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I.2. PLUS PETIT CORPS CYCLOTOMIQUE CONTENANT UNE EXTENSION
ABELIENNE DE DEGRE p' SUR Q

ProrosiTION 1.1.

Soit » un entier positif, p un nombre premier impair, K une
extension abélienne de degré p" sur Q, Q2 (n) le plus petit corps
cyclotomique contenant K. Alors # est de la forme n = p°pp,... P
et vérifie les conditions:

— ==y 4+ I,
— 5 # 1.

— Les p; sont des nombres premiers distincts et congrus a
1 modulo p.

*) G(n) désigne le sous-groupe de G formé des puissances ne™e d’éléments de G.
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Le théoréme de Kronecker permet d’affirmer qu’il existe n' tel que
Q (n") contienne K. Soit n’ = p“pi* ... p,™ la décomposition de »’ en facteurs
premiers et soit S le sous-groupe de G (n') constitué par les K-automor-
phismes.
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1. Montrons que st p; = 1 (p), alors K < Q(
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] n, ‘ n/ ) nl
§ montrer que T(n’, T) < S; soit he T(n’, —;), puisque T(n’, u.> est
. b’ pi’ pi’

) Il est équivalent de

I d’ordre (p;—1)p{i~*, on aura donc: h®i~ urfit! o Low) (Lo désignant
f I’identité sur Q (n')). St o est la restriction de # a K, on aura également
 g(7i~ V7T = 1, Dautre part ¢” = 1 puisque K est de degré p" sur Q.
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2. Montrons que si p;=1(p), alors K = Q(
p
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. démontrer que T(n’, u,~1) c S.
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# Soit he T(n’

édonc R = 19(,,) D’ol, ¢ étant la restriction de 4 & K, o%' ' = lg.

¢ D’autre part o?” = 1, pour la méme raison que précédemment. Comme
p“‘ ! et p" sont premiers entre eux, ¢ = I et he S.

,‘i 3. Montrons que s =r + 1, c’est-a-dire, montrons que si u >r + 2
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alors K < Q< u_r_l).
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4En effet si u>r + 2, T( p“*’"1> = T(n’,;)“”“l)" ). Tout élément
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w;h eT(n', est donc une puissance (p")eme. Il en est de méme de la
‘1

srestriction de h & K qui est I'identité de K, puisque K est de degré p" sur Q.
1_‘On a donc T(n', un _1) cS.
P

J 4. Montrons enfin que s # 1.

gPour cela, montrons que si u = 1, alors K < Q(I—?-) Si u =1, alors
’ ;
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T(n’, —> a pour ordre p — 1 et comme p — 1 est premier a p", on en déduit

nl
T<n’,—> cS.
p

ProrositioN 1.1 bis.

Soit r un entier positif et K une extension abélienne de degré 2"
sur Q, Q (n) le plus petit corps cyclotomique contenant K. Alors n
est de la forme n = 2°p,p, ... p,, et vérifie la condition

— 0=s=7r + 2.

— Les p; sont des nombres premiers impairs distincts.

La démonstration est analogue a la précédente. Pour montrer que s = r + 2,
on constate que si u =r + 3 et si n’ = 2% pi* ... p,™, alors

n’ n'\?*"
T\n', o—=|=T\{n, | .
2u r 214

I.3. SUITE DE CORPS CYCLOTOMIQUES
ASSOCIEE A UNE EXTENSION CYCLIQUE K,

DEFINITION ;

Soit K, une extension cyclique de degré p" (p premier) sur Q.
Pour i entre 1 et r soit K; I’unique sous-corps de K, de degré p' sur Q.
Soit Q (n;) le plus petit corps cyclotomique contenant K ;. On appellera
« suite de corps cyclotomiques associée a K, » la suite des r corps
Q (n)).

PropoSITION 1.2.

Soit  un entier positif et p un nombre premier impair. Soit K,
une extension cyclique de degré p" sur Q. Soit (Q (n ))141 _, la suite
de corps cyclotomiques associée a K,.

Alors les n; vérifient les conditions suivantes:

1.2.A. Pour tout i de 1 a r, la décomposition de n; en facteurs
premiers est n; = p“p; ... p,,; la suite (m;); ; ., est non décrois-
sante. La suite (u;), _; , est non décroissante, éventuellement nulle.
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