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Tyn', —) a pour ordre p —1 et comme — 1 est premier à pr, on en déduit

T("'-r)ES-

Proposition 1.1 bis.

Soit r un entier positif et K une extension abélienne de degré 2¥

sur Q, Q (n) le plus petit corps cyclotomique contenant K. Alors n

est de la forme n — 2S p1p2 pm et vérifie la condition

— 0 ^ s ^ r 2.

— Les pi sont des nombres premiers impairs distincts.

La démonstration est analogue à la précédente. Pour montrer que s ^ r + 2,

on constate que si u ^ r + 3 et si n' — 2U p\x alors

n' \ n'x2r
T n\ -z T n\» '2u-r-2 I \ 7

2"

1.3. Suite de corps cyclotomiques
ASSOCIÉE A UNE EXTENSION CYCLIQUE Kr

Définition:

Soit Kr une extension cyclique de degré pr (p premier) sur Q.

Pour i entre 1 et r soit K{ l'unique sous-corps de Kr de degré p1 sur Q.

Soit Q (;nt) le plus petit corps cyclotomique contenant Kt. On appellera
« suite de corps cyclotomiques associée à Kr » la suite des r corps
Q («;).

Proposition 1.2.

Soit r un entier positif et p un nombre premier impair. Soit Kr
une extension cyclique de degrépr sur Q. Soit (Q la suite

de corps cyclotomiques associée à Kr.
Alors les nt vérifient les conditions suivantes:

1.2.A. Pour tout i de 1 à r, la décomposition de nt en facteurs

premiers est ni puipt ••• p„H ; la suite (mï)\^iéâr est non décrois-

1

santé. La suite est non décroissante, éventuellement nulle.
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Si les ux ne sont pas tous nuls, soit / le plus petit entier tel que ux ^ 0.

On a alors ux 2 et ui+1 ux + 1 pour tout i entre / et r - 1.

1.2.B. Si j ^ mx alors pj 1 (pr~l+ *).

Démontrons tout d'abord le

Lemme 1.1.

Soit K une extension abélienne de Q. Kr un sous-corps de K
de degré pr sur Q, cyclique sur Q; pour 1 ^ i ^ r, soit Kt l'unique
sous-corps de Kr de degré pl sur Q.

Soit g un automorphisme de K. Alors pour tout i entre 1 et r, Gpl est

unA,.-automorphisme si et seulement si a est un A"r_rautomorphisme.

Notons Sx le sous-groupe de G(K/Q) (groupe de Galois de K sur Q),
formé des ^-automorphismes. Soit g e Sr est d'indice pl dans Sr-X
donc opl e Sr. Réciproquement, si opl e Sn alors la restriction de a à Kr,
g | Kn est un élément d'ordre inférieur ou égal à pl dans G (KJQ). Puisque
ce groupe est cyclique d'ordre pr, a\Kr est une puissance (//_I)eme et

g e Sr_ i.

Démonstration de la proposition 1.2

St désigne maintenant le sous-groupe de G (nr) formé des Krauto-
morphismes.

Condition 1.2.A. D'après la proposition 1.1, les nx sont de la forme
//. := puipi ...pmi. Puisque Kx c= Ki+1, alors Q(nx) Ç Q(ni+1) et nx divise

ni+1. Les suites (ux) et (m^) sont donc non décroissantes.

Supposons que les ux ne soient pas tous nuls et montrons que ux 2.
Si aucun des ux n'est nul, c'est-à-dire si / 1 alors ux 2 est une
conséquence immédiate de la proposition 1.1. Si / ^ 2, on a donc

«,_! 0 et Kl_1S

c'est-à-dire

Si-1 3 T{nr,plp2

Soit heT (j\,p2p1 p2-Pmr)lhest une puissance 1) p)em<> d'un élément
t de T{nnpxp2 ...pm). Or xeSl-1 et d'après le lemme 1.1, donc
h E Sx,

L'Enseignement mathém., t. XVIIF, fasc. L 5
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On a donc

T(nr,p2p1p2...pmr) S S;

d'où

Ki£Q(p2Pi et M; 2

D'autre part, d'après la proposition 1.1, iq ^ 0 implique ut^2.
Supposons ut^2 et montrons que wt-+1 u{ + 1. Cette égalité

équivaut aux deux relations

^i + l $ &(pUiPlP2

et |

Ki+1 e Q(pui+1Pi

Première relation :

Supposons que

Ki+1 s Q(puip1p2

c'est-à-dire

S,+ l 2 PUiPlPl

Soit

heT(nr,p"i~1p1p2...pmr).

Comme iq ^ 2, hp e T (nnpuip1p2 /?mr) d'où hp e Si+1 et he St d'après
le lemme 1.1. Ceci prouverait quei^ s Q (pui~1PiP2 • •• PmX ce ^ contredit
la définition de ut.

Deuxième relation :

On a

Kt E Q(p"tp1p2...Pm)
d'où

Si E T(nr, PuiP

et

s[p) E T(nr,puip1p2 ...pmr)(p)

D'autre part d'après le lemme 1.1: Si+1 E S-p\
On a donc:

S, + 1 3 T(nr,pui + 1plp2...pmr



— 67 —

et

Ki + 1 £ 0(pUi + 1PiP2 •••Pm)

Condition 1.2.B. Si j^mh alors Kt $ Qy~J c'est-à-dire

Sf $ T^7r,—j D'après le lemme LI, ceci implique que

/ n Ypr_f) n \{pr)
Sr $ T(nr, — j et comme Sr 3 Tlnr9y\ on en déduit que

n Vpr-^ nr\(pr) n\
Ttnr, — \ contient strictement Tlnr,—-J Or T\nr,—J est un

/ nr\(pV)
groupe cyclique d'ordre pj — 1 et Tl nr, — J est d'ordre

Pj - 1

PGCD {pj-hp9)
On a donc:

PGCD Cpj -1, /) > PGCD (pj - 1, /-f)
d'où

Pj l(/~l + 1)

Proposition 1.2 ùw.

Soit r un entier positif et i£r une extension cyclique de degré 2r

sur g. Soit la suite de corps cyclotomiques associée

à Kr. Alors les nt vérifient les conditions suivantes:

1.2.A bis. Pour tout / de 1 à r, la décomposition de nt en
facteurs premiers est nt 2uip1p1... pmi ; la suite des est

non décroissante. La suite des ut est non décroissante, éventuellement
nulle. Si les ut ne sont pas tous nuls, soit / le plus petit entier tel que
Ui ^ 0:

— si / r alors ut — 2 ou 3.

— si / < r alors ut — 3 et ui+1 — ut + 1 pour tout i tel que
r > i^ l.

1.2.B bis. Si j ^nii alors pj 1 (2r~i+1).
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Montrons que iq 3. Si / 1 c'est une conséquence immédiate de la

proposition LI bis. Si 1 ^ 2, soit h e T(nr, 23p1 pm). h est le carré d'un
élément teT{nr,p1p„r).
Or Sl_1 ^ T{n„pi pmr),doncte,S;_xet d'après le lemme 1.1.

D'où:

T(nr, 23p1...pm)sS, et K, ^ Q(23p1 pmr)

Montrons que si 1er, alors ut 3.

En elfet supposons ut — 2, alors Kt ç Q(22pl pmr) c'est-à-dire St

3 T(nn 22p1 ...pm). Or T(nnp1...pmr) est produit direct de T(nn
22p1...pmr) et d'un sous-groupe { 1, a0 } d'ordre 2. On a donc al 1 et

öfo G Si+i- D'où a0 g St d'après le lemme 1.1. D'où:

T(nr9p1 ...pmr) s S, et Kt <= ...pmr)

ce qui contredit la définition de /.

Pour montrer que ui+l — ut + 1 pour tout i entre / et r — 1, on utilise

comme précédemment l'égalité:

T(nrI2»;Pl...P%f» T(nn2»i + 1Pl...P%)

La démonstration de la condition 1.2.B bis est analogue à celle de la
condition I.2.B.

1.4. Système de générateurs de Sr. Cas où p est impair

Si ur ^ 0, G (inr) est produit direct des sous-groupes T\nr, —
V pUr

et T\ nr, — j variant de 1 à mr.
\ PjJ

n,
Si ur 0, C(^) est produit direct des sous-groupes T nn

j variant de 1 à mr.

Pj

b0 désignera un générateur de Tlnr,-^-\ et pour tout j entre
P /

1 et mr, C: un générateur de T( nr, —
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