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Q. J'ai montré que si une extension Kr ne vérifie pas ces conditions, on peut
toujours obtenir une base d'entiers de Kr en complétant une base des entiers

j de Kr_ t, sous-corps de Kr de degré pr~1, avec cp (pr) conjugués d'un même

entier.
Je tiens à exprimer ma profonde reconnaissance à M. le professeur

JChâtelet pour l'attention constante qu'il a manifestée à cette étude et pour
lies nombreux conseils qu'il m'a donnés.
$

Je remercie vivement M. le professeur Parizet qui a bien voulu examiner
|ce travail et faire partie du jury.
ij Je remercie également M. le professeur Bantegnie pour ses encoura-
: jgements et M. le professeur Hellegouarch pour les entretiens qu'il a bien
voulu m'accorder lors du commencement de ce travail.

Chapitre Premier

SUITE DE CORPS CYCLOTOMIQUES ASSOCIÉE
A UNE EXTENSION CYCLIQUE DE DEGRÉ pr SUR Q

1.1. Rappels et notations

Le corps des rationnels sera noté Q. Si n est un entier positif et £ une
jracine primitive neme de 1, Q (£) est le neme corps cyclotomique et sera noté
Q (n). Le degré, [Q(ri)\ Q], de Q (ri) sur Q est cp (n), cp est l'indicateur
d'Euler. Si n est impair, on a Q (ri) Q(2n)\ c'est le seul cas où Q (n)

Q (ri) avec n A ri.
Z

r /Z\*- désigne l'anneau des classes résiduelles modulo n et - | est l'en-
n \n)

semble des classes résiduelles modulo n, premières avec n. C'est aussi le

groupe multiplicatif des éléments inversibles de -n
Q (n) est une extension abélienne de Q. On notera G (n) son groupe de

Galois. A tout automorphisme g de Q (ri) correspond un élément de l —

*
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a, défini par a (£) éfi. Cette correspondance est un isomorphisme de

groupes ne dépendant pas du choix de la racine primitive neme: On

fzyconfondra par la suite les groupes G (n) et — (cf. [1] chapitre VI).

Définition et propriétés des sous-groupes T (n, d)

Soit d un entier divisant n. On posera:

fzyT (n, d) { h, h e — h ^ 1 (d) }. T (n, d) est le noyau de l'applicationw
fzy fzyde — sur — faisant correspondre à toute classe h modulo n, la classe h',
\nj \dj

fZ\* (n)
modulo d, contenant h. C'est donc un sous-groupe de — d'ordre

<

n

Tout élément de T (n, d) laisse invariant y qui est une racine primitive
deme de 1. Le sous-corps de Q(n)w corps fixe de T(n,d) est donc Q(d).

Soient d et d'deux entiers divisant n.

On a: T{n,d) n T(n,d') T(n, PPCM (d,d'))
et T(n, d) T(n, d') T(n, PGCD (d, d')).

La première égalité est immédiate. On peut s'assurer de la deuxième en

constatant d'une part que: T(;n, d). T(n, d') ^ 7(/?, PGCD {d, d')) et que
d'autre part l'égalité: cp{d)cp{d') cp [PPCM{d, d')) cp [PGCD (d, d')) et

T(n,d) - T{n,d') T(n,d')
l'isomorphisme: permettent de

T(n,d) T{n,d) nT(n,df)
conclure que T (77, d) T (77, d') et T (n, PGCD (<d, rf')) ont le même nombre
d'éléments.

On déduit de cela que:

Q(n)nQ(n') Q (PGCD (n, n'))
et

Q(n)-Q(n') Q (PPC M (77, n')).

En effet (2 (77) et Q (n) sont inclus dans Q (nn). Le sous-groupe de

G («72') formé des Q (7?)-automorphismes est T (nn\ n). Le sous-groupe de

G (nn) formé des Q (n) n Q (72')-automorphismes est T (nnf n) T (nn, n')
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et de même le sous-groupe des G (ri)(»automorph ismes est ri)

n T (nri,ri).Ceci permet de parler du plus petit corps cyclotomique contenant

une extension abélienne de Q.

/Z\*
Structure des groupes —

\n

Soit n p)' ...» la décomposition de n en facteurs premiers. Alors

est produit direct des sous-groupes variant de 1 à
n Pi 7

En effet:

n T(nA)= T[n,
1» »m \ Pi ©)

et

rir i'-%)«*• #> -

/zyPrécisons que si h est un élément de — et si h hj?2 hm est sa
\nj

n \décomposition dans les sous-groupes T [n, — c'est-à-dire si
V Vi)

% e T[ n, — on a alors A ht (jfp).
\ P?J

"\ fzYL'application 6t de Tin,— sur — qui à tout élément h de
V fi1) \PilJ

n\ (zyT\ n, — fait correspondre la classe A' de —: contenant h est un iso-
V PilJ \P?J

n \morphisme et sa restriction à Tl n, s, a pour image T(pril,psil) pour
V Pi J

out st compris entre 0 et rt.

(zyRappelons que si p est impair — est cyclique.

Si p i est impair et si h appartient à T\n, — \ pour tout st compris entre
V Pi 7

I et rh h(pi~1)pilest congru à 1 modulo donc appartient à



Tl n, —TTzrr. \ Comme d'autre part Tin, — est cyclique, T[ n, et
V Pi1 7 V Pi7 V p? si)

n \((Pi —

Tin,-—) *) possèdent le même nombre d'éléments.
V Pi1)

T[n, rt-si) est donc l'ensemble des puissances ((/?;— l)psii 1)e

d'éléments de Tin,—
PÏ.

(Z\*
Rappelons que si r 3, — est produit direct de { — 1, 1 } et de

T(2r, 4). Si pi 2, 3, posons a0
1

(— 1); T( n, — 1 est produit

direct de { a0, 1 } et de Tl n, r ,_2
J qui est cyclique. Pour tout st entre 3

et rh Tin, r ,_s. | est alors l'ensemble des puissances (2si 2)eme d'éléments

de t( n, — J. C'est aussi l'ensemble des puissances (2S* 2)eme d'éléments

n
de Tl n, —r

2r

Yri~2 )'

1.2. Plus petit corps cyclotomique contenant une extension
ABÉLIENNE DE DEGRÉ pY SUR Q

Proposition 1.1.

Soit r un entier positif, p un nombre premier impair, K une
extension abélienne de degré pr sur Q, Q (n) le plus petit corps
cyclotomique contenant K. Alors n est de la forme n PSP\P2 ••• Pm

et vérifie les conditions:

— 0 ^ s ^ r + 1.

— s ^ 1.

— Les pi sont des nombres premiers distincts et congrus à

1 modulo p.

*) G(n) désigne le sous-groupe de G formé des puissances «eme d'éléments de G.
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