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ÉTUDE ARITHMÉTIQUE DES CORPS CYCLIQUES DE DEGRÉ
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par Bernard Oriat

Table des matières

Chapitre Premier. — Suite de corps cyclotomiques associée à une

extension cyclique de degré pY sur Q.

1.1. Rappels et notations 59

1.2. Plus petit corps cyclotomique contenant une extension

abélienne de degré pY sur Q 62

1.3. Suite de corps cyclotomiques associée à une extension

cyclique Kr 64

1.4. Système de générateurs de Sr. Cas où p est impair 68

1.5. Construction d'extensions cycliques Kr de degré pY sur Q

dans le cas où p est impair 71

1.6. Système de générateurs de Sr. Cas où p — 2 72

1.7. Construction d'extensions cycliques de degré 2r sur Q 74

1.8. Nombre d'extensions associées à une même suite de corps
cyclotomiques 75

1.9. Conditions d'inclusion de Kr dans Kr> 76

Chapitre II. — Décomposition, Ramification, Discriminant.

11.1. Rappels 78

11.2. Nombres premiers ramifiés dans une extension abélienne

sur Q 80

II. 3. Décomposition d'un nombre q premier, non ramifié dans Kr 81

11.4. Indice de ramification dans une extension Kr 83

11.5. Discriminant de Kr 83

Chapitre III. — Bases d'entiers.

III. 1. Rappels 88
111.2. Bases d'entiers dans les corps cyclotomiques 88
111.3. Conditions pour qu'une extension abélienne de Q possède

une base d'entiers normale 90
111.4. Bases d'entiers dans les extensions Kr 94
III. S. Exemple 98



— 58 —

INTRODUCTION

Ce travail a pour objet l'étude arithmétique des extensions cycliques
de degré une puissance d'un nombre premier sur le corps des rationnels,
considérées comme sous-corps d'un corps cyclotomique. Le théorème de

Kronecker (dont on pourra trouver une démonstration dans Algebraic
Number Theory, J. W. S. Cassels et A. Fröhlich; chapitre VII, J. T. Tate;
Academic Press) montre en effet que toute extension abélienne du corps
des nombres rationnels est incluse dans un corps cyclotomique.

L'étude des extensions abéliennes du corps des nombres rationnels a

déjà été traitée par plusieurs auteurs, en particulier H. W. Leopoldt, Zur
Arithmetic in abelschen Zahlkörpern; Jour, reine angew. Math. 209,

pp. 54-71 (1962).
Le présent travail n'a pas pour but de démontrer des résultats

essentiellement originaux, mais de donner un exposé aussi élémentaire que
possible des propriétés les plus importantes.

J'ai supposé connu et j'ai utilisé sans les citer explicitement des résultats
concernant les propriétés élémentaires des groupes abéliens finis et la
théorie de Galois dans les extensions abéliennes finies. Dans le premier

chapitre, j'ai rappelé et employé la décomposition de en produit direct

de groupes cycliques (théorème chinois). Les propriétés des corps cyclo-
tomiques utilisées ont été mentionnées au début de chaque chapitre.

Dans le premier chapitre, j'ai associé à toute extension Kr cyclique de

degré pr sur g, la suite des plus petits corps cyclotomiques contenant
respectivement chaque sous-corps de Kr. J'ai établi les conditions que doit
vérifier une telle suite et réciproquement, j'ai obtenu toutes les extensions Kr
dont cette suite est la suite associée.

Dans le deuxième chapitre, j'ai montré que la donnée d'une suite de

corps cyclotomiques associée à une extension Kr est équivalente à la donnée

du discriminant de Kr sur Q et j'ai calculé la valeur de ce discriminant.
Dans le troisième chapitre, j'ai énoncé des conditions équivalentes

d'existence de bases d'entiers normales dans les extensions abéliennes sur

z\*
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Q. J'ai montré que si une extension Kr ne vérifie pas ces conditions, on peut
toujours obtenir une base d'entiers de Kr en complétant une base des entiers

j de Kr_ t, sous-corps de Kr de degré pr~1, avec cp (pr) conjugués d'un même

entier.
Je tiens à exprimer ma profonde reconnaissance à M. le professeur

JChâtelet pour l'attention constante qu'il a manifestée à cette étude et pour
lies nombreux conseils qu'il m'a donnés.
$

Je remercie vivement M. le professeur Parizet qui a bien voulu examiner
|ce travail et faire partie du jury.
ij Je remercie également M. le professeur Bantegnie pour ses encoura-
: jgements et M. le professeur Hellegouarch pour les entretiens qu'il a bien
voulu m'accorder lors du commencement de ce travail.

Chapitre Premier

SUITE DE CORPS CYCLOTOMIQUES ASSOCIÉE
A UNE EXTENSION CYCLIQUE DE DEGRÉ pr SUR Q

1.1. Rappels et notations

Le corps des rationnels sera noté Q. Si n est un entier positif et £ une
jracine primitive neme de 1, Q (£) est le neme corps cyclotomique et sera noté
Q (n). Le degré, [Q(ri)\ Q], de Q (ri) sur Q est cp (n), cp est l'indicateur
d'Euler. Si n est impair, on a Q (ri) Q(2n)\ c'est le seul cas où Q (n)

Q (ri) avec n A ri.
Z

r /Z\*- désigne l'anneau des classes résiduelles modulo n et - | est l'en-
n \n)

semble des classes résiduelles modulo n, premières avec n. C'est aussi le

groupe multiplicatif des éléments inversibles de -n
Q (n) est une extension abélienne de Q. On notera G (n) son groupe de

Galois. A tout automorphisme g de Q (ri) correspond un élément de l —

*
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a, défini par a (£) éfi. Cette correspondance est un isomorphisme de

groupes ne dépendant pas du choix de la racine primitive neme: On

fzyconfondra par la suite les groupes G (n) et — (cf. [1] chapitre VI).

Définition et propriétés des sous-groupes T (n, d)

Soit d un entier divisant n. On posera:

fzyT (n, d) { h, h e — h ^ 1 (d) }. T (n, d) est le noyau de l'applicationw
fzy fzyde — sur — faisant correspondre à toute classe h modulo n, la classe h',
\nj \dj

fZ\* (n)
modulo d, contenant h. C'est donc un sous-groupe de — d'ordre

<

n

Tout élément de T (n, d) laisse invariant y qui est une racine primitive
deme de 1. Le sous-corps de Q(n)w corps fixe de T(n,d) est donc Q(d).

Soient d et d'deux entiers divisant n.

On a: T{n,d) n T(n,d') T(n, PPCM (d,d'))
et T(n, d) T(n, d') T(n, PGCD (d, d')).

La première égalité est immédiate. On peut s'assurer de la deuxième en

constatant d'une part que: T(;n, d). T(n, d') ^ 7(/?, PGCD {d, d')) et que
d'autre part l'égalité: cp{d)cp{d') cp [PPCM{d, d')) cp [PGCD (d, d')) et

T(n,d) - T{n,d') T(n,d')
l'isomorphisme: permettent de

T(n,d) T{n,d) nT(n,df)
conclure que T (77, d) T (77, d') et T (n, PGCD (<d, rf')) ont le même nombre
d'éléments.

On déduit de cela que:

Q(n)nQ(n') Q (PGCD (n, n'))
et

Q(n)-Q(n') Q (PPC M (77, n')).

En effet (2 (77) et Q (n) sont inclus dans Q (nn). Le sous-groupe de

G («72') formé des Q (7?)-automorphismes est T (nn\ n). Le sous-groupe de

G (nn) formé des Q (n) n Q (72')-automorphismes est T (nnf n) T (nn, n')
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et de même le sous-groupe des G (ri)(»automorph ismes est ri)

n T (nri,ri).Ceci permet de parler du plus petit corps cyclotomique contenant

une extension abélienne de Q.

/Z\*
Structure des groupes —

\n

Soit n p)' ...» la décomposition de n en facteurs premiers. Alors

est produit direct des sous-groupes variant de 1 à
n Pi 7

En effet:

n T(nA)= T[n,
1» »m \ Pi ©)

et

rir i'-%)«*• #> -

/zyPrécisons que si h est un élément de — et si h hj?2 hm est sa
\nj

n \décomposition dans les sous-groupes T [n, — c'est-à-dire si
V Vi)

% e T[ n, — on a alors A ht (jfp).
\ P?J

"\ fzYL'application 6t de Tin,— sur — qui à tout élément h de
V fi1) \PilJ

n\ (zyT\ n, — fait correspondre la classe A' de —: contenant h est un iso-
V PilJ \P?J

n \morphisme et sa restriction à Tl n, s, a pour image T(pril,psil) pour
V Pi J

out st compris entre 0 et rt.

(zyRappelons que si p est impair — est cyclique.

Si p i est impair et si h appartient à T\n, — \ pour tout st compris entre
V Pi 7

I et rh h(pi~1)pilest congru à 1 modulo donc appartient à



Tl n, —TTzrr. \ Comme d'autre part Tin, — est cyclique, T[ n, et
V Pi1 7 V Pi7 V p? si)

n \((Pi —

Tin,-—) *) possèdent le même nombre d'éléments.
V Pi1)

T[n, rt-si) est donc l'ensemble des puissances ((/?;— l)psii 1)e

d'éléments de Tin,—
PÏ.

(Z\*
Rappelons que si r 3, — est produit direct de { — 1, 1 } et de

T(2r, 4). Si pi 2, 3, posons a0
1

(— 1); T( n, — 1 est produit

direct de { a0, 1 } et de Tl n, r ,_2
J qui est cyclique. Pour tout st entre 3

et rh Tin, r ,_s. | est alors l'ensemble des puissances (2si 2)eme d'éléments

de t( n, — J. C'est aussi l'ensemble des puissances (2S* 2)eme d'éléments

n
de Tl n, —r

2r

Yri~2 )'

1.2. Plus petit corps cyclotomique contenant une extension
ABÉLIENNE DE DEGRÉ pY SUR Q

Proposition 1.1.

Soit r un entier positif, p un nombre premier impair, K une
extension abélienne de degré pr sur Q, Q (n) le plus petit corps
cyclotomique contenant K. Alors n est de la forme n PSP\P2 ••• Pm

et vérifie les conditions:

— 0 ^ s ^ r + 1.

— s ^ 1.

— Les pi sont des nombres premiers distincts et congrus à

1 modulo p.

*) G(n) désigne le sous-groupe de G formé des puissances «eme d'éléments de G.
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Le théorème de Kronecker permet d'affirmer qu'il existe ri tel que
Q (ri) contienne K. Soit n' pup\1... p"ri1 la décomposition de ri en facteurs

premiers et soit S le sous-groupe de G {ri) constitué par les iCautomor-
phismes.

(ri \
1. Montrons que si p t ^ 1 (p), alors K ç QI — J. Il est équivalent de

/ ri \ ri \ ri \montrer que Tl n', — ^ S; soit heTl n', — puisque Tl ri, — est

\ PïJ \ Pi7 \ Pi7
d'ordre {pt— l)p"l~1, on aura donc: h(pi~1)pUil

1

lß(,0 (lß^ désignant
l'identité sur Q (ri)). Si g est la restriction de h à K, on aura également
a(pi-i)pt!1 1

_ ik D'autre part opr — 1K puisque K est de degré pr sur Q,
Comme (/?f— 1)~1 et pr sont premiers entre eux, on en déduit que
a 1K et h e S.

2. Montrons que si pt~ 1 {p), alors K ç Ql
U

Cela revient à
\PUl J

I démontrer que Tl ri, ——r ç S.
\ PT J

I / n' \
Soit heTlri,-^- j, puisque ce sous-groupe est d'ordre p"1'1, on aura

i Pi
donc hpUl — 1

ß(#l,}. D'où, a étant la restriction de h k K, apUil~l lK.

I D'autre part opT — 1^ pour la même raison que précédemment. Comme
l^"1 et pr sont premiers entre eux, g lK et he S.

I'll 3. Montrons que s + 1, c'est-à-dire, montrons que si u^r + 2

ri
I alors K c Q

pu-r-i

|En effet si u +2, ^j((p_1)pr). Tout élément

jjj/i e t{h', ^u_r_^ est donc une puissance (/)eme. Il en est de même de la

I restriction de h k K qui est l'identité de K, puisque K est de degré pr sur Q.
I ri \||On a donc Tl ri, c sI V P

i
I 4. Montrons enfin que s

|Pour cela, montrons que si u 1, alors K c ßf—\ Si u 1, alors
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Tyn', —) a pour ordre p —1 et comme — 1 est premier à pr, on en déduit

T("'-r)ES-

Proposition 1.1 bis.

Soit r un entier positif et K une extension abélienne de degré 2¥

sur Q, Q (n) le plus petit corps cyclotomique contenant K. Alors n

est de la forme n — 2S p1p2 pm et vérifie la condition

— 0 ^ s ^ r 2.

— Les pi sont des nombres premiers impairs distincts.

La démonstration est analogue à la précédente. Pour montrer que s ^ r + 2,

on constate que si u ^ r + 3 et si n' — 2U p\x alors

n' \ n'x2r
T n\ -z T n\» '2u-r-2 I \ 7

2"

1.3. Suite de corps cyclotomiques
ASSOCIÉE A UNE EXTENSION CYCLIQUE Kr

Définition:

Soit Kr une extension cyclique de degré pr (p premier) sur Q.

Pour i entre 1 et r soit K{ l'unique sous-corps de Kr de degré p1 sur Q.

Soit Q (;nt) le plus petit corps cyclotomique contenant Kt. On appellera
« suite de corps cyclotomiques associée à Kr » la suite des r corps
Q («;).

Proposition 1.2.

Soit r un entier positif et p un nombre premier impair. Soit Kr
une extension cyclique de degrépr sur Q. Soit (Q la suite

de corps cyclotomiques associée à Kr.
Alors les nt vérifient les conditions suivantes:

1.2.A. Pour tout i de 1 à r, la décomposition de nt en facteurs

premiers est ni puipt ••• p„H ; la suite (mï)\^iéâr est non décrois-

1

santé. La suite est non décroissante, éventuellement nulle.
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Si les ux ne sont pas tous nuls, soit / le plus petit entier tel que ux ^ 0.

On a alors ux 2 et ui+1 ux + 1 pour tout i entre / et r - 1.

1.2.B. Si j ^ mx alors pj 1 (pr~l+ *).

Démontrons tout d'abord le

Lemme 1.1.

Soit K une extension abélienne de Q. Kr un sous-corps de K
de degré pr sur Q, cyclique sur Q; pour 1 ^ i ^ r, soit Kt l'unique
sous-corps de Kr de degré pl sur Q.

Soit g un automorphisme de K. Alors pour tout i entre 1 et r, Gpl est

unA,.-automorphisme si et seulement si a est un A"r_rautomorphisme.

Notons Sx le sous-groupe de G(K/Q) (groupe de Galois de K sur Q),
formé des ^-automorphismes. Soit g e Sr est d'indice pl dans Sr-X
donc opl e Sr. Réciproquement, si opl e Sn alors la restriction de a à Kr,
g | Kn est un élément d'ordre inférieur ou égal à pl dans G (KJQ). Puisque
ce groupe est cyclique d'ordre pr, a\Kr est une puissance (//_I)eme et

g e Sr_ i.

Démonstration de la proposition 1.2

St désigne maintenant le sous-groupe de G (nr) formé des Krauto-
morphismes.

Condition 1.2.A. D'après la proposition 1.1, les nx sont de la forme
//. := puipi ...pmi. Puisque Kx c= Ki+1, alors Q(nx) Ç Q(ni+1) et nx divise

ni+1. Les suites (ux) et (m^) sont donc non décroissantes.

Supposons que les ux ne soient pas tous nuls et montrons que ux 2.
Si aucun des ux n'est nul, c'est-à-dire si / 1 alors ux 2 est une
conséquence immédiate de la proposition 1.1. Si / ^ 2, on a donc

«,_! 0 et Kl_1S

c'est-à-dire

Si-1 3 T{nr,plp2

Soit heT (j\,p2p1 p2-Pmr)lhest une puissance 1) p)em<> d'un élément
t de T{nnpxp2 ...pm). Or xeSl-1 et d'après le lemme 1.1, donc
h E Sx,

L'Enseignement mathém., t. XVIIF, fasc. L 5
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On a donc

T(nr,p2p1p2...pmr) S S;

d'où

Ki£Q(p2Pi et M; 2

D'autre part, d'après la proposition 1.1, iq ^ 0 implique ut^2.
Supposons ut^2 et montrons que wt-+1 u{ + 1. Cette égalité

équivaut aux deux relations

^i + l $ &(pUiPlP2

et |

Ki+1 e Q(pui+1Pi

Première relation :

Supposons que

Ki+1 s Q(puip1p2

c'est-à-dire

S,+ l 2 PUiPlPl

Soit

heT(nr,p"i~1p1p2...pmr).

Comme iq ^ 2, hp e T (nnpuip1p2 /?mr) d'où hp e Si+1 et he St d'après
le lemme 1.1. Ceci prouverait quei^ s Q (pui~1PiP2 • •• PmX ce ^ contredit
la définition de ut.

Deuxième relation :

On a

Kt E Q(p"tp1p2...Pm)
d'où

Si E T(nr, PuiP

et

s[p) E T(nr,puip1p2 ...pmr)(p)

D'autre part d'après le lemme 1.1: Si+1 E S-p\
On a donc:

S, + 1 3 T(nr,pui + 1plp2...pmr
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et

Ki + 1 £ 0(pUi + 1PiP2 •••Pm)

Condition 1.2.B. Si j^mh alors Kt $ Qy~J c'est-à-dire

Sf $ T^7r,—j D'après le lemme LI, ceci implique que

/ n Ypr_f) n \{pr)
Sr $ T(nr, — j et comme Sr 3 Tlnr9y\ on en déduit que

n Vpr-^ nr\(pr) n\
Ttnr, — \ contient strictement Tlnr,—-J Or T\nr,—J est un

/ nr\(pV)
groupe cyclique d'ordre pj — 1 et Tl nr, — J est d'ordre

Pj - 1

PGCD {pj-hp9)
On a donc:

PGCD Cpj -1, /) > PGCD (pj - 1, /-f)
d'où

Pj l(/~l + 1)

Proposition 1.2 ùw.

Soit r un entier positif et i£r une extension cyclique de degré 2r

sur g. Soit la suite de corps cyclotomiques associée

à Kr. Alors les nt vérifient les conditions suivantes:

1.2.A bis. Pour tout / de 1 à r, la décomposition de nt en
facteurs premiers est nt 2uip1p1... pmi ; la suite des est

non décroissante. La suite des ut est non décroissante, éventuellement
nulle. Si les ut ne sont pas tous nuls, soit / le plus petit entier tel que
Ui ^ 0:

— si / r alors ut — 2 ou 3.

— si / < r alors ut — 3 et ui+1 — ut + 1 pour tout i tel que
r > i^ l.

1.2.B bis. Si j ^nii alors pj 1 (2r~i+1).
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Montrons que iq 3. Si / 1 c'est une conséquence immédiate de la

proposition LI bis. Si 1 ^ 2, soit h e T(nr, 23p1 pm). h est le carré d'un
élément teT{nr,p1p„r).
Or Sl_1 ^ T{n„pi pmr),doncte,S;_xet d'après le lemme 1.1.

D'où:

T(nr, 23p1...pm)sS, et K, ^ Q(23p1 pmr)

Montrons que si 1er, alors ut 3.

En elfet supposons ut — 2, alors Kt ç Q(22pl pmr) c'est-à-dire St

3 T(nn 22p1 ...pm). Or T(nnp1...pmr) est produit direct de T(nn
22p1...pmr) et d'un sous-groupe { 1, a0 } d'ordre 2. On a donc al 1 et

öfo G Si+i- D'où a0 g St d'après le lemme 1.1. D'où:

T(nr9p1 ...pmr) s S, et Kt <= ...pmr)

ce qui contredit la définition de /.

Pour montrer que ui+l — ut + 1 pour tout i entre / et r — 1, on utilise

comme précédemment l'égalité:

T(nrI2»;Pl...P%f» T(nn2»i + 1Pl...P%)

La démonstration de la condition 1.2.B bis est analogue à celle de la
condition I.2.B.

1.4. Système de générateurs de Sr. Cas où p est impair

Si ur ^ 0, G (inr) est produit direct des sous-groupes T\nr, —
V pUr

et T\ nr, — j variant de 1 à mr.
\ PjJ

n,
Si ur 0, C(^) est produit direct des sous-groupes T nn

j variant de 1 à mr.

Pj

b0 désignera un générateur de Tlnr,-^-\ et pour tout j entre
P /

1 et mr, C: un générateur de T( nr, —
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I Proposition 1.3.

Soit Kr une extension cyclique de degré pr sur Q (p premier
j impair) et soit (Q (nj)^^,. la suite de corps cyclotomiques associée

: à Kr.

— Dans le cas ou 2 ^ ur ^5 r, il existe des nombres aj9 pour

j 0 et 2 ^ mr, tels que Sr soit engendré par:

{ c[r, cî» b0 c\U;2

oc0 vérifie la condition:

1.3.A : oc0 0 (pl~*) et a0 =}= 0 (/?').

Les ay, pour 2 j m,., vérifient la condition :

1.3.B : Si < j alors ay 0(/?l_1) et ay eJeO(j?1).

— /e cas ou ur r + 1, il existe des nombres ocj9 pour
1 ^ tels que ^ soit engendré par: { bpCj\ 1 ^mr).
Les a,-, pour 1 ^ / ±^mr, vérifient la condition I.3.B.

— Dans le cas ou ur 0, il existe des nombres ocj, pour 2

mn tels que Sr soit engendré par: { c{r, capCj\ 2 =£= mr }. Les

aj, pour 2 ^ mr, vérifient la condition 1.3. B.

Démontrons tout d'abord le lemme suivant:

j Lemme 1.2.

t; — Si ur/0, bp0r'l+1 eSr et bp0r~l $ Sr

— Si m,. < j^mtalorscf '+1
e et cf ' ^ Sr.

Supposons par exemple 2 ^ ur ^ r. On aura alors, d'après la condition
1.2.A: ur r — l + 2 et 2 ^ ^ r. Il découle de la définition de / que

c'est-à-dire:

s-2T("-f) et

j D'où ù0 e >!>,_ t et b0 é Stet l'on obtient le résultat en utilisant le lemme 1.1.
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De même, si mi_l < j ^mi alors Ki_1 ç Q\— et Kt $ Q{~ Y
\PjJ \PjJ

D'où T\ nr, — )^ Si_1 et Tl nr, — 4 St. Ce qui équivaut encore à
V PjJ \ PjJ

cjeSi_1 et CjÇSi.

Démonstration de la proposition 1.3

Soit {e0,eu emr] une base du Z-module zmr+1 et jj, l'application
Z-linéaire de zmr+1 sur G(nr) telle que p(e0) b0 et p(ei) — ct pour
tout i entre 1 et mr.

Pour tout sous-groupe S de G(nr), les groupes-quotients de zmr+1 par
pT1 (S) d'une part et de G par S d'autre part sont isomorphes. Posons

Hr fi"1 (Sr) et cherchons une base {/0,/i, *.*fmr} de Hr aussi simple

que possible.
Les conditions du lemme 1.2 sont équivalentes à:

— pr~l+1e0 eHr et pr~le0 $ Hr.

— Si m;_ < jmt alors pr~I+ e Hr et 'ej $

On peut préciser de plus, que 2 ^ / implique n1 premier à p et comme on
ne peut avoir n1 1, px divise donc n1 et m1 ^ 1. On aura donc prel e Hr
et pr-lex£Hr.
Cherchons une base de Hr\ {f0,fu ~'fmr} Pue la matrice de

(fi>ft»f2>-fnr) Par apport à {eu e0, e2, em) soit triangulaire c'est-

à-dire :

fi an ei

fj I akj ek
o <k<j

On a

_ /Zmr+1\ G(n)
DetA fil aJjICard Card —^ Pr

o<j<mr \ rir J ùr

Donc a1JL divise pr et comme d'autre part pr~1e 1 $ Hn on en déduit que
| an | Pr et | ajj | 1 pour tout j différent de 1.

On peut donc choisir axl /?**, ajj 1 et j) de la forme fj 4-

pour tout j différent de 1.

Si mi-1 < j — mh multipliant l'égalité f) — ajei + ep par pr~l+1 ou

pr~ \ on constate que ccjpr~I+ 1e1 e Hr et ocjpr~ le1 £ Hr. D'où olj 0 {pl~*)
et aj =|= 0 (p1). On obtient de même a0 0 (pl~*) et a0 =j= 0 (pl).
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L'ensemble des p (/}),y de 0 à mr, est un système de générateurs de Sr.

Dans les autres cas, on procède de la même façon: si ur r + 1, on

a / 1, bPQ e Hr et b^'1 $ Hr. On place donc b0 en premier, c'est-à-dire

que l'on cherche une base (/0,/i, — fmr) de Hr telle que la matrice A de

(/o>/i> -fmr) Par rapport à (e0, el9 e2 emr) soit triangulaire.

Remarque : Sr n'est pas en général, produit direct des sous-groupes

cycliques engendrés par chacun des générateurs obtenus.

1.5. Construction d'extensions cycliques Kr de degré pY sur Q

DANS LE CAS OÙ p EST IMPAIR

Proposition 1.4.

Réciproquement, soient p un nombre premier impair, r un entier

positif (ß une suite de corps cyclotomiques vérifiant
les conditions 1.2.A et 1.2.B.

— Si 2 ^ ur ^ r, soient des nombres a0, vérifiant la condition
1.3.A, et a,-, pour 2^;^ mr, vérifiant la condition I.3.B. Soit Sr le

sous-groupe de G (nr) engendré par: { c{\ c\°b0, c\icy9 2 mr}.

— Si ur r + 1, soient des nombres cq, pour 1 ^j^mn
vérifiant la condition I.3.B et soit Sr le sous-groupe de G (;nr) engendré

par: { bp0r,bpcy,1 ±= / ^ mr }.

— Si ur 0, soient des nombres ocj9 pour 2 mr, vérifiant
la condition I.3.B et soit Sr le sous-groupe de G (nr) engendré par:
{cf, cpCj-,2

Soit enfin, Kr le sous-corps de Q («r), corps fixe de Sr. Alors:

Kr est une extension cyclique sur Q, de degré pr. La suite de corps
cyclotomiques associée à Kr est la suite (Q (ni))1^i^r.

Supposons 2^ur^r, utilisons à nouveau l'application p de zmr+l
sur G (,nr) définie dans la démonstration précédente. Soit Hr le sous-module
de Z""+1 ayant pour base: (foJuavec/, //<?,, et f} + e,

pour tout y différent de 1. On a /( (Hr) Sr et d'autre part les conditions
1.3.A et 1.3.B impliquent que:

— pr~l+ 1e0 e Hret pr~'e0$ Hr.
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— Si mi_1 < j nÉ mi alors pr~I+ 1ej e Hr et pr~ lej £ Hr.

On en déduit tout d'abord que (p—\)pr~l+1e0eHr et compte tenu de

la condition I.2.B (pj— 1) ej g Hr pour 1 ^ mr. Le noyau de p. qui a

pour base: { (p— \)pr~l+ 1e0, (px- l)el9 (pmr — 1) emr } est donc contenu
dans Hr.

Zmr+1 G(nr)
On a donc Hr p (Sr) et est isomorphe à

H r Sr

Le degré de Kr sur g est donc égal à

fG{nr)\ fZmr+1
Card —-C Card

Sr J \ Hr

'2^mr + 1

Comme pr~ Îe1 $ Hn est donc un groupe cyclique. Kr est donc
H,-

cyclique sur g.
Soient Ht les sous-modules de zmr+1 ayant pour bases {ple1,f0,f2,

fmr }, i de 1 à r. Soient St les sous-groupes de G (nr) définis par St p (Ht)
et Kt les sous-corps de Q (nr) corps fixes de chacun des St.

Pour tout / de l à r, Ht contient Hn donc Kt est un sous-corps de Kr.
L'indice de Hr dans Ht est pr~ \ donc Kt est le sous-corps de Kr de degré p1

sur g.
On a pr~l+1e0eHr et pr~le0$Hr. D'où bp0r

1+1
g Sr et ègr

1

$ Sr. Donc

$ Sr d'où Kr $ Q —

_
\P

De même si < j ^ mi9 on a alors cf 1

g Sr et cf
1

<£ Sn et compte
tenu du lemme 1.1, Cj e 1 et Cj £ Sh c'est-à-dire:

r —r jt

b(0p-^r-ltSr, T(nr,^j

«i-iSûÇ) et Ki$Q{~

(Q (ni))1^i^r est donc la suite de corps cyclotomiques associée à Kr.
Dans les cas ur 0 et ur r + 1, la démonstration est analogue.

1.6. Système de générateurs de Sr. Cas où p 2

Si Kr est une extension de degré 2r sur g, cyclique sur g, on peut de la

même façon donner un système de générateurs du sous-groupe Sr de G
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On notera comme précédemment c} un générateur de Tyir, — J

n>
Si ur 0, G(nr) est produit direct des sous-groupes Tytr,—

j variant de 1 à mr.

Si ur ^ 2, a0 désigne l'élément de T^nr, tel que a0 — 1 (2Ur).

Si ur 2, a0 engendre T^nr,~^j et G (jir) est produit direct de

T\ nry — J et des sous-groupes T\ nry — j de 1 à mr.
\ 4 / V PjJ

Si ur^ 3, est produit direct de { a0, 1 } et de

T\nr, ur~2 f

On notera a0 un générateur de T\ nr, ^ G {nr) est alors
' 2Ur~2

produit direct des sous-groupes cycliques :

{«0,1}, 7"(v2 et

j variant de 1 à mr.

Proposition 1.3 bis

Soit Kr une extension cyclique de degré 2r sur g, et soit
(ß («;)) i^ j-^r ^ suite de corps cyclotomiques associée a Kr.

— Dans le cas où 2 ^ur + 1, il existe des nombres a0, a0, ajy
pour 2 ^ y ±= rar, tels que soit engendré par:

{ cjr, c^ao,2 -= / wr }.

a0 vérifie la condition: a0 0 (2r~ ').

a0 vérifie la condition:

1.3.A bis : a'00 (2'~ et cc0 ^ 0 (2').

Les ctj, pour 2 —j —mnvérifientla condition:
1.3.B bis : Si mi_1< j -2 m u alors a;ss 0(2'' et ay ^ 0 (2').
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— Dans le cas où ur r + 2, il existe des nombres otj9 pour
mn tels que Sr soit engendré par: { a0a°a0, aftcj] 1 y

— mr }•

a0 vérifie la condition: a0 ees 0 (2r~1).
Les a,-, pour 1 ^ mn vérifient la condition 1.3.B bis.

— fe c&y où w,. 2, il existe des nombres a /5 pour 2 ^ /
^ m,., vérifiant la condition 1.3.B bis et tels que Sr soit engendré par:
{ c*r~1a0,cpcj-,2-Sj-=mr}.

— Dans le cas où ur 0, il existe des nombres oq, pour 2 ^j
^ mr, vérifiant la condition 1.3.B bis et tels que Sr soit engendré par:
{ cf,c'JCj;2 j ^ mr

On démontre tout d'abord le lemme suivant:

Lemme 1.2 bis

,2r~l+1 ,2r~l
Dans le cas où ur ^ 3, a0 =1 et a0 $ Sr.

Dans le cas où ur 2, a0 $ Sr.

~. 2r~~î+ 1 r-f 2r~i I r-fSi 77 z
£ _ jl < j d^nii alors c,- e Sr et c} f Sr.

En effet si ur ^ 3, la condition 1.2.A bis implique ur r — l + 3. 2r~l+1
,2r~l

est donc de l'ordre de a0 et d'autre part, si a0 e Sr, alors:

DV* *, o (*) e, û <„J ne serai. paS ,e p,„s pe„. corps c,cl„,oq„e
/nt

contenant Kr. De même si ur 2 et a0 e Sr alors on aurait Kr ç Q —

Le reste de la démonstration est identique à la démonstration de 1.3.

1.7. Construction d'extensions cycliques de degré 2r sur Q

Proposition 1.4 bis

Réciproquement, soit r un entier positif et (ß (7zf))1;£Éi^r une
suite de corps cyclotomiques vérifiant les conditions 1.2.A bis et
1.2.B bis.

— Si 3 ^ ur ^ r + 1, soient des nombres: a0 0 (2r~x), oc'0,

vérifiant I.3.A bis, aj9 pour 2 vérifiant 1.3.B to. Soit Sr
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le sous-groupe de G nr)engendré par :

{ cf, c"°a0, toc,-; 2 ^y ^ m, }.

— Si ur r + 2, soient des nombres a0 0(2r_1) et ccj,

pour 1 ^y ^ mr vérifiant I.3.B bis. Soit Sr le sous-groupe de G (nr)

engendré par: { ß0a°ßo> ao"Jcjl 1 —j — mr}•
— Si ur 2, soient des nombres a,-, pour 2 —y — wr, vérifiant

1.3.B to. Soit S,, le sous-groupe de G (nr) engendré par:
{ c*hy, 2 ^y mr }.

— Si ur — 0, soient des nombres oy, pour 2 ^y ^ mr,
vérifiant I.3.B bis. Soit Sr le sous-groupe de G (nr) engendré par:

{ c¥cj\ 2 — j — mr }.
Soit enfin, Kr le sous-corps de Q (;nr), corps fixe de Sr. Alors :

Kr est une extension cyclique sur g, de degré 21. La suite de corps
cyclotomiques associée à Kr est la suite (Q (ni))1^i^r.

1.8. Nombre d'extensions associées a une même suite
DE CORPS CYCLOTOMIQUES

Proposition 1.5.

Soit p un nombre premier impair et (£2 0? une suite

de corps cyclotomiques vérifiant les conditions 1.2.A et I.2.B. Le

nombre d'extensions Kr de degré pr sur Q, cycliques sur Q, admettant
la suite (£2 (ni))1 comme suite de corps cyclotomiques associée

est:

— Dans le cas où 2 ^ ur ^ r :

cp(pr-l + 1)(p(pr)mi~'1 n (p(pr~i+i)mi~mi~1
2 < i < r

j — Dans le cas où ur r + 1, et en posant m0 — 0:

1 <i<r

— Dans le cas où ur 0:

2 <i<r

Si par exemple, 2 ur ^ r, on peut remplacer dans le système de
générateurs de Sr donné en 1.3, par to+/co/,rZ?0, c*2c2 par c*2+k2prc2, et
choisir ainsi des at-, compris entre 0 et pr. Vérifiant cette condition
supplémentaire, les valeurs de oq sont alors déterminées de façon unique par le
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choix d'un sous-groupe Sr. Il suffit alors de chercher le nombre de valeurs

que peuvent prendre les ocj vérifiant cette condition, 1.3.A et 1.3.B.

Proposition 1.5 bis.

Etant donnée une suite de corps cyclotomiques (Q (ni))1^i^r
vérifiant les conditions I.2.A bis et I.2.B bis, le nombre d'extensions

Kn de degré 2r sur Q, cycliques sur Q, admettant comme suite de corps
cyclotomiques associée, la suite (Q (ni))l^i^r est:

— Dans le cas où 3 ^ ur r + 1 :

2r-i+i Y\
2 <i<r

— Dans le cas où ur r + 2, en posant m0 — 0:

l<i<r

— Dans le cas où ur 0 ou 2:

2(r i)(mi — i) JQ 2^r~i^mi~mi~^
2 < i < r

1.9. Conditions d'inclusion de Kr dans Kr.

Proposition 1.6.

Soit Kr une extension cyclique de degré pr sur Q (p premier
impair). Soit (Q la suite de corps cyclotomiques associée

à Kr et soit r' un entier strictement supérieur à r.

Il existe une extension Kr> cyclique de degré pr' sur g, contenant

Kr, si et seulement si la suite (ß vérifie la condition:

1.6.A : Pour tout / de 1 à r et tout j ^ mb pj 1 (pr'~l+ *).

Compte tenu de 1.2.B, la condition 1.6.A est nécessaire.

Pour montrer qu'elle est suffisante, construisons une extension Kr,
contenant Kr.

Plaçons-nous dans le cas où 2 ^ ur ^ r et posons n[ nt pour 1 ^ i

^ r et n'i pl~rnr pour r < i ^r'. La suite (û (n-))1^i^ vérifie alors

les conditions I.2.A et I.2.B.
Soit re la surjection de G (nr) sur G (nr) qui à toute classe modulo nr>

fait correspondre la classe modulo nr qui la contient. C'est aussi l'application
qui à tout automorphisme de Q {n 'r) fait correspondre sa restriction ?iQ(nr).
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Soient b0,c\,c2,... cmr des générateurs des sous-groupes

et soit
b0 71 (b0) Cl 71 (Ci) Cmr 71 (cmr).

Alors b0, cu cmr sont des générateurs de

Soit Sr le sous-groupe de G (nr) admettant Kr comme corps fixe. D'après la

proposition 1.3, il existe a0, a2, oeWr vérifiant 1.3.A et I.3.B et tels que Sr

soit engendré par:
{ cï ci° b0, cp cj; 2 ^ mr }

Soit S'r, le sous-groupe de G (nr) engendré par: { c[pT\ c'^bQ, c*icj\ 2 ^
j ^mr) et soit Kr, le sous-corps de Q (nr) corps fixe de SrD'après la

proposition 1.4, Kr, est une extension cyclique de degré pr' de Q.

D'autre part, on vérifie que iz (S'r>) c= Sr qui prouve que Kr> contient Kr.

Remarque : On a construit, en fait, plusieurs extensions Kr, contenant
Kr. Sr étant donné, les af ne sont déterminés que modulo pr et si l'on
remplace par a- tel que a- (pr) et at- ^ a- (pr') on obtiendra un autre

sous-groupe 5^.
Dans le cas où ur r + 1, la démonstration est analogue.
Dans le cas où ur 0, on pose simplement nt — nr pour tout / entre

r et r' et l'application ti est alors l'identité.

Proposition 1.6 bis.

Soit Kr une extension cyclique de degré T sur Q, (Q (ni))1^i^r
la suite de corps cyclotomiques associée à Kr et soit r' un entier
strictement supérieur à r. Il existe une extension Kr, cyclique de degré 2r'

sur g, contenant Kr si et seulement si:

1.6.A bis : Pour tout i de 1 à r et tout j ^ mb p} 1 (2r'~i+1).
1.6.B bis : Kr est réelle.

1.6.A bis s'obtient à partir de I.2.B bis.
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D'autre part il est nécessaire que Kr soit réelle car: (—l)2 1 e Sr,

implique, d'après le lemme 1.1, — 1 e St pour tout i < r\ Donc tous les

sous-corps stricts de Kr, sont réels.

Pour démontrer la réciproque, on peut remarquer que:
nr\

si ur 0,-1 se décompose dans les sous-groupes T[ nr, — de la façon
Pj.

suivante :

pj-1
-1 n

1 <j<mr

On déduit de la condition I.6.A bis que si j ^ mh alors Pj 0 (2r *+ *)

Pj'1
et compte tenu du lemme 1.2 bis, Cj

2 e Sr. Donc — 1 e Sr et Kr est réelle.

Donc si ur — 0,1.6.B bis est une conséquence de 1.6.A bis et on démontre
l'existence de Kr, comme précédemment.

Si maintenant ur^. 2, — 1 se décompose dans T\ nr, — et T\ nr, —
\ 2"7 V Pj.

sous la forme:
pj-1

- 1 a0n1 <j<mr
Pj-1

La condition 1.6.A bis implique donc comme précédemment, que Cj
2

e Sr d'où — a0 g Sr.

Si ur — 2, a0 $ Sr (lemme 1.2 bis) donc les conditions 1.6.A bis et 1.6.B bis

sont incompatibles.
Si ur ^ 3, les conditions 1.6.A bis et I.6.B bis impliquent donc a0 e Sr,

d'où a0 0 (2r).

On termine la démonstration comme précédemment.

Chapitre II

DÉCOMPOSITION, RAMIFICATION, DISCRIMINANT

II. 1. Rappels

Soient K et K' deux corps de nombres, K' étant abélien sur K. Soient

A et A' leurs anneaux d'entiers respectifs et p un idéal premier de A. pA'
se décompose en idéaux premiers de Ä sous la forme: pA' J~[ pv)e

1



— 79 —

et pour tout v de 1 à g, — a pour dimension / sur —. / est le degré résiduel
Pi; P

de sur K et e l'indice de ramification de pv sur K (ou de p dans K'). On

a les relations:

ef9 [K':K] et NK'iK(pv) p^

Les py, 1 ^ v ^ g, sont exactement les idéaux premiers de Ä contenant p.

Soit G (.K'jK) le groupe de Galois de K' sur K. L'ensemble des a de

G {K'jK) tel que a (p„) pv est un sous-groupe de G {K'jK) ne dépendant

pas de v et appelé groupe de décomposition de pv sur K (ou de p dansiC).
Son cardinal est égal à ef S'il est égal à 1, on dit que p se décompose complètement

dans K'.
L'ensemble des a de G {K'jK) tel que a (x) — x appartienne à pv pour tout
x de A\ est un sous-groupe de G (.K'jK) ne dépendant pas de v et appelé

groupe d'inertie de py sur K (ou de p dans K').
Son cardinal est égal k e. p est dit ramifié dans K' si e ^ 2 ([1] chapitre 5;

[2] chapitre 5).

Soit K" un corps de nombres, contenant K' et abélien sur K, et soit^4"

son anneau d'entiers. Si yvA" se décompose en idéaux premiers de A"
sous la forme: Py^t" VwY et sif désigne le degré résiduel de

Pyy, sur K\ les quantités eg\f sont les mêmes pour tout v entre 1 et g.
L'indice de ramification de p dans K" est ee' et son degré résiduel ff'. Si

D est le groupe de décomposition de pvv, sur Ketn l'application de G (.K"jK)
sur G {K'/K) qui à tout automorphisme de K" fait correspondre sa restriction
à K\ alors D n G(K"/K') est le groupe de décomposition de Pyy, sur K'
et n (D) est le groupe de décomposition de pv sur K. On a un résultat analogue
avec les groupes d'inertie ([3] chapitre 1).

On appelle corps de décomposition de p dans K' le sous-corps de K'
laissé invariant par les éléments du groupe de décomposition de p dansiG.
C'est le plus grand corps, compris entre K et K\ dans lequel p se décompose
complètement. De même le corps d'inertie de p dans K' est le sous-corps de

K' laissé invariant par les éléments du groupe d'inertie de p dans K'. C'est
le plus grand corps compris entre K et K', dans lequel p ne se ramifie pas
([4] chapitre 2).

Différente : L'ensemble des x de K' tels que TrK,/K (xA') ç A, est un
idéal fractionnaire de K' dont l'inverse est la différente de K' sur K notée
SK,/K. Elle est engendrée par les F' (x), où x parcourt A' et F désigne le

polynome minimal de x sur K. Si pt pm sont les idéaux de A' ramifiés
sur K, alors :
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Ök'/K — 0 Po" •

1 < v < m

Si ev est l'indice de ramification de pv sur Kon a: hv ^ ev — 1 et hv ev — 1

si et seulement si ev est premier avec la caractéristique du corps — Le dis-
Vv

criminant de K' sur K est NK>/K (SK'/K) et on a la formule de transitivité :

ôK"/k SK„/K,ÔK./K([2] chapitre 4, [5] chapitre 3).

Corps cyclotomiques : Dans un corps cyclotomique Q (ps), (p premier)
p est leur seul nombre premier ramifié et: p (1 — çy(ps\ ç désignant une
racine primitive (ps)eme de 1, est la décomposition de p en idéaux premiers
de Q, (ps).

p est ramifié dans un corps cyclotomique Q (n) si et seulement si p divise n.
Si n s'écrit: n ps n avec n premier avec p, alors le corps d'inertie de p
dans Q (ri) est Q (n) et l'indice de ramification de p dans Q (ri) est cp (ps).
Si q est premier avec ny la classe de q modulo n est l'automorphisme de

Frcebenius, et elle engendre dans G (ri) le groupe de décomposition de q

dans Q (ri). Le degré résiduel de q dans Q (n) est donc le plus petit entier /
tel que: qf 1 (77).

Si £ est une racine primitive /7eme de 1, { 1, 4 ••• 4~?(n)_1 } est une base

de l'anneau des entiers de Q (ri) sur Z. Le discriminant de Q (n) sur Q est:

<P(n)

n p'-1

ce dernier produit étant étendu à tous les nombres premiers p divisant n

([5] chapitre 4).

II.2. Nombres premiers ramifiés dans une extension abélienne de Q

Lemme II.l.

Soient K une extension abélienne de Q et Q (ri) le plus petit corps
cyclotomique contenant K. Alors un nombre premier p se ramifie
dans K si et seulement s'il divise n.

Si p est ramifié dans K, alors il est ramifié dans tout surcorps de K,
donc dans Q (ri) et il divise n.

Réciproquement, si p divise 77, posons n ps ri, avec ri premier avec p.
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Alors le corps d'inertie de p dans Q (n) est Q {n') et son groupe d'inertie

T(n,n').
Soit n l'application canonique de G (ri) sur G(K/Q) qui à tout automor-

phisme de Ü (n) fait correspondre sa restriction à K. % a pour noyau
G (Q(n)!K) et comme Q (n) est le plus petit corps cyclotomique contenant K,

on a donc:

Q (n) $ K c'est-à-dire T {n, n) $ G(a (n)/K)

7i (T (n, n qui est le groupe d'inertie de p dans K, n'est donc pas réduit à

l'identité et p se ramifie dans K.

IL3. Décomposition d'un nombre q premier, non ramifié dans Kr

Kr désigne une extension cyclique de degré pr sur Q (p premier) et

(0 (n {)) i^j^r la suite de corps cyclotomiques associée. Les notations
restent les mêmes qu'au premier chapitre, q est un nombre premier non
ramifié dans Kn c'est-à-dire d'après le lemme précédent, premier avec nr.

Si p est impair et suivant que ur 0 ou ur ^ 2,

soit qEE c^cf2... cir(nr)
ou q ...cßmr

la décomposition de q dans G (nr).

On posera alors:

— Si

2 ^ ur^r :V(q)cc0ß0 + £ oc/,. - ßt
2 < j < m r

— Si

m, r + 1 : V(q) £ cc/; - ß0
1 < j < m r

— Si

ur0 : V(q) E «A - ßi
2<j<mr

De même si p2 et suivant que ur 0, ou ur 2, ou ur ^ 3, soit

qcî' c22 ••• Cmr(nr)OUq aß0°cll ...cßmr(nr)
ou

q a^a'/oc^ ...cßm^{nr)
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la décomposition de q dans G (nr). On posera alors :

— Si

Si

- Si

Si

3^,^ + 1: V(q)a0ß0 + a'0ß'0 + £ a/,. - ßt
2 < j <mr

r + 2 : V(q) £ a - ß'0
0 <j<mr

ur 2 :V(q)=2'~1ß0 +£
2 <j<mr

Ur o : V(q)X -
2 < j <mr

Proposition II. 1.

Soient Kr une extension cyclique de degré pr sur Q et q un nombre
premier, ne divisant pas nr. Alors la décomposition de q en idéaux

premiers de Kr est de la forme:

« n
1 <v<gq

et gq est le PGCD de pr et de V (q).

Le groupe de décomposition de q dans Q (nr) est le sous-groupe de

G (nr) engendré par la classe de q modulo nr et la restriction de g, considéré

comme automorphisme de Q (nr), à Kr engendre le groupe de décomposition
de q dans Kr.

Le degré résiduel fq de q dans Kr est donc l'ordre de q Sr dans —. Suppo-
Sr

sons par exemple p impair et 2 ur r et considérons alors:

's {c\»b0y°(c\*c2p...(c«rr

- hßo/W+fif»!rßmr— ü0 C1 c2 •" cmr r

D'après la proposition 1.3, s e Sr et l'on a modulo nr\

ç/7-l _ pV(q)sq — cl

V( G(nr)
fq est donc égal à l'ordre de cx

Kq) Sr dans —— et comme l'ordre de ctSr
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est pr (lemme 1.2), on a donc:

Pr
f" PGCD(pr,V))

et

gq PGCD(f, V(q)).

II.4. Indice de ramification dans une extension Kr

Proposition II.2.

Soient Kr une extension cyclique de degré pr sur Q et

(ß la suite de corps cyclotomiques associée à Kr. Pour

tout i de 1 à r et toutj tel que mi_1 < j m h l'indice de ramification
de pj dans Kr est pr~I+
Si ur ^ 0, l'indice de ramification de p dans Kr est pr~l+1.

Soit j tel que mt_ 1 < j mt. p} divise donc nt et ne divise pas
C'est-à-dire que pj se ramifie dans Q (n t) et ne se ramifie pas dans Q (/?;_ J.
D'après le lemme II. 1, ceci implique que pj se ramifie dans Kt et ne se ramifie

pas dans Ki_1. Ki_1 est donc le corps d'inertie de pj dans Kr et l'indice de

ramification de pj dans Kr est égal à: [Kr : J.
De même si ur ^ 0, est le corps d'inertie de p dans Kr.

II.5. Discriminant de Kr

Proposition II.3.

Kr est une extension cyclique de degré// sur Q et (Q
la suite de corps cyclotomiques associée. Le discriminant de Kr
sur Q est:

— Dans le cas où ur — 0:

n n
1 <i<r

— Dans le cas où p est impair et ur ^ 2 :

ppl-1((.r-l + 2)pl-'+l-P-p/"1-! TT T-T

1<i <r
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— Dans le cas où p 2 et nr 2 :

i2'nn ;
1 <i<r mi_1<j<mi

— Dans le cas où p — 2 et ur 3 :

22Z~ 1((r-l + 2)2r~ l+1-l) J-J J-J p2l~ 1(2r~i+1-l)
1 <i<r nt-_ ^<j< mj

Supposons tout d'abord ur — 0. Désignons par A l'anneau des entiers
de Kr. Pour tout j de 1 à mr soit pjA J~] pe/v la décomposition de

1 —9j
PjA dans Kr et soit fj le degré résiduel de pj dans Kr. Les pj étant les seuls

nombres premiers ramifiés dans Kr et leurs indices de ramification ej étant
premiers à pf, la différente 5 de Kr sur Q est: ]

«5 n n
lmj<mr i<v<gj

Le déterminant Df, de Kr sur g, est donc D NK}./q (<5) comme
NKriQ (Pje) Pfj on obtient:

D n pfjjgj(-ej~i)
1 <j<mr

qui s'écrit également:

dn n
1 <i<r mi_1<j<mi

Si mi_1 < j ^ mb alors ej pr~l+1 d'après la proposition II.2 et comme

ejfjgj pr, on obtient le résultat annoncé.

Supposons maintenant p impair et ur =± 2.

Dans ce cas ur et / sont liés par la relation ur r — l -f 2. On notera
toujours D le discriminant de Kr sur g et on introduit la décomposition
ô ô0... ôntr de la différente de Kr sur g, en idéaux: <50, <51? ômr, \

tels que D0 NKr!Q (ô0) soit une puissance de /? et tels que Dj NKrjQ (ôj)
soit une puissance de pj. D s'écrira alors D D0DX Dmr. Le calcul de

D\D2 Dmr s'effectue comme dans la démonstration précédente. Pour [

calculer D0, on introduit la différente d'de Q (nr) sur Kr décomposée de la j

même façon en ô' — ô0ô[ ômr et D" D0D[ Dmr le discriminant de |

Q (nr) sur g.
La formule de transitivité sur les différentes donne: j

Do — Nn(nr)!Q (^O^o) ^Q(nr) /Q (^o) N KrIQ (^0 ^"r)'Kr^) j
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* <p(»r)

Do — NQ(nr)/Q(ö0) D0 p

Calcul de NQ(nr)IQ (8'0):

Soient A et An les anneaux d'entiers respectifs de Kr et Q (nr) et soit pA

[] py la décomposition de pA dans Kr et / le degré résiduel de p

dans Kr. Soient:

VvAq fi Vv* décomposition de pvAQ dans Q (nr) et /' le degré
i ^==.v

^ ^ ^ i
résiduel de p„ dans Q (nr). L'indice de ramification de dans Kr est

(proposition II.2) et puisque l'indice de ramification de p dans Q (iir)

est cp (pu0 (p-1) Pr~l+1,ona donc I et est premier à p.

On en déduit que:
&'o n yip

l<v<g
1 <v'<g'

et comme Nainr)ia(pvv,) on aura donc:

(p-2)(p(nr)

at (X'\ - nff'gg'iP-2) _ n{p-i)pr~l+1
iVß(»r)/Q - P — P

D'autre part on a D0 p^{,lr) (r~l + 2~ ^7) d'où l'égalité:

(p-2)(p(nr) <p(nr)

pH*r)(r-l+ 2-PPp(P-^Pr'l+1D0 "r

dont on extrait la valeur de D0.

Dans le cas p — 2 et ur — 2; gardant les mêmes notations on a e' 1

et ~ 1. On utilise alors comme précédemment la valeur D0 2cp("r).

Supposons maintenant p 2 et ur 3 :

On garde les mêmes notations que précédemment. On a cette fois: ur r
— / + 3 et l'indice de ramification ee' de 2 dans Q (nr) est maintenant
2r~l+2 d'où e' 2. ô0 ne peut donc être obtenue comme précédemment.
On introduit un corps E compris entre Kr et Q (nr) de la façon suivante:

reprenant les notations introduites dans la proposition 1.3 bis posons:
«Q

h a'021
1

a0 et S { h, 1 }

h est d'ordre 2, S est donc un sous-groupe de G (/?,.). Dans le cas où / 1,

c'est-à-dire ur r -f 2, il apparaît immédiatement que S est inclus dans Sr.
Si / ^ 2, c'est-à-dire si 3 ^ ur ^ r + 1 on constate que:
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D'où

a0
y—j-+ l ]a0 0(2r) et qu'il existe donc un entier ß tel que:

-y^Y + l J a0 + 2r ß - pi - 1

Oo_

l-lh (c^do)2 c«ßa0 cX ß

qui montre que S est inclus dans Sr. E désigne le corps fixe de S, E contient
donc Kr.

Le groupe d'inertie de 2 dans Q (nt) est T^nr, le groupe d'inertie

de py{;, sur E sera donc T^nr, n s S. py n'est donc pas ramifié dans

E et la différente de E sur Kr est première avec 2.

Si D' est le discriminant de E sur Q, et Dq la plus grande puissance de 2

divisant D\ on aura alors:
<?Or)

D0 NE/q{Ôo) NE/Kr(D0) D0
2

Il reste à calculer D0. Pour cela introduisons AE l'anneau des entiers
de E et £ une racine primitive (nr)eme de 1. A partir de l'égalité : £2 — Çh+1

+ (Ç + X) Ç, on constate par récurrence sur t que X peut toujours se mettre
sous la forme a + bÇ, avec a et b dans AE. Comme { 1, £,

1

}
est une base des entiers de Q (nr) sur Z, on en déduit que { 1, Ç } est une
base des entiers de Q (nr) sur AE. Le polynome X2 — (X + X) X + Çh + 1

est le polynome minimal de £ sur E et la différente ô" de Q (nr) sur E sera

donc l'idéal engendré par £ — Çh-

La formule de transitivité sur les différentes appliquée entre Q, E et

Q (nr) va donner:

D"ö'[ß("r):E]iV0(„r)/ß(«5") D'2Nn(„r)jQ(ô")

Pour obtenir la valeur de NQ(nr)/Q (ô"), montrons que X~1 est une racine

primitive (2r-*+2)eme de 1. En effet:

h e t[ nr, — \ donc h — 1 0 — et d'autre part, h étant premier à 2,
2ur J \2Ul

on a h — 1 se 0 (2).
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Mais h - 1 ^ 0(4), sinon h appartiendrait à T^nr, et ce sous"

groupe est engendré par a0.

On a donc finalement

h - 1 s et 1 * °(p^)
On en déduit que

NQ(2r~l + 2)/Q (1 ~~ Çh X) — 2

et
<P("r)

K^rvai*")22""i+1
•

Comme D0 est égal à 29("r)(r~!+2), on en déduit les égalités:

(p(nr) fflOr) <P("r)

2<P{nr)(r-l + 2) p ,2
_

22 " ' +1 =2) 2" 22"_/+1

D'où l'on déduit la valeur de D0.

Proposition II.4.

Le discriminant de Kr, extension cyclique de degré pr sur g,
ne dépend que de la suite de corps cyclotomiques associée à Kr.

Réciproquement, si deux extensions cycliques de degré pr sur g, ont
même discriminant sur g, alors leurs suites de corps cyclotomiques
sont égales.

C'est une conséquence de la proposition II.3.

Précisons pour la réciproque, que si Kr est une extension cyclique de degré

pr sur g (p premier, par exemple) et si l'on connaît son discriminant D
sur g, alors les nombres premiers divisant nr sont exactement ceux qui
divisent D. L'exposant de p} dans la décomposition de D en facteurs
premiers n'est pas divisible par pl si et seulement si c'est-à-dire si et
seulement si p} divise n f. Ceci permet de préciser quels sont les diviseurs de

nt distincts de p. Si p ne divise pas D, on a ur 0 et alors tous les ut sont
pV-l+l |

nuls. Si p divise D, et comme (r — l + 2) pr~l + 1
— - — 1 est

P ~ 1

premier à p, on obtient, à partir de la valeur de l'exposant de p dans la
décomposition de D, la valeur de /, donc la suite (w/)i^i£^
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Chapitre III

BASES D'ENTIERS

III. 1. Rappels

Bases d'entiers normales

Soit K une extension abélienne de Q. On dit qu'un élément 9 de K
engendre une base normale des entiers de K si l'anneau des entiers de K
admet pour base, sur Z, l'ensemble des conjugués de 6.

Si K possède une base d'entiers normale, engendrée par 9, alors :

— Tout sous-corps L de K possède également une base d'entiers normale
engendrée par TrKjL (9).

En effet, tout entier x de L, s'écrit:

x J] ^ (0), appartenant à Z.
a e G (K/q)

Puisque x est invariant par tout L-automorphisme de K, alors Xa Xa,

pour tous a et g' situés dans la même classe modulo G(k/l)-
— La trace de 9 sur Q est égale à + 1.

En effet Z n'a pas d'autre base d'entiers que { 1 } ou { — 1 }.

Corps cyclotomiques

Ç étant une racine primitive neme de 1, on notera <Pn (Z) le 7?emepolynome

cyclotomique, c'est-à-dire le polynome minimal de £ sur Q. On rappelle
qu'on a la relation: X" — 1 *= $k (Z).

k\n

Si 77 p\x... pumm est la décomposition de n en facteurs premiers, on a:

([6] chapitre 8).

III.2. Bases d'entiers dans les corps cyclotomiques

Lemme III. 1.

Soit d un entier sans facteur carré et £ une racine primitive deme

de 1. On a alors TrQ(d)/0 (£) (— l)m, m étant le nombre de facteurs

premiers de d.



Xd - 1

On peut raisonner par récurrence sur m, en utilisant :
j-| (pk
k\d
kïd

Pour tout diviseur k de dsoitmk le nombre de facteurs premiers de

D'après l'hypothèse de récurrence, les <Pk sont de la forme:

et n sem f°rme-
k\d
kïd

xv(d)-d _ sX<Hd)-d-i+ _ avec s £ (-l)mfc.
k\d

k + d

Comme le nombre de diviseurs k de d, possédant mk facteurs premiers est

Ck, on aura donc:

5= X (-iyci
0 < j < m — 1

<Pd sera donc de la forme:

X<P(d) _ 1 -j-

Lemme III.2.

Soient n et d deux entiers tels que d soit sans facteur carré et

premier avec n. Soit £ une racine primitive (nd)eme de 1. Soient F
l'ensemble des racines primitives (nd)eme de 1 et F" l'ensemble des

tels que: 0 ^b < (p (nd) et PGCD (b, n) A 1.

Alors le module engendré sur Z par F U F" est l'anneau des

entiers de Q (nd).

Comme { 1, Ç, £2?..., ^(nd)-i j eS£ une base l'anneau des entiers de

Q (nd), il suffit de montrer que si c est premier avec n et non premier avec d,

alors £c appartient au module engendré par F.
nd

Soit v PGCD (c, d). £v est une racine primitive veme de 1 et v est sans
facteur carré. D'après le lemme III. 1, on a la relation:

ndk ndk

+ 1 £ d'où: <f ± X ç~+c
0 <k<v 0 <k<v
PGCD (k,v) 1 PGCD (k,v) 1

L'Enseignement mathém., t. XVIII, fasc. 1. 7
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On vérifie que h c et nd sont premiers entre eux, c'est-à-dire que les
v

ndk
+ c

V

Ç appartiennent à F.

Lemme III.3.

Q (d) possède une base d'entiers normale si et seulement si d
est sans facteur carré.

En effet si d est sans facteur carré, alors d'après le lemme III.2, appliqué
à n 1, les conjugués de £, racine primitive deme de 1, engendrent l'anneau
des entiers de Q (d). Comme ils sont en nombre égal à [ß (d): Q], ils forment
donc une base de l'anneau des entiers de Q (d). Réciproquement soit p un
nombre premier et £ une racine primitive (p2)eme de 1. Comme $p2 (X)

<Pp(Xp), on a Trmp2)jQ(0 0. D'autre part:

TrQ(P2)/Q (^P) ~ P n^rQ(p)IQ (^P) ~ ~P
et la trace de toute racine (/>2)eme de 1, non primitive, est multiple de p.
Ainsi la trace de tout entier de Q (p2) est multiple de p, donc ne peut être

égale à 1. Q (p2) n'a pas de base d'entiers normale, non plus que tout
surcorps de Q (p2). En particulier Q (d) n'a pas de base d'entiers normale si d
possède un facteur carré.

III.3. Conditions pour qu'une extension abélienne de Q
POSSÈDE UNE BASE D'ENTIERS NORMALE

Notation : Si K est une extension cyclique sur g, 9 un élément de K,
a un automorphisme de K, t un entier positif, B (9, er, t) désignera
l'ensemble des t premiers conjugués successifs de 9 par a, c'est-
à-dire :

5(0,(7,0 { 0^(0), 0 ^ k < t}

Proposition III. 1.

Soit Kr une extension cyclique de degré pr sur Q (p premier).
Soit Q (nr) le plus petit corps cyclotomique contenant Kr. On suppose

que ur est différent de 0, que £ est une racine primitive (wr)eme de
1 et Br_x est une base de l'anneau des entiers de Kr_x. Soient 9

Yj et g un générateur de G (KrjQ).
se Sr
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Alors:

Br_l u B(9, g, (p(pr)) est une base de l'anneau des entiers de Kr.

Soit g un automorphisme de Q (nr) prolongeant g. Les classes de G (nr)

modulo Sr sont gk Sr, 0 ^ k < pr.

Introduisons les ensembles suivants:

F est l'ensemble des racines primitives nerme de 1 c'est-à-dire:

F {Ça;ae G (nr) }

F'{ <T; a6u gk }

y Puisque pUr est le plus grand facteur carré divisant nr, le lemme III.2

| permet d'affirmer que le module engendré sur Z par F u F" est l'anneau des

|! entiers de Q (nr). Montrons que F' u F" est une base de cet anneau. Pour

— Card F' u F" <p (nr).

— Tout élément de F — F' appartient au module engendré par F'.
La première assertion résulte d'un dénombrement immédiat des élé-

jj ments de F' u F". Pour démontrer la deuxième, on écrit tout d'abord que:

0 <k<(p(pr^
l et

F" { 0 ^ b < cp (nr) et p | b }

1 cela il suffit de constater que :

-rk
Z r 0

| (Çp est une racine primitive peme de 1).

Soit en multipliant cette égalité par on obtient:

Z ^ o

Examinons comment sont répartis les éléments de T dans les

|] classes de G (nr) modulo Sr.
h

•I
Puisque Kr $ Q ^ on a Q (nr) Kr. Q

(condition 1.2.A sur la suite oron a:

et puisque Kr_x ç Q
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Les sous-groupes correspondants de G vont donc vérifier les égalités :

r(n„^.Sr Sr_t et r|«f(^nsr {l},
qui montrent que Sr_l9 groupe des Kr_ i-automorphismes de Q(nr), est

produit direct de Sr et de T^nn — Dans toute classe de Sr-X modulo Sr

il existe donc un seul élément de T\ nr9 — ]. Ces classes sont gkpr l
Sn 0 ^

V P

k — 1. Si sgpr
1

est l'unique élément de gpV
1

Sr n T\nr, — alors
V P/

pour tout k entre 0 et p — 1, sk gkpr est l'unique élément de gkpV
1

Sr n
/ nA

T\ nr, — et les éléments de j
V p/

L'égalité (1) va donc s'écrire:

Tyir, —j et les éléments de Tynr, — ] sont donc skgkpf \ 0 ^ k ^p — 1.

(2) X 1= °>
0 <k<p — 1

5* appartenant à Sr.

Tout élément de F — F" peut s'écrire sous la forme:

Çs'sP 1gt+(p avec s'eSr et 0 < pr 1

Transformant alors l'égalité (2) par l'automorphisme s'g\ on obtiendra:

Çs'sP"
^ gt+(P~ ^

^s'sk gt~^~kpr ^

0<k<p-2

Les racines primitives de 1, intervenant sous le signe £ sont dans F'. F' U F"
est donc une base des entiers de Q (nr).

Soit x un entier de Kr. On a x x' + x" avec x' (respectivement x")
appartenant au module engendré zur Z, par F' (respectivement F"). Soit
£ un F-rautomorphisme. Comme F" est une base de l'anneau des entiers de

Q — s (x") appartient encore à Q — donc au module engendré par F".
\Pj \PJ

De même s (x') appartient encore au module engendré par F', car s permute
entre eux les éléments de F'. Comme enfin s (x) x, on aura donc s (x')
— x' et s (x") — x".
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x" étant invariant par tout i^-automorphisme, appartient à Q D Kr

c'est-à-dire à Ä"r_ t.
Quant à x', il s'écrit:

X AflÉ8,AfleZ
ae u gkSr

0 <k<(p(pr)

De x' s (x') on déduit que Xa Xa. si a et a' sont congrus modulo Sr
Posant alors ßk Xgk,on obtient:

*'= X ft(X^")= X ^(0)
0<k<(p(pr) aeSr 0 <k<(p(pr)

Remarque IIIA.

On n'utilise pas complètement le fait que Q (jnr) est le plus petit corps
cyclotomique contenant Kr, mais seulement que nr est de la forme pUrn\

avec n premier avec p, sans facteur carré, Kr c Q (/?,.) et Kr $ Q

Proposition III.2.

Soit K une extension abélienne de Q. Les conditions suivantes sont

équivalentes :

III.2.A: K possède une base d'entiers normale.

III.2.B: Il existe un entier 9 de K tel que TrK/Q (0) 1.

III.2.C: Le plus petit corps cyclotomique contenant K possède

une base d'entiers normale.

| III.2.D : K est modérément ramifiée.

C => A et A => B résultent des rappels effectués au paragraphe III. 1.

B => C résulte pour les extensions cycliques de degré pr sur Q de la
proposition III. 1. Reprenant les mêmes notations, si Q (nr) ne possède pas de
base d'entiers normale, alors, d'après le lemme III.3, nr possède un facteur
carré, donc ur 2.

' Comme $nr (X) A>„r (X^-1), la trace de £ sur Q est nulle, donc celle
Uf 1

fi p

jde 0 également. Si x est un entier de Kr, x se décompose comme
précédemment en x x' + x" et l'on a;
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TrKflQ(x) TrKrlQ(x")

La trace d'un entier de Kr ne peut donc être égale à 1.

Soit maintenant K une extension abélienne de Q et Q (n) le plus petit
corps cyclotomique contenant K. Supposons qu'il existe un entier 9 de K
tel que: TrK/Q (9) 1.

Le groupe de Galois de K sur Q est produit direct de m groupes cycliques
d'ordre p\l.
Soit K{ le corps fixe de Gx x x Gi_1 x { 1 } x Gi+1 x x Gm. Kt
est cyclique de degré sur Q et K KXK2 Km.

Soit 9i TrKfKi (9). 0t est un entier de Kt tel que TrK./Q (0f) 1.

Si Q (nt) est le plus petit corps cyclotomique contenant Kt alors nt est

sans facteur carré d'après la démonstration précédente.

n est le PPCM des nh donc il est sans facteur carré.

Soit p un nombre premier se ramifiant dans K, c'est-à-dire divisant n.

Si n est sans facteur carré, alors l'indice de ramification de p dans Q (n)
est p — 1 et l'indice de ramification de p dans K, divise p — 1, donc est

premier à p.
Réciproquement, si n possède un facteur carré, alors n est de la forme

n psn\ avec p premier, ne divisant pas n' et s 2. Soit n l'application
de G (n) sur G (k/q) qui à tout automorphisme de Q {n) fait correspondre

Donc 7i a pour ordre p et il est inclus dans n (T (n, n)} qui est le

groupe d'inertie de p dans K. L'indice de ramification de p dans K est donc

multiple de p.

sa restriction à K. Puisque K $ Q alors

III.4. Bases d'entiers dans les extensions Kr

Proposition III.3.

Soit Kr une extension cyclique de degré pr sur Q, Q (nr) le plus
petit corps cyclotomique contenant Kr.
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On suppose que ur^2; c'est-à-dire que Kr ne possède pas de base

d'entiers normale. £ désignant une racine primitive n^me de 1, on

pose 6i Yj £,spr~l pour tout i de / à r.
se S r

Si p est impair ou si p 2 et ur — 2, on pose:

0,-i s K"i+1
se Sr

Si p 2 et ur ^ 3, on pose:

0,-i i s ^r"+2
se Sr

g est un générateur du groupe de Galois de Kr sur Q.

Alors :

B(6l.uc7,pl~1)(j(u
l<i<r

est une base de l'anneau des entiers de Kr.

On montre tout d'abord que B (6t^x, g, pl~x) est une base de l'anneau
des entiers de t.

Dans le cas où p est impair ou p 2 et ur 2, on a: ur r — l + 2,

ç Q ' r^i+1 est sans facteur carré, donc ïf 1+1
engendre

une base normale des entiers de Q

r — l + l
f~l+1

/ r-/+1\
nÇ }

V - / engendre donc une base normale des entiers

de Ki-i. Il reste donc à montrer que cette quantité est égale à 6t_ 1. Pour

cela introduisons l'application 7zl_1 de G (nr) dans G ^ r_[+1^ qui à toute

nr
classe modulo nr fait correspondre la classe modulo r_l+1 qui la contient.

Sr étant le groupe des Ä^-automorphismes de Q (,nr), nl_1 (Sr) sera le groupe

des Kr n Q ^ -automorphismes de Q ^ r_[+i^ •

Comme Kt $ £2^ r_[+1^9 (condition 1.2.A; u{ 2) on a donc

Kt-iKrnQ(-^
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7ij_x (Sr) est donc le groupe des 1-automorphismes de Qy r_z+1

On aura donc l'égalité:

Tr

D'autre part, on déduit des égalités:

(É' z
s'eît/-i (Sr)

£S'pr-'+1

X,. ß : Q Kr:KrnQ\ r_(+1

et

fiW:filpHïï] />r-l+l

que

ß («,)

Les sous-groupes de Cr (/tr) correspondants vont donc vérifier:

ny
T n

'»pr-l+l nS= 1

La restriction de 71^ à est donc bijective. On en déduit:

z {
s,eitl_1(Sr)

s,pr l + l _ ^ ^7t/_1(s)pr Z+1z r
s ç Sf

Cette dernière quantité est égale à 6l^1 puisque, par définition de 7rx :

on a
s S

d'où spr~t+1 Jt,_1(s)p,-'+1(«r)

jOör/i.s' le cas où p — 2 et ur^ 3, on a alors: wr r — / + 3 et l'on

utilise alors l'application 7iz_2 de C(//r)sur G (^r_rl+^j. La démonstration

est identique à la précédente, à ceci près que:

n
Q(nr):Kr.Ql—^ 2
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c'est-à-dire que T^nr, 2^1+ 2^ n Sr possède deux éléments. On aura cette

fois:

^ 2r~l + 2
_ x. £ ^/-2(s)2r_/ + 2

s'e 7t^ _2(Sr) seSr

On montre ensuite par récurrence sur t que:

B, B(ei_1,a,pl~1)u(u (p1)))
l<i<t

est une base de Supposons donc que soit une base de l'anneau

nr \des entiers deAT,«. Soit nt l'application canonique de G (nr) sur G ——-
\P J

Comme Kt ç Q\ —r— et Kt+1 $ Qt —— (proposition 1.2; condition 1.2.A;
\PrJ \P J

ui+1 ut + 1), on a

Kt fl|^)nKr
/ nr

et 7it (Sr) est le groupe des ^-automorphismes de Q —-
\p

Si 6t Yj^s'pr~\la proposition III. 1 et la remarque III. 1, appliquées
s'®ïzt(Sr)

à £2 ^"7=7^ et Kt permettent de conclure que: Bt^1 u B (0't, a, cp (pr)) est

une base de l'anneau des entiers de Kt. II reste alors à montrer que 0t 9r

Ceci se déduit comme précédemment de l'égalité T^nr, fl Sr= 1,

toujours vraie si / ^ t r.
On utilisera dans le paragraphe suivant les remarques:

Remarque 111.3.A

Pour tout i l TrKi/K._i (0f) 0.

En effet:

- Trn(YriyKi-i ^"r '1

(Ar)—(rr»(^)'»(7^Un)

Tr "t — ix

Tr
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Cette quantité est nulle car Xp — £pT 1+1 est le polynome minimal de £pT

Remarque 1II.3.B

(-1y-+1

Il suffit d'appliquer le lemme III. 1 à Q ^ r_Zi^ ou Q (^r_[+ suivant

les cas.

Remarque 1II.3.C

Dans le cas où p 2 et ur 3, on a :

Z e2r~'+1 0
se Sr

En effet:

s ^~'+1 Tv-^wse Sr \2r~l + 1 / /_1

et d'autre part

car X2 — £2r_i+2 est le polynome minimal de £2r-i + 1
sur Q f r^r+3"'] •

III. 5. Exemple

Soit B la base introduite à la proposition III.3. On se propose de chercher
les polynômes caractéristiques des 6t Pour cela, il faut pouvoir calculer les

coordonnées, par rapport à B, des produits mutuels d'éléments de B.

Les 6t sont des périodes de Gauss ([7] chapitre 7). On pose pour tout
entier a: q (a) Z "•

s e Sj-
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On a en particulier:

0. pour I ^ i ^ r

et suivant les cas:

0|-1 n (Pr'l +1)ou(2r_i + 2).

Pour tout bappartenant à G (nr), le transformé de 17 (a) par b est i] (ab).

En particulier les conjugués de 9b pour / ^ z ^ r, seront:

ak(dd r]

Le produit de deux périodes rj (a) et t] (a') est donné par: k\ (a) r\ (a')
Yj ^ (a + a's). Appliquant cette formule à deux éléments de B, on

s e Sr

est alors ramené au problème suivant: donner les coordonnées de rj (a), a
entier quelconque, dans la base B.

c et c' désignent dans ce qui suit, des nombres premiers avec p.
1. Dans le cas p impair ou p 2 et ur — 2,rj (puc), avec u ^ r — l + 2,

peut s'exprimer comme somme de périodes de la forme rj (pr~l+ V). Il
suffit d'écrire l'égalité:

}la

X ipk - 1;
0 <k<p

multipliant alors cette égalité par £pU° on obtient:

X n (—k + puc] - t]
0 <k<p \p

77

Les quantités — k + puc sont de la forme pr~l+ïc'.
P

Dans le cas où p 2 et ur ^ 3, tj (2V), avec u ^ r - 1 + 3, est l'opposé
d'une période rj (2r~l+2c').

2. ri (puc), avec u - l + 1 (ou ut£r - l + 2, suivant les cas)
peut s'exprimer comme somme de périodes de la forme r\ (puc'), c' appartenant

à G (wr), en procédant de la même façon qu'au lemme III.2. C'est-
à-dire: si v désigne le PGCD de c et de nr, et mv le nombre de diviseurs
premiers de 77, on a:

«r

X Ç"k(-1
0 <k<v
PGCD(k,v) 1
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d'où:

- l)m" 1 (p"c)X
0<k<v \V J
PGCD(k,v) 1

/7r
Les quantités — k + puc sont de la forme puc\ avec c premier avec nr.

v

Cas particulier :

Si Kr n Q ^ czKr n Q et u iär — l, alors rj (puc) 0.

En effet on a: PGCD
fnr nr\ nr

\pu
'

v J puv
'

D'où Kr n Q —- ] c: Q —L En emplovant la même méthode que dans
W \pUvJ

la démonstration de la proposition III.3, rj (puc) est égal, à un coefficient

près, à:

Comme lnß(-| DLnßf - ] et comme u^r — L on aura donc:
PJ \ v

KrnQiJ^j^KrnQ\^\.

Q sera donc compris entre K. n ß — | et Q\ — et l'on a
\j> V \w/ vW

I>,pvä^f) »
\puvj \pu+ lv/

3. 77 (p"c), avec w ±= /* — / + 1 (ou w ^ r — / + 2 suivant le cas) et

c premier avec nn est un conjugué de 77 (pu) Qr_u (à moins qu'il ne soit

nul; remarque III.3.C).
S'il n'est pas dans B, alors ses conjugués sur seront dans B et il
suffit alors d'utiliser la remarque III.3.A.
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I Considérons par exemple, la suite de corps cyclotomiques vérifiant les

j conditions I.2.A bis et I.2.B bis: Q (17), Q (8.17), Q (16.17).
1 On a donc r 3; / 2; m1 m2 m3 1 ; 17.

1 II y a quatre extensions 7£3, cycliques de degré 8 sur g associées à cette suite

| (proposition 1.5 bis).
Elles ont pour discriminant sur Q: 222 177 (proposition 11.3).

T(16.17, 17) a pour éléments 1, 35, 69, 103, 137, 171, 205, 239.

a0 — 239 et l'on peut choisir comme générateur de T(16.17, 4.17):

a0 69.

On cherche de même les éléments de T(16.17, 16) et un générateur
de ce sous-groupe. On peut prendre par exemple c1 65. Les puissances

h successives de c1 sont données par le tableau suivant:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

65 145 177 81 97 49 193 33 241 161 129 225 209 257 113

S3 est engendré par { cl, cl°a0, cl'o a0 }, a0 et oc'0 vérifiant les conditions

a0 0 (4); a0 0 (2) et a0 =j= 0 (4) (proposition 1.4 bis). Les éléments de S3

sont de la forme:
8/?i + oc0ß0 + a0ß0 ß0 ß0

S C i Cl q ü o

avec ß0 0 ou 1 ; ß'0 0, 1, 2 ou 3; ßx — 0 ou 1.

Prenons par exemple : a0 4 et a0 2.

Le tableau suivant donne les valeurs de v, en fonction de ß0, ß0, ß1. On
trouve donc à la dernière ligne les éléments de S3 :

ßo 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

p; 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Pi 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

s 1 213 217 253 33 229 89 189 47 219 135 195 191 155 103 179

On remarque que 34 81 n'appartient pas à S3, c'est-à-dire que la
G 16 171

classe de 3 modulo S3 est un générateur de —.^3
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On prendra donc g 3. Les classes de G (16.17) mod. S3 sont données
dans le tableau suivant:

S3 1 213 217 253 33 229 89 189 47 219 135 195 191 155 103 179

3S3 3 95 107 215 99 143 267 23 141 113 133 41 29 193 37 265

32Ss 9 13 49 101 25 157 257 69 151 67 127 123 87 35 111 251

33S3 27 39 147 31 75 199 227 207 181 201 109 97 261 105 61 209

34S5 81 117 169 93 225 53 137 77 271 59 55 19 239 43 183 83

35S3 243 79 235 7 131 159 139 231 269 177 165 57 173 129 5 249

36S3 185 237 161 21 121 205 145 149 263 259 223 171 247 115 15 203

37S3 11 167 211 63 91 71 163 175 245 233 125 241 197 73 45 65

B { n (1), ri (3), n (32), r, (3%n (2), (2.3), i ri (8), * (8.3)} est une
base de l'anneau des entiers de K3. On cherche le polynome minimal de

)/ (1) sur K2. Le conjugué de rj(1)sur K2 est i] (34) et d'après la remarque
III.3.A, r](1)+ ri(34)0.

D'autre part: rç (l)2 £ rj(1+F).
se S3

Il reste à exprimer chacun des rj (!++) en fonction de: (2), rj (2.3), tf (8),
et rj (8.3).

Par exemple: pour s 213: rç (1+213) (2.107) 2.3) car
107 g 3 iS*3.

Pour s —33: >7(1+33) rj (2A7)0 car 0(16)0^
Q(8.17) n K3.

Pour j 47, on écrit ^817 — 1 d'où £8-17 + 48 _ ,»48 c'est-à-dire:
rj (1 +47) - ri(8.23)- n (8.3).

Pour s 195: rj(1+195) rç (4.49) 0 compte tenu de la remarque
III.3.C.

Finalement on obtient: q(l)2— 16 — >7 (2) - 2/? (8.3) + >/ (8). Le

polynome minimal de rj (1) sur K2 est donc:

X2 + 16 + >7 (2) + 2/7 (3.8) - >7 (8)
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On calcule de la même façon le polynome minimal de t\ (2) sur Kx :

X2 — r\ (8) — 16 et celui de rj (8) sur Q: X2 — 2X — 16.

Les 8 nombres:

——X— ~2^'V7!7 + > /l7 - /Ï7

y/ -17 + 3^17-^17 + 717 y/-17-3/Ï7-y/l7-/l7

\/-\1 + 3Jïî+\/Il + JJnet\/-17-3>/r7 + \/l7->/Ï7
forment une base de l'anneau des entiers de K3.

Pour les autres valeurs de a0 et a0 le résultat est le suivant: les polynômes
minimaux de rj (8) et rj (2) restent les mêmes que précédemment. Pour
obtenir une base des entiers des autres extensions K3 admettant la même
suite de corps cyclotomiques associée: Q (17), ß(8.17), Q (16.17), il suffit
d'ajouter aux quatre nombres:

1 + 717 1-717 / 7= / 7=—,—— > v/l7+V17> v17-/17 '

les quatre autres quantités:

Pour le corps K3 correspondant à a0 — 4 et a0 6:

y/ —17 + + 3y/17 + +17 — 4^17 — +17

y/-17-3yÏ7 + 3y/l7-yÏ7 + 4\/l7 + yT7,

\/- 17 + 3yi7 - 3\/l7 + x/n + 4\/l7 -+17

y/-17-3/17-3/17-/17-4/17 + 717,

Pour le corps K3 correspondant à oc0 — 8 et a0 — 2:

/l7 + 3/Ï7 + /l7-/Ï7, /l7-3/Ï7-/l7 + /Ï7

/17 + 3/Ï7-/l7-/Ï7, /l7 - 37Ï7+ /l7 +7i7



Pour le corps K3 correspondant à oc0 8 et oc0 6:

\/Il -ifïï + 2\/\1 + flî-4\/ Il - fF
y/17 + 3TÏ7 + 3y/l7-7Î7+4\/l7 + 7l7,

y/17-3717-3^/17 + 717+4^17-717,

y/17 + 37/7 — 3 y/17 — 7Ï7—4y/17 + 7Ï7 •

BIBLIOGRAPHIE

[1] Samuel, P. Théorie algébrique des nombres (Hermann).
[2] Mac Carthy, P. J. Algebraic extensions of fields (Blaisdell Publishing Company).
[3] Herbrand, J. Développement moderne de la théorie des corps algébriques. Mémorial

des Sciences Mathématiques (fasc. LXXV, 1936).
[4] Chevalley, C. Théorie du corps de classes dans les corps finis et les corps locaux.

Journ. of the Faculty of Sciences, Tokyo 1933, 365.

[5] Lang, S. Algebraic Numbers (Addison-Wesley Publishing Company).
[6] Algebra (Addison-Wesley Publishing Company).
[7] Van der Waerden, B. L. Modern Algebra, vol. I (F. Ungar Publishing Company).

Reçu le 26 octobre 1971

Bernard Oriat
Faculté des sciences
Route de Gray
F-25 — Besançon


	ÉTUDE ARITHMÉTIQUE DES CORPS CYCLIQUES DE DEGRE p' SUR LE CORPS DES NOMBRES RATIONNELS
	Table des matières
	INTRODUCTION
	Chapitre Premier  SUITE DE CORPS CYCLOTOMIQUES ASSOCIÉE A UNE EXTENSION CYCLIQUE DE DEGRÉ $p^r$ SUR Q
	I.1. Rappels et notations
	I.2. Plus petit corps cyclotomique contenant une extension ABÉLIENNE DE DEGRÉ $p^r$ SUR Q
	I.3. Suite de corps cyclotomiques associée a une extension cyclique $K_r$
	I.4. Système de générateurs de $S_r$. Cas où est impair
	I.5. Construction d'extensions cycliques $K_r$ de degré $p^r$ sur Q DANS LE CAS OÙ p EST IMPAIR
	I.6. Système de générateurs de $S_r$. Cas où p=2
	I.7. Construction d'extensions cycliques de degré $2^r$ sur Q
	I.8. Nombre d'extensions associées a une même suite de corps cyclotomiques
	I.9. Conditions d'inclusion de $K_r$ dans $K_{r'}$

	Chapitre II  DÉCOMPOSITION, RAMIFICATION, DISCRIMINANT
	II.1. Rappels
	II.2. Nombres premiers ramifiés dans une extension abélienne de Q
	II.3. DÉCOMPOSITION D'UN NOMBRE q PREMIER, NON RAMIFIÉ DANS $K_r$
	II.4. Indice de ramification dans une extension $K_r$
	II.5. Discriminant de $K_r$

	Chapitre III  BASES D'ENTIERS
	III.1. Rappels
	III.2. Bases d'entiers dans les corps cyclotomiques
	III.3. Conditions pour qu'une extension abélienne de Q POSSÈDE UNE BASE D'ENTIERS NORMALE
	III.4. Bases d'entiers dans les extensions $K_r$
	III.5. Exemple

	...


