Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 18 (1972)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ÉTUDE ARITHMÉTIQUE DES CORPS CYCLIQUES DE DEGRE p'

SUR LE CORPS DES NOMBRES RATIONNELS

Autor: Oriat, Bernard

Kapitel: I.3. Suite de corps cyclotomiques associée a une extension cyclique

\$K_r\$

DOI: https://doi.org/10.5169/seals-45361

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

$$T\left(n', \frac{n'}{p}\right)$$
 a pour ordre $p-1$ et comme $p-1$ est premier à p^r , on en déduit $T\left(n', \frac{n'}{p}\right) \subseteq S$.

Proposition I.1 bis.

Soit r un entier positif et K une extension abélienne de degré 2^r sur Q, $\Omega(n)$ le plus petit corps cyclotomique contenant K. Alors n est de la forme $n = 2^s p_1 p_2 \dots p_m$ et vérifie la condition

- $-0 \leq s \leq r+2.$
- Les p_i sont des nombres premiers impairs distincts.

La démonstration est analogue à la précédente. Pour montrer que $s \le r + 2$, on constate que si $u \ge r + 3$ et si $n' = 2^u p_1^{u_1} \dots p_m^{u_m}$, alors

$$T\left(n',\frac{n'}{2^{u-r-2}}\right) = T\left(n',\frac{n'}{2^u}\right)^{2^r}.$$

I.3. Suite de corps cyclotomiques associée a une extension cyclique K_r

DÉFINITION:

Soit K_r une extension cyclique de degré p^r (p premier) sur Q. Pour i entre 1 et r soit K_i l'unique sous-corps de K_r de degré p^i sur Q. Soit Ω (n_i) le plus petit corps cyclotomique contenant K_i . On appellera « suite de corps cyclotomiques associée à K_r » la suite des r corps Ω (n_i).

Proposition I.2.

Soit r un entier positif et p un nombre premier impair. Soit K_r une extension cyclique de degré p^r sur Q. Soit $(\Omega(n_i))_{1 \le i \le r}$ la suite de corps cyclotomiques associée à K_r .

Alors les n_i vérifient les conditions suivantes:

1.2.A. Pour tout i de 1 à r, la décomposition de n_i en facteurs premiers est $n_i = p^{u_i} p_1 \dots p_{m_i}$; la suite $(m_i)_{1 \le i \le r}$ est non décroissante. La suite $(u_i)_{1 \le i \le r}$ est non décroissante, éventuellement nulle.

Si les u_i ne sont pas tous nuls, soit l le plus petit entier tel que $u_l \neq 0$. On a alors $u_l = 2$ et $u_{i+1} = u_i + 1$ pour tout i entre l et r - 1. I.2.B. Si $j \leq m_i$ alors $p_j \equiv 1$ (p^{r-i+1}) .

Démontrons tout d'abord le

LEMME I.1.

Soit K une extension abélienne de Q. K_r un sous-corps de K de degré p^r sur Q, cyclique sur Q; pour $1 \le i \le r$, soit K_i l'unique sous-corps de K_r de degré p^i sur Q.

Soit σ un automorphisme de K. Alors pour tout i entre 1 et r, σ^{pi} est un K_r -automorphisme si et seulement si σ est un K_{r-i} -automorphisme.

Notons S_i le sous-groupe de G(K/Q) (groupe de Galois de K sur Q), formé des K_i -automorphismes. Soit $\sigma \in S_{r-i}$; S_r est d'indice p^i dans S_{r-i} donc $\sigma^{p^i} \in S_r$. Réciproquement, si $\sigma^{p^i} \in S_r$, alors la restriction de σ à K_r , $\sigma \mid K_r$, est un élément d'ordre inférieur ou égal à p^i dans $G(K_r/Q)$. Puisque ce groupe est cyclique d'ordre p^r , $\sigma \mid K_r$ est une puissance $(p^{r-i})^{\text{eme}}$ et $\sigma \in S_{r-i}$.

Démonstration de la proposition I.2

 S_i désigne maintenant le sous-groupe de $G(n_r)$ formé des K_i -automorphismes.

Condition I.2.A. D'après la proposition I.1, les n_i sont de la forme $n_i = p^{u_i} p_1 \dots p_{m_i}$. Puisque $K_i \subset K_{i+1}$, alors $\Omega(n_i) \subseteq \Omega(n_{i+1})$ et n_i divise n_{i+1} . Les suites (u_i) et (m_i) sont donc non décroissantes.

Supposons que les u_i ne soient pas tous nuls et montrons que $u_l = 2$. Si aucun des u_i n'est nul, c'est-à-dire si l = 1 alors $u_l = 2$ est une conséquence immédiate de la proposition I.1. Si $l \ge 2$, on a donc

$$u_{l-1} = 0$$
 et $K_{l-1} \subseteq \Omega(p_1 p_2 \dots p_{m_r})$

c'est-à-dire

$$S_{l-1} \supseteq T(n_r, p_1 p_2 \dots p_{m_r}).$$

Soit $h \in T(n_r, p^2 p_1 p_2 \dots p_{m_r})$; h est une puissance $((p-1)p)^{\text{eme}}$ d'un élément τ de $T(n_r, p_1 p_2 \dots p_{m_r})$. Or $\tau \in S_{l-1}$ et d'après le lemme I.1, $\tau^p \in S_l$ donc $h \in S_l$.

On a donc

$$T(n_r, p^2 p_1 p_2 \dots p_{m_r}) \subseteq S_l$$

d'où

$$K_l \subseteq \Omega(p^2 p_1 \dots p_{m_r})$$
 et $u_l \le 2$.

D'autre part, d'après la proposition I.1, $u_l \neq 0$ implique $u_l \geq 2$.

Supposons $u_i \ge 2$ et montrons que $u_{i+1} = u_i + 1$. Cette égalité équivant aux deux relations

$$K_{i+1} \, \not\subseteq \, \Omega \left(p^{u_i} p_1 p_2 \dots p_{m_r} \right)$$

et

$$K_{i+1} \subseteq \Omega \left(p^{u_i+1} p_1 p_2 \dots p_{m_r} \right)$$

Première relation:

Supposons que

$$K_{i+1} \subseteq \Omega(p^{ui}p_1p_2 \dots p_{m_r})$$

c'est-à-dire

$$S_{i+1} \supseteq T(n_r, p^{u_i}p_1p_2 \dots p_{m_r}).$$

Soit

$$h \in T(n_r, p^{u_i-1}p_1p_2 \dots p_{m_r})$$
.

Comme $u_i \ge 2$, $h^p \in T(n_r, p^{u_i}p_1p_2 \dots p_{m_r})$ d'où $h^p \in S_{i+1}$ et $h \in S_i$ d'après le lemme I.1. Ceci prouverait que $K_i \subseteq \Omega(p^{u_i-1}p_1p_2 \dots p_{m_r})$, ce qui contredit la définition de u_i .

Deuxième relation:

On a

$$K_i \subseteq \Omega\left(p^{ui}p_1p_2 \dots p_{m_r}\right)$$

d'où

$$S_i \supseteq T(n_r, p^{u_i}p_1p_2 \dots p_{m_r})$$

et

$$S_i^{(p)} \supseteq T(n_r, p^{u_i}p_1p_2 \dots p_{m_r})^{(p)} = T(n_r, p^{u_i+1}p_1p_2 \dots p_{m_r})$$

D'autre part d'après le lemme I.1: $S_{i+1} \supseteq S_i^{(p)}$.

On a donc:

$$S_{i+1} \supseteq T(n_r, p^{u_i+1}p_1p_2 \dots p_{m_r})$$

et

$$K_{i+1} \subseteq \Omega(p^{u_i+1}p_1p_2 \dots p_{m_r})$$

Condition I.2.B. Si $j \leq m_i$, alors $K_i \not\subseteq \Omega\left(\frac{n_r}{p_j}\right)$ c'est-à-dire

$$S_i \not\equiv T\left(n_r, \frac{n_r}{p_i}\right)$$
 D'après le lemme I.1, ceci implique que

$$S_r \not\equiv T\left(n_r, \frac{n_r}{p_i}\right)^{(p^r-i)}$$
 et comme $S_r \supseteq T\left(n_r, \frac{n_r}{p_i}\right)^{(p^r)}$ on en déduit que

$$T\left(n_r, \frac{n_r}{p_j}\right)^{(p^r-i)}$$
 contient strictement $T\left(n_r, \frac{n_r}{p_j}\right)^{(p^r)}$. Or $T\left(n_r, \frac{n_r}{p_j}\right)$ est un

groupe cyclique d'ordre $p_j - 1$ et $T\left(n_r, \frac{n_r}{p_j}\right)^{(p^v)}$ est d'ordre

$$\frac{p_j-1}{PGCD(p_j-1,p^{\nu})}.$$

On a donc:

$$PGCD(p_{i}-1, p^{r}) > PGCD(p_{i}-1, p^{r-i})$$

d'où

$$p_j \equiv 1 \left(p^{r-i+1} \right)$$

Proposition I.2 bis.

Soit r un entier positif et K_r une extension cyclique de degré 2^r sur Q. Soit $(\Omega(n_i))_{1 \le i \le r}$ la suite de corps cyclotomiques associée à K_r . Alors les n_i vérifient les conditions suivantes:

I.2.A bis. Pour tout i de 1 à r, la décomposition de n_i en facteurs premiers est $n_i = 2^{u_i} p_1 p_2 \dots p_{m_i}$; la suite des $(m_i)_{1 \le i \le r}$ est non décroissante. La suite des u_i est non décroissante, éventuellement nulle. Si les u_i ne sont pas tous nuls, soit l le plus petit entier tel que $u_l \ne 0$:

— si
$$l = r$$
 alors $u_l = 2$ ou 3.

— si l < r alors $u_l = 3$ et $u_{i+1} = u_i + 1$ pour tout i tel que $r > i \ge l$.

I.2.B bis. Si
$$j \leq m_i$$
 alors $p_j \equiv 1 \ (2^{r-i+1})$.

Montrons que $u_l \leq 3$. Si l=1 c'est une conséquence immédiate de la proposition I.1 bis. Si $l \geq 2$, soit $h \in T(n_r, 2^3p_1 \dots p_{m_r})$. h est le carré d'un élément $\tau \in T(n_r, p_1 \dots p_{m_r})$.

Or $S_{l-1} \supseteq T(n_r, p_1 \dots p_{m_r})$, donc $\tau \in S_{l-1}$ et $h \in S_l$ d'après le lemme I.1. D'où:

$$T(n_r, 2^3 p_1 \dots p_{m_r}) \subseteq S_l$$
 et $K_l \subseteq \Omega(2^3 p_1 \dots p_{m_r})$.

Montrons que si l < r, alors $u_l = 3$.

En effet supposons $u_l = 2$, alors $K_l \subseteq \Omega\left(2^2p_1 \dots p_{m_r}\right)$ c'est-à-dire $S_l \supseteq T\left(n_r, 2^2p_1 \dots p_{m_r}\right)$. Or $T\left(n_r, p_1 \dots p_{m_r}\right)$ est produit direct de $T\left(n_r, 2^2p_1 \dots p_{m_r}\right)$ et d'un sous-groupe $\{1, a_0\}$ d'ordre 2. On a donc $a_0^2 = 1$ et $a_0^2 \in S_{l+1}$. D'où $a_0 \in S_l$ d'après le lemme I.1. D'où:

$$T(n_r, p_1 \dots p_{m_r}) \subseteq S_l$$
 et $K_l \subseteq \Omega(p_1 \dots p_{m_r})$

ce qui contredit la définition de l.

Pour montrer que $u_{i+1} = u_i + 1$ pour tout i entre l et r - 1, on utilise comme précédemment l'égalité:

$$T(n_r, 2^{u_i}p_1 \dots p_{m_r})^{(2)} = T(n_r, 2^{u_i+1} p_1 \dots p_{m_r})$$

La démonstration de la condition I.2.B bis est analogue à celle de la condition I.2.B.

I.4. Système de générateurs de S_r . Cas où p est impair

Si $u_r \neq 0$, $G(n_r)$ est produit direct des sous-groupes $T\left(n_r, \frac{n_r}{p^{u_r}}\right)$ et $T\left(n_r, \frac{n_r}{p_j}\right)j$ variant de 1 à m_r .

Si $u_r = 0$, $G(n_r)$ est produit direct des sous-groupes $T\left(n_r, \frac{n_r}{p_j}\right)$, j variant de 1 à m_r .

 b_0 désignera un générateur de $T\left(n_r, \frac{n_r}{p^{u_r}}\right)$ et pour tout j entre 1 et m_r , c_j un générateur de $T\left(n_r, \frac{n_r}{p_j}\right)$.