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| 0. J’ai montré que si une extension K, ne vérifie pas ces conditions, on peut
f toujours obtenir une base d’entiers de K, en complétant une base des entiers
L de K._,, sous-corps de K, de degré p"~ 1, avec ¢ (p") conjugués d’un méme
entier.
Je tiens a exprimer ma profonde reconnaissance a M. le professeur
' Chatelet pour I'attention constante qu’il a manifestée a cette étude et pour
les nombreux conseils qu’il m’a donnés.

Je remercie vivement M. le professeur Parizet qui a bien voulu examiner
ce travail et faire partie du jury.

Je remercie également M. le professeur Bantegnie pour ses encoura-
“gements et M. le professeur Hellegouarch pour les entretiens qu’il a bien
}"Evoulu m’accorder lors du commencement de ce travail.
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CHAPITRE PREMIER

SUITE DE CORPS CYCLOTOMIQUES ASSOCIEE
A UNE EXTENSION CYCLIQUE DE DEGRE p" SUR Q

I.1. RAPPELS ET NOTATIONS

Le corps des rationnels sera noté Q. Si n est un entier positif et ¢ une
‘racine primitive neme de 1, Q (&) est le neme corps cyclotomique et sera noté
uQ (n). Le degré, [Q(n): Q], de Q(n) sur Q est ¢ (n), ¢ est Iindicateur
‘d Euler. Si n est impair, on a Q (n) = Q (2n); c’est le seul cas ol Q (n)
i= Q) avec n # n'.

&
— désigne I’anneau des classes résiduelles modulo » et <~> est I’en-
n n

Bsemble des classes résiduelles modulo 7, premieres avec n. Cest aussi le
boroupe multiplicatif des éléments inversibles de — .
. n

2 (n) est une extension abélienne de Q. On notera G (n) son groupe de

g . . Z\*
Galois. A tout automorphisme o de Q (1) correspond un élément de (—) ,
' n




a, défini .par o () = &% Cette correspondance est un isomorphisme de
groupes ne dépendant pas du choix de la racine primitive néme; £ On

Z *®
confondra par la suite les groupes G (n) et <—> (cf. [1] chapitre VI).
n

Définition et propriétés des sous-groupes T (n, d)

Soit d un entier divisant #n. On posera:

sk

Z 0
T(n,d) = {h,he (—) ,h =1(d)}. T (n, d) est le noyau de I’application
n

Z b3 Z K
de <—> sur <E> faisant correspondre a toute classe 2 modulo n, la classe /4,

n
@ (n)
@ (d)
Tout élément de T (n, d) laisse invariant g4 qui est une racine primitive
deme de 1. Le sous-corps de Q(n), corps fixe de T'(n, d) est donc Q2 (d).

Soient d et d’ deux entiers divisant #.

k
modulo d, contenant 4. C’est donc un sous-groupe de (—) , d’ordre
n

n

On a: T(n,d) A T(n,d’) = T(n, PPCM (d, d"))
et T(n,d).T(n,d") = T(n,PGCD(d,d")).

La premicre égalité est immédiate. On peut s’assurer de la deuxiéme en
constatant d’une part que: 7 (n,d). T(n, d") = T (n, PGCD (d, d’)) et que
d’autre part I'égalité: ¢ (d) ¢ (d') = @ (PPCM (d,d")) ¢ (PGCD (d,d")) et
T(n,d)-T(n,d") _ T(n,d")

T(n,d) - T(n,d)nT(n,d")
conclure que T (n,d) . T (n,d") et T(n, PGCD (d, d’)) ont le méme nombre
d’éléments.

On déduit de cela que:

I’'isomorphisme: permettent de

Q) nQ(n') = Q(PGCD (n,n"))
et
Q(n)-Q2(n") = Q(PPCM (n,n")).

En effet Q (n) et Q (1) sont inclus dans Q (nn"). Le sous-groupe de
G (nn") formé des Q (n)-automorphismes est 7 (nn', n). Le sous-groupe de
G (nn') formé des Q (n) N Q (n')-automorphismes est T (nn', n) . T (nn’, n')
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et de méme le sous-groupe des Q (1) . Q (n')-automorphismes est T (nn', n)
A T (nn', n'). Ceci permet de parler du plus petit corps cyclotomique conte-
nant une extension abélienne de Q.

Z *
Structure des groupes <—>
n

Soit n = pit ... pim la décomposition de n en facteurs premiers. Alors

n . .
—r—i>, [ variant de 1 a m.

i

Z *
<—) est produit direct des sous-groupes T <n,

En effet:

n n n
T<”>—r-) N I <T<n, «;—)) = T(n, —;) NT(n,pJ) = T(n,n) = 1.
p; Ty D’ Py

%k
Précisons que si & est un élément de (—) et st h = hh,...h, est sa
n

s ! " o« n X . .
M écomposition dans les sous-groupes T (n,—7>, c’est-a-dire si
I 12

i

_ n
%€ T(n, 7) on a alors &= h; (p;?).

pi'
Y n Z\*
L’application 6; de T (n, r‘> sur < r,> qui a tout €lément 4~ de
pi't p;’
| n . Z\*
T (n,l—)Tl) fait correspondre la classe A’ de <T> contenant 4 est un iso-
i pi'

morphisme et sa restriction a T(n, ﬁ) a pour image T (p;’, p;’) pour
pi 1 14

out s; compris entre 0 et r,.

: . (LN
Rappelons que si p est impair (”7) est cyclique.
p

ri
i

Si p; est impair et si 4 appartient & T <n, >, pour tout s; compris entre

L 5i—1 \ .
I et ry, hPimDP; est congru a 1| modulo pi, donc appartient 2




6

n
T

n,

n n
>. Comme d’autre part T (n, —r) est cyclique, T(n, — ) et
pi’ pi'

ri—s;
l

bi

E n )((pi— D pi)

T\n,—
p;i’

*) possédent le méme nombre d’éléments.

ri—sg
Pi

n
d’éléments de T(n, r,>.
pi’

n
T(n, , S‘> est donc lensemble des puissances ((p;—1)p;i~')eme

Z *
Rappelons que si r = 3, (57> est produit direct de { — 1,1} et de
T2,4). Sip, =2, r;,=3, posons a, = 0, 1 (=1); T(n, %) est produit

n
direct de {ay, 1} et de T(n, F) qui est cyclique. Pour tout s; entre 3

et r,, T(n, > est alors ’ensemble des puissances (25~ ?)eme d’éléments

n
2ri“Si

n : . i
de T (n, ) C’est aussi I’ensemble des puissances (25~ ?)eme d’éléments

n
de T(n, F).

I.2. PLUS PETIT CORPS CYCLOTOMIQUE CONTENANT UNE EXTENSION
ABELIENNE DE DEGRE p' SUR Q

ProrosiTION 1.1.

Soit » un entier positif, p un nombre premier impair, K une
extension abélienne de degré p" sur Q, Q2 (n) le plus petit corps
cyclotomique contenant K. Alors # est de la forme n = p°pp,... P
et vérifie les conditions:

— ==y 4+ I,
— 5 # 1.

— Les p; sont des nombres premiers distincts et congrus a
1 modulo p.

*) G(n) désigne le sous-groupe de G formé des puissances ne™e d’éléments de G.
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