nr . . b
et T(n,, —~>J variant de 1 & m,.

bj

n
Si u, = 0, G (n,) est produit direct des sous-groupes T(n,, —r>,
pj

j variant de 1 a m,. 7
n, )
—W) et pour tout j entre

/

b, désignera un générateur de T(nr,

n
1 et m,, ¢; un générateur de T <nr, —r>.

Dj
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