Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 18 (1972)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ÉTUDE ARITHMÉTIQUE DES CORPS CYCLIQUES DE DEGRE p'

SUR LE CORPS DES NOMBRES RATIONNELS

Autor: Oriat, Bernard

DOI: https://doi.org/10.5169/seals-45361

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ÉTUDE ARITHMÉTIQUE DES CORPS CYCLIQUES DE DEGRÉ p^r SUR LE CORPS DES NOMBRES RATIONNELS

par Bernard ORIAT

TABLE DES MATIÈRES

	Premier. — Suite de corps cyclotomiques associée à une usion cyclique de degré p^r sur Q .	
I.1.	Rappels et notations	59
I.2.	Plus petit corps cyclotomique contenant une extension	
	abélienne de degré p^{r} sur Q	62
I.3.	Suite de corps cyclotomiques associée à une extension	
	cyclique K_r	64
I.4.	Système de générateurs de S_r . Cas où p est impair	68
I.5.	Construction d'extensions cycliques K_r de degré p^r sur Q	
	dans le cas où p est impair	71
I.6.	Système de générateurs de S_r . Cas où $p=2$	72
I.7.	Construction d'extensions cycliques de degré 2^r sur Q .	74
I.8.	Nombre d'extensions associées à une même suite de corps	
	cyclotomiques	75
I.9.	Conditions d'inclusion de K_r dans $K_{r'}$	76
Chapitre	II. — Décomposition, Ramification, Discriminant.	
II.1.	Rappels	78
II.2.	Nombres premiers ramifiés dans une extension abélienne	
	$\operatorname{sur} Q$	80
II.3.	Décomposition d'un nombre q premier, non ramifié dans K_r	81
II.4.	Indice de ramification dans une extension K_r	83
II.5.	Discriminant de K_r	83
Chapitre	III. — Bases d'entiers.	
III.1.	Rappels	88
III.2.	Bases d'entiers dans les corps cyclotomiques	88
III.3.	Conditions pour qu'une extension abélienne de Q possède	
	une base d'entiers normale	90
III.4.	Bases d'entiers dans les extensions K_r	94
III.5.	Exemple	98

INTRODUCTION

Ce travail a pour objet l'étude arithmétique des extensions cycliques de degré une puissance d'un nombre premier sur le corps des rationnels, considérées comme sous-corps d'un corps cyclotomique. Le théorème de Kronecker (dont on pourra trouver une démonstration dans *Algebraic Number Theory*, J. W. S. Cassels et A. Fröhlich; chapitre VII, J. T. Tate; Academic Press) montre en effet que toute extension abélienne du corps des nombres rationnels est incluse dans un corps cyclotomique.

L'étude des extensions abéliennes du corps des nombres rationnels a déjà été traitée par plusieurs auteurs, en particulier H. W. Leopoldt, Zur Arithmetic in abelschen Zahlkörpern; *Jour. reine angew. Math.* 209, pp. 54-71 (1962).

Le présent travail n'a pas pour but de démontrer des résultats essentiellement originaux, mais de donner un exposé aussi élémentaire que possible des propriétés les plus importantes.

J'ai supposé connu et j'ai utilisé sans les citer explicitement des résultats concernant les propriétés élémentaires des groupes abéliens finis et la théorie de Galois dans les extensions abéliennes finies. Dans le premier chapitre, j'ai rappelé et employé la décomposition de $\left(\frac{Z}{n}\right)^*$ en produit direct de groupes cycliques (théorème chinois). Les propriétés des corps cyclotomiques utilisées ont été mentionnées au début de chaque chapitre.

Dans le premier chapitre, j'ai associé à toute extension K_r cyclique de degré p^r sur Q, la suite des plus petits corps cyclotomiques contenant respectivement chaque sous-corps de K_r . J'ai établi les conditions que doit vérifier une telle suite et réciproquement, j'ai obtenu toutes les extensions K_r dont cette suite est la suite associée.

Dans le deuxième chapitre, j'ai montré que la donnée d'une suite de corps cyclotomiques associée à une extension K_r est équivalente à la donnée du discriminant de K_r sur Q et j'ai calculé la valeur de ce discriminant.

Dans le troisième chapitre, j'ai énoncé des conditions équivalentes d'existence de bases d'entiers normales dans les extensions abéliennes sur

Q. J'ai montré que si une extension K_r ne vérifie pas ces conditions, on peut toujours obtenir une base d'entiers de K_r en complétant une base des entiers de K_{r-1} , sous-corps de K_r de degré p^{r-1} , avec $\varphi(p^r)$ conjugués d'un même entier.

Je tiens à exprimer ma profonde reconnaissance à M. le professeur Châtelet pour l'attention constante qu'il a manifestée à cette étude et pour les nombreux conseils qu'il m'a donnés.

Je remercie vivement M. le professeur Parizet qui a bien voulu examiner ce travail et faire partie du jury.

Je remercie également M. le professeur Bantegnie pour ses encouragements et M. le professeur Hellegouarch pour les entretiens qu'il a bien voulu m'accorder lors du commencement de ce travail.

CHAPITRE PREMIER

SUITE DE CORPS CYCLOTOMIQUES ASSOCIÉE A UNE EXTENSION CYCLIQUE DE DEGRÉ p^r SUR Q

I.1. RAPPELS ET NOTATIONS

Le corps des rationnels sera noté Q. Si n est un entier positif et ξ une racine primitive $n^{\rm eme}$ de 1, $Q(\xi)$ est le $n^{\rm eme}$ corps cyclotomique et sera noté $\Omega(n)$. Le degré, $[\Omega(n):Q]$, de $\Omega(n)$ sur Q est $\varphi(n)$, φ est l'indicateur d'Euler. Si n est impair, on a $\Omega(n) = \Omega(2n)$; c'est le seul cas où $\Omega(n) = \Omega(n')$ avec $n \neq n'$.

 $\frac{Z}{n}$ désigne l'anneau des classes résiduelles modulo n et $\left(\frac{Z}{n}\right)^*$ est l'ensemble des classes résiduelles modulo n, premières avec n. C'est aussi le groupe multiplicatif des éléments inversibles de $\frac{Z}{n}$.

 $\Omega(n)$ est une extension abélienne de Q. On notera G(n) son groupe de Galois. A tout automorphisme σ de $\Omega(n)$ correspond un élément de $\left(\frac{Z}{n}\right)^*$,

a, défini par $\sigma(\xi) = \xi^a$. Cette correspondance est un isomorphisme de groupes ne dépendant pas du choix de la racine primitive n^{eme}: ξ . On confondra par la suite les groupes G(n) et $\left(\frac{Z}{n}\right)^*$ (cf. [1] chapitre VI).

Définition et propriétés des sous-groupes T (n, d)

Soit d un entier divisant n. On posera:

$$T(n,d) = \{h, h \in \left(\frac{Z}{n}\right)^*, h \equiv 1 (d)\}$$
. $T(n,d)$ est le noyau de l'application $de\left(\frac{Z}{n}\right)^* \operatorname{sur}\left(\frac{Z}{d}\right)^*$ faisant correspondre à toute classe h modulo n , la classe h' , modulo d , contenant h . C'est donc un sous-groupe $de\left(\frac{Z}{n}\right)^*$, d'ordre $\frac{\varphi(n)}{\varphi(d)}$.

Tout élément de T(n, d) laisse invariant $\xi^{\frac{n}{d}}$ qui est une racine primitive d^{eme} de 1. Le sous-corps de $\Omega(n)$, corps fixe de T(n, d) est donc $\Omega(d)$. Soient d et d' deux entiers divisant n.

On a:
$$T(n,d) \cap T(n,d') = T(n,PPCM(d,d'))$$

et $T(n,d) \cdot T(n,d') = T(n,PGCD(d,d'))$.

La première égalité est immédiate. On peut s'assurer de la deuxième en constatant d'une part que: T(n,d). $T(n,d') \subseteq T(n,PGCD(d,d'))$ et que d'autre part l'égalité: $\varphi(d) \varphi(d') = \varphi(PPCM(d,d')) \varphi(PGCD(d,d'))$ et l'isomorphisme: $\frac{T(n,d) \cdot T(n,d')}{T(n,d)} \cong \frac{T(n,d')}{T(n,d) \cap T(n,d')}$ permettent de conclure que T(n,d). T(n,d') et T(n,PGCD(d,d')) ont le même nombre d'éléments.

On déduit de cela que:

$$\Omega(n) \cap \Omega(n') = \Omega(PGCD(n, n'))$$

et

$$\Omega(n) \cdot \Omega(n') = \Omega(PPCM(n, n')).$$

En effet $\Omega(n)$ et $\Omega(n')$ sont inclus dans $\Omega(nn')$. Le sous-groupe de G(nn') formé des $\Omega(n)$ -automorphismes est T(nn', n). Le sous-groupe de G(nn') formé des $\Omega(n) \cap \Omega(n')$ -automorphismes est $T(nn', n) \cdot T(nn', n')$

et de même le sous-groupe des $\Omega(n)$. $\Omega(n')$ -automorphismes est T(nn', n) $\cap T(nn', n')$. Ceci permet de parler du plus petit corps cyclotomique contenant une extension abélienne de Q.

Structure des groupes
$$\left(\frac{Z}{n}\right)^*$$

Soit $n = p_1^{r_1} \dots p_m^{r_m}$ la décomposition de n en facteurs premiers. Alors $\left(\frac{Z}{n}\right)^*$ est produit direct des sous-groupes $T\left(n, \frac{n}{p_i^{r_i}}\right)$, i variant de 1 à m.

En effet:

$$\prod_{1 \le i \le m} T\left(n, \frac{n}{p_i^{r_i}}\right) = T\left(n, PGCD\left(\frac{n}{p_i^{r_i}}\right)\right) = T(n, 1) = \left(\frac{Z}{n}\right)^*$$

et

$$T\left(n,\frac{n}{p_j^{r_j}}\right) \cap \prod_{i \neq j} \left(T\left(n,\frac{n}{p_i^{r_i}}\right)\right) = T\left(n,\frac{n}{p_j^{r_j}}\right) \cap T(n,p_j^{r_j}) = T(n,n) = 1.$$

Précisons que si h est un élément de $\left(\frac{Z}{n}\right)^*$ et si $h = h_1 h_2 \dots h_m$ est sa décomposition dans les sous-groupes $T\left(n, \frac{n}{p_i^{r_i}}\right)$, c'est-à-dire si $h_i \in T\left(n, \frac{n}{n!}\right)$ on a alors $h \equiv h_i\left(p_i^{r_i}\right)$.

L'application θ_i de $T\left(n,\frac{n}{p_i^{r_i}}\right)$ sur $\left(\frac{Z}{p_i^{r_i}}\right)^*$ qui à tout élément h de $T\left(n,\frac{n}{p_i^{r_i}}\right)$ fait correspondre la classe h' de $\left(\frac{Z}{p_i^{r_i}}\right)^*$ contenant h est un isomorphisme et sa restriction à $T\left(n,\frac{n}{p_i^{r_i-s_i}}\right)$ a pour image $T\left(p_i^{r_i},p_i^{s_i}\right)$ pour tout s_i compris entre 0 et r_i .

Rappelons que si p est impair $\left(\frac{Z}{p^r}\right)^*$ est cyclique.

Si p_i est impair et si h appartient à $T\left(n, \frac{n}{p_i^{r_i}}\right)$, pour tout s_i compris entre let r_i , $h^{(p_i-1)p_i^{s_i-1}}$ est congru à 1 modulo $p_i^{s_i}$, donc appartient à

 $T\left(n,\frac{n}{p_i^{r_i-s_i}}\right). \text{ Comme d'autre part } T\left(n,\frac{n}{p_i^{r_i}}\right) \text{ est cyclique, } T\left(n,\frac{n}{p_i^{r_i-s_i}}\right) \text{ et}$ $T\left(n,\frac{n}{p_i^{r_i}}\right)^{\left((p_i-1)p_i^{s_i-1}\right)} *) \text{ possèdent le même nombre d'éléments.}$ $T\left(n,\frac{n}{p_i^{r_i-s_i}}\right) \text{ est donc l'ensemble des puissances } ((p_i-1)p_i^{s_i-1})^{\text{eme}}$ d'éléments de $T\left(n,\frac{n}{p_i^{r_i}}\right)$.

Rappelons que si $r \ge 3$, $\left(\frac{Z}{2^r}\right)^*$ est produit direct de $\{-1,1\}$ et de $T(2^r,4)$. Si $p_i=2$, $r_i\ge 3$, posons $a_0=\theta_i^{-1}(-1)$; $T\left(n,\frac{n}{2^{r_i}}\right)$ est produit direct de $\{a_0,1\}$ et de $T\left(n,\frac{n}{2^{r_i-2}}\right)$ qui est cyclique. Pour tout s_i entre 3 et r_i , $T\left(n,\frac{n}{2^{r_i-s_i}}\right)$ est alors l'ensemble des puissances $(2^{s_i-2})^{\text{eme}}$ d'éléments de $T\left(n,\frac{n}{2^{r_i}}\right)$. C'est aussi l'ensemble des puissances $(2^{s_i-2})^{\text{eme}}$ d'éléments de $T\left(n,\frac{n}{2^{r_i-2}}\right)$.

I.2. Plus petit corps cyclotomique contenant une extension abélienne de degré $p^{\rm r}$ sur Q

Proposition I.1.

Soit r un entier positif, p un nombre premier impair, K une extension abélienne de degré p^r sur Q, $\Omega(n)$ le plus petit corps cyclotomique contenant K. Alors n est de la forme $n = p^s p_1 p_2 \dots p_m$ et vérifie les conditions:

- $-0 \leq s \leq r+1$.
- $-s \neq 1$.
- Les p_i sont des nombres premiers distincts et congrus à 1 modulo p.

^{*)} $G^{(n)}$ désigne le sous-groupe de G formé des puissances $n^{\rm eme}$ d'éléments de G.

Le théorème de Kronecker permet d'affirmer qu'il existe n' tel que $\Omega(n')$ contienne K. Soit $n' = p^u p_1^{u_1} \dots p_m^{u_m}$ la décomposition de n' en facteurs premiers et soit S le sous-groupe de G(n') constitué par les K-automorphismes.

- 1. Montrons que si $p_i \not\equiv 1$ (p), alors $K \subseteq \Omega\left(\frac{n'}{p_i^{u_i}}\right)$. Il est équivalent de montrer que $T\left(n',\frac{n'}{p_i^{u_i}}\right) \subseteq S$; soit $h \in T\left(n',\frac{n'}{p_i^{u_i}}\right)$, puisque $T\left(n',\frac{n'}{p_i^{u_i}}\right)$ est d'ordre $(p_i-1)p_i^{u_i-1}$, on aura donc: $h^{(p_i-1)p_i^{u_i-1}} = 1_{\Omega(n')} \left(1_{\Omega(n')}\right)$ désignant l'identité sur $\Omega(n')$). Si σ est la restriction de h à K, on aura également $\sigma^{(p_i-1)p_i^{u_i-1}} = 1_K$. D'autre part $\sigma^{p^r} = 1_K$ puisque K est de degré p^r sur Q. Comme $(p_i-1)p_i^{u_i-1}$ et p^r sont premiers entre eux, on en déduit que $\sigma = 1_K$ et $h \in S$.
- 2. Montrons que si $p_i \equiv 1$ (p), alors $K \subseteq \Omega\left(\frac{n'}{p^{u_i-1}}\right)$. Cela revient à démontrer que $T\left(n', \frac{n'}{p_i^{u_i-1}}\right) \subseteq S$.

Soit $h \in T\left(n', \frac{n'}{p_i^{u_i-1}}\right)$, puisque ce sous-groupe est d'ordre $p_i^{u_i-1}$, on aura donc $h^{p^{u_i-1}} = 1_{\Omega(n')}$. D'où, σ étant la restriction de h à K, $\sigma^{p_i^{u_i-1}} = 1_K$. D'autre part $\sigma^{p^r} = 1_K$ pour la même raison que précédemment. Comme $p_i^{u_i-1}$ et p^r sont premiers entre eux, $\sigma = 1_K$ et $h \in S$.

3. Montrons que $s \le r+1$, c'est-à-dire, montrons que si $u \ge r+2$ alors $K \subseteq \Omega\left(\frac{n'}{p^{u-r-1}}\right)$.

En effet si $u \ge r+2$, $T\left(n', \frac{n'}{p^{u-r-1}}\right) = T\left(n', \frac{n'}{p^u}\right)^{((p-1)p^r)}$. Tout élément $h \in T\left(n', \frac{n'}{p^{u-r-1}}\right)$ est donc une puissance $(p^r)^{\text{eme}}$. Il en est de même de la restriction de h à K qui est l'identité de K, puisque K est de degré p^r sur Q. On a donc $T\left(n', \frac{n'}{p^{u-r-1}}\right) \subseteq S$.

4. Montrons enfin que $s \neq 1$.

Pour cela, montrons que si u = 1, alors $K \subseteq \Omega\left(\frac{n'}{p}\right)$. Si u = 1, alors

$$T\left(n', \frac{n'}{p}\right)$$
 a pour ordre $p-1$ et comme $p-1$ est premier à p^r , on en déduit $T\left(n', \frac{n'}{p}\right) \subseteq S$.

Proposition I.1 bis.

Soit r un entier positif et K une extension abélienne de degré 2^r sur Q, $\Omega(n)$ le plus petit corps cyclotomique contenant K. Alors n est de la forme $n = 2^s p_1 p_2 \dots p_m$ et vérifie la condition

- $-0 \leq s \leq r+2.$
- Les p_i sont des nombres premiers impairs distincts.

La démonstration est analogue à la précédente. Pour montrer que $s \le r + 2$, on constate que si $u \ge r + 3$ et si $n' = 2^u p_1^{u_1} \dots p_m^{u_m}$, alors

$$T\left(n',\frac{n'}{2^{u-r-2}}\right) = T\left(n',\frac{n'}{2^u}\right)^{2^r}.$$

I.3. Suite de corps cyclotomiques associée a une extension cyclique K_r

DÉFINITION:

Soit K_r une extension cyclique de degré p^r (p premier) sur Q. Pour i entre 1 et r soit K_i l'unique sous-corps de K_r de degré p^i sur Q. Soit Ω (n_i) le plus petit corps cyclotomique contenant K_i . On appellera « suite de corps cyclotomiques associée à K_r » la suite des r corps Ω (n_i).

Proposition I.2.

Soit r un entier positif et p un nombre premier impair. Soit K_r une extension cyclique de degré p^r sur Q. Soit $(\Omega(n_i))_{1 \le i \le r}$ la suite de corps cyclotomiques associée à K_r .

Alors les n_i vérifient les conditions suivantes:

1.2.A. Pour tout i de 1 à r, la décomposition de n_i en facteurs premiers est $n_i = p^{u_i} p_1 \dots p_{m_i}$; la suite $(m_i)_{1 \le i \le r}$ est non décroissante. La suite $(u_i)_{1 \le i \le r}$ est non décroissante, éventuellement nulle.

Si les u_i ne sont pas tous nuls, soit l le plus petit entier tel que $u_l \neq 0$. On a alors $u_l = 2$ et $u_{i+1} = u_i + 1$ pour tout i entre l et r - 1. I.2.B. Si $j \leq m_i$ alors $p_j \equiv 1$ (p^{r-i+1}) .

Démontrons tout d'abord le

LEMME I.1.

Soit K une extension abélienne de Q. K_r un sous-corps de K de degré p^r sur Q, cyclique sur Q; pour $1 \le i \le r$, soit K_i l'unique sous-corps de K_r de degré p^i sur Q.

Soit σ un automorphisme de K. Alors pour tout i entre 1 et r, σ^{pi} est un K_r -automorphisme si et seulement si σ est un K_{r-i} -automorphisme.

Notons S_i le sous-groupe de G(K/Q) (groupe de Galois de K sur Q), formé des K_i -automorphismes. Soit $\sigma \in S_{r-i}$; S_r est d'indice p^i dans S_{r-i} donc $\sigma^{p^i} \in S_r$. Réciproquement, si $\sigma^{p^i} \in S_r$, alors la restriction de σ à K_r , $\sigma \mid K_r$, est un élément d'ordre inférieur ou égal à p^i dans $G(K_r/Q)$. Puisque ce groupe est cyclique d'ordre p^r , $\sigma \mid K_r$ est une puissance $(p^{r-i})^{\text{eme}}$ et $\sigma \in S_{r-i}$.

Démonstration de la proposition I.2

 S_i désigne maintenant le sous-groupe de $G\left(n_r\right)$ formé des K_i -automorphismes.

Condition I.2.A. D'après la proposition I.1, les n_i sont de la forme $n_i = p^{u_i} p_1 \dots p_{m_i}$. Puisque $K_i \subset K_{i+1}$, alors $\Omega(n_i) \subseteq \Omega(n_{i+1})$ et n_i divise n_{i+1} . Les suites (u_i) et (m_i) sont donc non décroissantes.

Supposons que les u_i ne soient pas tous nuls et montrons que $u_l = 2$. Si aucun des u_i n'est nul, c'est-à-dire si l = 1 alors $u_l = 2$ est une conséquence immédiate de la proposition I.1. Si $l \ge 2$, on a donc

$$u_{l-1} = 0$$
 et $K_{l-1} \subseteq \Omega(p_1 p_2 \dots p_{m_r})$

c'est-à-dire

$$S_{l-1} \supseteq T(n_r, p_1 p_2 \dots p_{m_r}).$$

Soit $h \in T(n_r, p^2 p_1 p_2 \dots p_{m_r})$; h est une puissance $((p-1)p)^{\text{eme}}$ d'un élément τ de $T(n_r, p_1 p_2 \dots p_{m_r})$. Or $\tau \in S_{l-1}$ et d'après le lemme I.1, $\tau^p \in S_l$ donc $h \in S_l$.

On a donc

$$T(n_r, p^2 p_1 p_2 \dots p_{m_r}) \subseteq S_l$$

d'où

$$K_l \subseteq \Omega(p^2 p_1 \dots p_{m_r})$$
 et $u_l \le 2$.

D'autre part, d'après la proposition I.1, $u_l \neq 0$ implique $u_l \geq 2$.

Supposons $u_i \ge 2$ et montrons que $u_{i+1} = u_i + 1$. Cette égalité équivant aux deux relations

$$K_{i+1} \not\subseteq \Omega(p^{u_i}p_1p_2 \dots p_{m_r})$$

et

$$K_{i+1} \subseteq \Omega \left(p^{u_i+1} p_1 p_2 \dots p_{m_r} \right)$$

Première relation:

Supposons que

$$K_{i+1} \subseteq \Omega(p^{ui}p_1p_2 \dots p_{m_r})$$

c'est-à-dire

$$S_{i+1} \supseteq T(n_r, p^{u_i}p_1p_2 \dots p_{m_r}).$$

Soit

$$h \in T(n_r, p^{u_i-1}p_1p_2 \dots p_{m_r})$$
.

Comme $u_i \ge 2$, $h^p \in T(n_r, p^{u_i}p_1p_2 \dots p_{m_r})$ d'où $h^p \in S_{i+1}$ et $h \in S_i$ d'après le lemme I.1. Ceci prouverait que $K_i \subseteq \Omega(p^{u_i-1}p_1p_2 \dots p_{m_r})$, ce qui contredit la définition de u_i .

Deuxième relation:

On a

$$K_i \subseteq \Omega\left(p^{ui}p_1p_2 \dots p_{m_r}\right)$$

d'où

$$S_i \supseteq T(n_r, p^{u_i}p_1p_2 \dots p_{m_r})$$

et

$$S_i^{(p)} \supseteq T(n_r, p^{u_i}p_1p_2 \dots p_{m_r})^{(p)} = T(n_r, p^{u_i+1}p_1p_2 \dots p_{m_r})$$

D'autre part d'après le lemme I.1: $S_{i+1} \supseteq S_i^{(p)}$.

On a donc:

$$S_{i+1} \supseteq T(n_r, p^{u_i+1}p_1p_2 \dots p_{m_r})$$

et

$$K_{i+1} \subseteq \Omega(p^{u_i+1}p_1p_2 \dots p_{m_r})$$

Condition I.2.B. Si $j \leq m_i$, alors $K_i \not \subseteq \Omega\left(\frac{n_r}{p_j}\right)$ c'est-à-dire

$$S_i \not\equiv T\left(n_r, \frac{n_r}{p_i}\right)$$
 D'après le lemme I.1, ceci implique que

$$S_r \not \supseteq T\left(n_r, \frac{n_r}{p_i}\right)^{(p^r-i)}$$
 et comme $S_r \supseteq T\left(n_r, \frac{n_r}{p_i}\right)^{(p^r)}$ on en déduit que

$$T\left(n_r, \frac{n_r}{p_j}\right)^{(p^r-i)}$$
 contient strictement $T\left(n_r, \frac{n_r}{p_j}\right)^{(p^r)}$. Or $T\left(n_r, \frac{n_r}{p_j}\right)$ est un

groupe cyclique d'ordre $p_j - 1$ et $T\left(n_r, \frac{n_r}{p_j}\right)^{(p^v)}$ est d'ordre

$$\frac{p_j-1}{PGCD(p_j-1,p^{\nu})}.$$

On a donc:

$$PGCD(p_{i}-1, p^{r}) > PGCD(p_{i}-1, p^{r-i})$$

d'où

$$p_j \equiv 1 \left(p^{r-i+1} \right)$$

Proposition I.2 bis.

Soit r un entier positif et K_r une extension cyclique de degré 2^r sur Q. Soit $(\Omega(n_i))_{1 \le i \le r}$ la suite de corps cyclotomiques associée à K_r . Alors les n_i vérifient les conditions suivantes:

I.2.A bis. Pour tout i de 1 à r, la décomposition de n_i en facteurs premiers est $n_i = 2^{u_i} p_1 p_2 \dots p_{m_i}$; la suite des $(m_i)_{1 \le i \le r}$ est non décroissante. La suite des u_i est non décroissante, éventuellement nulle. Si les u_i ne sont pas tous nuls, soit l le plus petit entier tel que $u_l \ne 0$:

— si
$$l = r$$
 alors $u_l = 2$ ou 3.

— si l < r alors $u_l = 3$ et $u_{i+1} = u_i + 1$ pour tout i tel que $r > i \ge l$.

I.2.B bis. Si
$$j \leq m_i$$
 alors $p_j \equiv 1 \ (2^{r-i+1})$.

Montrons que $u_l \leq 3$. Si l=1 c'est une conséquence immédiate de la proposition I.1 bis. Si $l \geq 2$, soit $h \in T(n_r, 2^3p_1 \dots p_{m_r})$. h est le carré d'un élément $\tau \in T(n_r, p_1 \dots p_{m_r})$.

Or $S_{l-1} \supseteq T(n_r, p_1 \dots p_{m_r})$, donc $\tau \in S_{l-1}$ et $h \in S_l$ d'après le lemme I.1. D'où:

$$T(n_r, 2^3 p_1 \dots p_{m_r}) \subseteq S_l$$
 et $K_l \subseteq \Omega(2^3 p_1 \dots p_{m_r})$.

Montrons que si l < r, alors $u_l = 3$.

En effet supposons $u_l = 2$, alors $K_l \subseteq \Omega\left(2^2p_1 \dots p_{m_r}\right)$ c'est-à-dire $S_l \supseteq T\left(n_r, 2^2p_1 \dots p_{m_r}\right)$. Or $T\left(n_r, p_1 \dots p_{m_r}\right)$ est produit direct de $T\left(n_r, 2^2p_1 \dots p_{m_r}\right)$ et d'un sous-groupe $\{1, a_0\}$ d'ordre 2. On a donc $a_0^2 = 1$ et $a_0^2 \in S_{l+1}$. D'où $a_0 \in S_l$ d'après le lemme I.1. D'où:

$$T(n_r, p_1 \dots p_{m_r}) \subseteq S_l$$
 et $K_l \subseteq \Omega(p_1 \dots p_{m_r})$

ce qui contredit la définition de l.

Pour montrer que $u_{i+1} = u_i + 1$ pour tout i entre l et r - 1, on utilise comme précédemment l'égalité:

$$T(n_r, 2^{u_i}p_1 \dots p_{m_r})^{(2)} = T(n_r, 2^{u_i+1} p_1 \dots p_{m_r})$$

La démonstration de la condition I.2.B bis est analogue à celle de la condition I.2.B.

I.4. Système de générateurs de S_r . Cas où p est impair

Si $u_r \neq 0$, $G(n_r)$ est produit direct des sous-groupes $T\left(n_r, \frac{n_r}{p^{u_r}}\right)$ et $T\left(n_r, \frac{n_r}{p_j}\right)j$ variant de 1 à m_r .

Si $u_r = 0$, $G(n_r)$ est produit direct des sous-groupes $T\left(n_r, \frac{n_r}{p_j}\right)$, j variant de 1 à m_r .

 b_0 désignera un générateur de $T\left(n_r, \frac{n_r}{p^{u_r}}\right)$ et pour tout j entre 1 et m_r , c_j un générateur de $T\left(n_r, \frac{n_r}{p_j}\right)$.

Proposition I.3.

Soit K_r une extension cyclique de degré p^r sur Q (p premier impair) et soit $(\Omega(n_i))_{1 \le i \le r}$ la suite de corps cyclotomiques associée à K_r .

— Dans le cas ou $2 \le u_r \le r$, il existe des nombres α_j , pour j = 0 et $2 \le j \le m_r$, tels que S_r soit engendré par:

$$\{c_1^{p_r}, c_1^{\alpha_0} b_0, c_1^{\alpha_j} c_j; 2 \leq j \leq m_r\}.$$

 α_0 vérifie la condition:

$$I.3.A: \alpha_0 \equiv 0 \ (p^{l-1}) \ \text{et} \ \alpha_0 \ \equiv 0 \ (p^l).$$

Les α_j , pour $2 \leq j \leq m_r$, vérifient la condition:

1.3.B: Si
$$m_{i-1} < j \le m_i$$
 alors $\alpha_j \equiv 0 (p^{i-1})$ et $\alpha_j \equiv 0 (p^i)$.

- Dans le cas ou $u_r = r + 1$, il existe des nombres α_j , pour $1 \leq j \leq m_r$, tels que S_r soit engendré par: $\{b_0^{pr}, b_0^{\alpha j} c_j; 1 \leq j \leq m_r\}$. Les α_j , pour $1 \le j \le m_r$, vérifient la condition I.3.B.
- Dans le cas ou $u_r = 0$, il existe des nombres α_i , pour $2 \le j$ $\leq m_r$, tels que S_r soit engendré par: $\{c_1^{pr}, c_1^{\alpha j}c_j; 2 \leq j \leq m_r\}$. Les α_j , pour $2 \le j \le m_r$, vérifient la condition I.3.B.

Démontrons tout d'abord le lemme suivant:

Lemme I.2.

- Si
$$u_r \neq 0$$
, $b_0^{p^{r-l+1}} \in S_r$ et $b_0^{p^{r-l}} \notin S_r$.

Supposons par exemple $2 \le u_r \le r$. On aura alors, d'après la condition I.2.A: $u_r = r - l + 2$ et $2 \le l \le r$. Il découle de la définition de l que

$$K_{l-1} \subseteq \Omega\left(\frac{n_r}{p^{u_r}}\right)$$
 et $K_l \not \equiv \Omega\left(\frac{n_r}{p^{u_r}}\right)$,

c'est-à-dire:

$$S_{l-1} \supseteq T\left(n_r, \frac{n_r}{p^{u_r}}\right)$$
 et $S_l \not\supseteq T\left(n_r, \frac{n_r}{p^{u_r}}\right)$.

D'où $b_0 \in S_{l-1}$ et $b_0 \notin S_l$ et l'on obtient le résultat en utilisant le lemme I.1.

De même, si $m_{i-1} < j \le m_i$ alors $K_{i-1} \subseteq \Omega\left(\frac{n_r}{p_j}\right)$ et $K_i \not \equiv \Omega\left(\frac{n_r}{p_j}\right)$. D'où $T\left(n_r, \frac{n_r}{p_j}\right) \subseteq S_{i-1}$ et $T\left(n_r, \frac{n_r}{p_j}\right) \not \equiv S_i$. Ce qui équivaut encore à $c_j \in S_{i-1}$ et $c_j \not \in S_i$.

Démonstration de la proposition I.3

Soit $\{e_0, e_1, \dots e_{m_r}\}$ une base du Z-module Z^{m_r+1} et μ l'application Z-linéaire de Z^{m_r+1} sur $G(n_r)$ telle que $\mu(e_0) = b_0$ et $\mu(e_i) = c_i$ pour tout i entre 1 et m_r .

Pour tout sous-groupe S de $G(n_r)$, les groupes-quotients de Z^{m_r+1} par $\mu^{-1}(S)$ d'une part et de G par S d'autre part sont isomorphes. Posons $H_r = \mu^{-1}(S_r)$ et cherchons une base $\{f_0, f_1, \dots f_{m_r}\}$ de H_r aussi simple que possible.

Les conditions du lemme I.2 sont équivalentes à:

$$--p^{r-l+1}e_0 \in H_r$$
 et $p^{r-l}e_0 \notin H_r$.

— Si
$$m_{i-1} < j \le m_i$$
 alors $p^{r-i+1}e_j \in H_r$ et $p^{r-i}e_j \notin H_r$.

On peut préciser de plus, que $2 \le l$ implique n_1 premier à p et comme on ne peut avoir $n_1 = 1$, p_1 divise donc n_1 et $m_1 \ge 1$. On aura donc $p^r e_1 \in H_r$ et $p^{r-1}e_1 \notin H_r$.

Cherchons une base de H_r : $\{f_0, f_1, ... f_{m_r}\}$ telle que la matrice de $(f_1, f_0, f_2, ... f_{m_r})$ par rapport à $(e_1, e_0, e_2, ... e_{m_r})$ soit triangulaire c'està-dire:

$$f_1 = a_{11} e_1$$

 $f_j = \sum_{0 \le k \le j} a_{kj} e_k$

On a

$$\operatorname{Det} A = \prod_{0 \le j \le m_r} |a_{jj}| = \operatorname{Card} \left(\frac{Z^{m_r+1}}{H_r} \right) = \operatorname{Card} \frac{G(n_r)}{S_r} = p_r.$$

Donc a_{11} divise p^r et comme d'autre part $p^{r-1}e_1 \notin H_r$, on en déduit que $|a_{11}| = p^r$ et $|a_{jj}| = 1$ pour tout j différent de 1.

On peut donc choisir $a_{11} = p^r$, $a_{jj} = 1$ et f_j de la forme $f_j = \alpha_j e_1 + e_j$ pour tout j différent de 1.

Si $m_{i-1} < j \le m_i$, multipliant l'égalité $f_j = \alpha_j e_1 + e_j$, par p^{r-i+1} ou p^{r-i} , on constate que $\alpha_j p^{r-i+1} e_1 \in H_r$ et $\alpha_j p^{r-i} e_1 \notin H_r$. D'où $\alpha_j \equiv 0$ (p^{i-1}) et $\alpha_j \equiv 0$ (p^i). On obtient de même $\alpha_0 \equiv 0$ (p^{l-1}) et $\alpha_0 \equiv 0$ (p^l).

L'ensemble des $\mu(f_j)$, j de 0 à m_r , est un système de générateurs de S_r . Dans les autres cas, on procède de la même façon: si $u_r = r + 1$, on a l = 1, $b_0^{pr} \in H_r$ et $b_0^{pr-1} \notin H_r$. On place donc b_0 en premier, c'est-à-dire que l'on cherche une base $(f_0, f_1, \dots f_{m_r})$ de H_r telle que la matrice A de $(f_0, f_1, \dots f_{m_r})$ par rapport à $(e_0, e_1, e_2 \dots e_{m_r})$ soit triangulaire.

 $Remarque: S_r$ n'est pas en général, produit direct des sous-groupes cycliques engendrés par chacun des générateurs obtenus.

I.5. Construction d'extensions cycliques K_r de degré $p^{\rm r}$ sur Q dans le cas où p est impair

Proposition I.4.

Réciproquement, soient p un nombre premier impair, r un entier positif $(\Omega(n_i))_{1 \le i \le r}$ une suite de corps cyclotomiques vérifiant les conditions I.2.A et I.2.B.

- $Si \ 2 \leq u_r \leq r$, soient des nombres α_0 , vérifiant la condition I.3.A, et α_j , pour $2 \leq j \leq m_r$, vérifiant la condition I.3.B. Soit S_r le sous-groupe de $G(n_r)$ engendré par: $\{c_1^{p_r}, c_1^{\alpha_0}b_0, c_1^{\alpha_j}c_j; 2 \leq j \leq m_r\}$.
- Si $u_r = r + 1$, soient des nombres α_j , pour $1 \le j \le m_r$, vérifiant la condition I.3.B et soit S_r le sous-groupe de $G(n_r)$ engendré par: $\{b_0^{pr}, b_0^{\alpha_j} c_j; 1 \le j \le m_r\}$.
- $Si \ u_r = 0$, soient des nombres α_j , pour $2 \le j \le m_r$, vérifiant la condition I.3.B et soit S_r le sous-groupe de $G(n_r)$ engendré par: $\{c_1^{pr}, c_1^{\alpha_j} c_j; 2 \le j \le m_r\}$.

Soit enfin, K_r le sous-corps de $\Omega(n_r)$, corps fixe de S_r . Alors: K_r est une extension cyclique sur Q, de degré p^r . La suite de corps cyclotomiques associée à K_r est la suite $(\Omega(n_i))_{1 \le i \le r}$.

Supposons $2
leq u_r
leq r$, utilisons à nouveau l'application μ de Z^{m_r+1} sur $G(n_r)$ définie dans la démonstration précédente. Soit H_r le sous-module de Z^{m_r+1} ayant pour base: $(f_0, f_1, ... f_{m_r})$ avec $f_1 = p^r e_1$, et $f_j = \alpha_j e_1 + e_j$ pour tout j différent de 1. On a $\mu(H_r) = S_r$ et d'autre part les conditions I.3.A et I.3.B impliquent que:

$$-p^{r-l+1}e_0 \in H_r$$
 et $p^{r-l}e_0 \notin H_r$.

— Si
$$m_{i-1} < j \le m_i$$
 alors $p^{r-i+1}e_j \in H_r$ et $p^{r-i}e_j \notin H_r$.

On en déduit tout d'abord que (p-1) $p^{r-l+1}e_0 \in H_r$ et compte tenu de la condition I.2.B (p_j-1) $e_j \in H_r$ pour $1 \le j \le m_r$. Le noyau de μ qui a pour base: $\{(p-1)$ $p^{r-l+1}e_0, (p_1-1)$ $e_1, ... (p_{m_r}-1)$ $e_{m_r}\}$ est donc contenu dans H_r .

On a donc
$$H_r = \mu^{-1}(S_r)$$
 et $\frac{Z^{m_r+1}}{H_r}$ est isomorphe à $\frac{G(n_r)}{S_r}$.

Le degré de K_r sur Q est donc égal à

$$\operatorname{Card}\left(\frac{G\left(n_{r}\right)}{S_{r}}\right) = \operatorname{Card}\left(\frac{Z^{m_{r}+1}}{H_{r}}\right) = p^{r}.$$

Comme $p^{r-1}e_1 \notin H_r$, $\frac{Z^{m_r+1}}{H_r}$ est donc un groupe cyclique. K_r est donc cyclique sur Q.

Soient H_i les sous-modules de Z^{m_r+1} ayant pour bases $\{p^ie_1, f_0, f_2, ... f_{m_r}\}$, i de 1 à r. Soient S_i les sous-groupes de $G(n_r)$ définis par $S_i = \mu(H_i)$ et K_i les sous-corps de $\Omega(n_r)$ corps fixes de chacun des S_i .

Pour tout i de 1 à r, H_i contient H_r , donc K_i est un sous-corps de K_r . L'indice de H_r dans H_i est p^{r-i} , donc K_i est le sous-corps de K_r de degré p^i sur Q.

On a
$$p^{r-l+1}e_0 \in H_r$$
 et $p^{r-l}e_0 \notin H_r$. D'où $b_0^{p^{r-l+1}} \in S_r$ et $b_0^{p^{r-l}} \notin S_r$. Donc $b_0^{(p-1)p^{r-l}} \notin S_r$, $T\left(n_r, \frac{n_r}{p}\right) \nsubseteq S_r$ d'où $K_r \nsubseteq \Omega\left(\frac{n_r}{p}\right)$.

De même si $m_{i-1} < j \le m_i$, on a alors $c_j^{p^{r-i+1}} \in S_r$ et $c_j^{p^{r-i}} \notin S_r$, et compte tenu du lemme I.1, $c_j \in S_{i-1}$ et $c_j \notin S_i$, c'est-à-dire:

$$K_{i-1} \subseteq \Omega\left(\frac{n_r}{p_j}\right)$$
 et $K_i \notin \Omega\left(\frac{n_r}{p_j}\right)$

 $(\Omega(n_i))_{1 \leq i \leq r}$ est donc la suite de corps cyclotomiques associée à K_r . Dans les cas $u_r = 0$ et $u_r = r + 1$, la démonstration est analogue.

I.6. Système de générateurs de S_r . Cas où p=2

Si K_r est une extension de degré 2^r sur Q, cyclique sur Q, on peut de la même façon donner un système de générateurs du sous-groupe S_r de $G(n_r)$.

On notera comme précédemment c_j un générateur de $T\left(n_r, \frac{n_r}{p_j}\right)$.

Si $u_r = 0$, $G(n_r)$ est produit direct des sous-groupes $T\left(n_r, \frac{n_r}{p_j}\right)$ j variant de 1 à m_r .

Si $u_r \ge 2$, a_0 désigne l'élément de $T\left(n_r, \frac{n_r}{2^{u_r}}\right)$ tel que $a_0 \equiv -1$ (2^{u_r}) .

Si $u_r = 2$, a_0 engendre $T\left(n_r, \frac{n_r}{4}\right)$ et $G\left(n_r\right)$ est produit direct de $T\left(n_r, \frac{n_r}{4}\right)$ et des sous-groupes $T\left(n_r, \frac{n_r}{p_i}\right)$, j de 1 à m_r .

Si $u_r \ge 3$, $T\left(n_r, \frac{n_r}{2^{u_r}}\right)$ est produit direct de $\{a_0, 1\}$ et de $T\left(n_r, \frac{n_r}{2^{u_r-2}}\right)$.

On notera a_0' un générateur de $T\left(n_r, \frac{n_r}{2^{u_r-2}}\right)$. $G\left(n_r\right)$ est alors produit direct des sous-groupes cycliques:

$$\{a_0, 1\}$$
, $T\left(n_r, \frac{n_r}{2^{u_r-2}}\right)$, et $T\left(n_r, \frac{n_r}{p_j}\right)$,

j variant de 1 à m_r .

Proposition I.3 bis

Soit K_r une extension cyclique de degré 2^r sur Q, et soit $(\Omega(n_i))_{1 \leq i \leq r}$ la suite de corps cyclotomiques associée à K_r .

— Dans le cas où $3 \le u_r \le r + 1$, il existe des nombres $\alpha_0, \alpha'_0, \alpha_j$, pour $2 \le j \le m_r$, tels que S_r soit engendré par:

$$\{c_1^{2^r}, c_1^{\alpha_0}a_0, c_1^{\alpha'_0}a'_0, c_1^{\alpha'_j}c_j; 2 \leq j \leq m_r\}.$$

 α_0 vérifie la condition: $\alpha_0 \equiv 0 \ (2^{r-1})$.

 α'_0 vérifie la condition:

I.3.A bis:
$$\alpha'_0 \equiv 0 \ (2^{l-1})$$
 et $\alpha'_0 \equiv 0 \ (2^{l})$.

Les α_j , pour $2 \leq j \leq m_r$, vérifient la condition:

I.3.B bis: Si
$$m_{i-1} < j \le m_i$$
, alors $\alpha_j = 0$ (2^{i-1}) et $\alpha_i \neq 0$ (2^i) .

— Dans le cas où $u_r = r + 2$, il existe des nombres α_j , pour $0 \le j \le m_r$, tels que S_r soit engendré par: $\{a_0^{'\alpha_0}a_0, a_0^{'\alpha_j}c_j; 1 \le j \le m_r\}$.

 α_0 vérifie la condition: $\alpha_0 \equiv 0 \ (2^{r-1})$.

Les α_i , pour $1 \le j \le m_r$, vérifient la condition I.3.B bis.

- Dans le cas où $u_r = 2$, il existe des nombres α_j , pour $2 \le j \le m_r$, vérifiant la condition I.3.B bis et tels que S_r soit engendré par: $\{c_1^{2^{r-1}}a_0, c_1^{\alpha}ic_j; 2 \le j \le m_r\}$.
- Dans le cas où $u_r = 0$, il existe des nombres α_j , pour $2 \le j \le m_r$, vérifiant la condition I.3.B bis et tels que S_r soit engendré par: $\{c_1^{2r}, c_1^{\alpha} i c_j; 2 \le j \le m_r\}$.

On démontre tout d'abord le lemme suivant:

LEMME I.2 bis

- Dans le cas où $u_r \ge 3$, $a_0'^{2^{r-l+1}} = 1$ et $a_0'^{2^{r-l}} \notin S_r$.
- Dans le cas où $u_r = 2$, $a_0 \notin S_r$.
- Si $m_{i-1} < j \le m_i$ alors $c_j^{2^{r-i+1}} \in S_r$ et $c_j^{2^{r-i}} \notin S_r$.

En effet si $u_r \ge 3$, la condition I.2.A bis implique $u_r = r - l + 3$. 2^{r-l+1} est donc de l'ordre de a_0 et d'autre part, si $a_0^{r-l+1} \in S_r$, alors:

$$\left(T\left(n_r,\frac{n_r}{2^{u_r-2}}\right)\right)^{(2^r-l)} = T\left(n_r,\frac{n_r}{2}\right) \subseteq S_r.$$

D'où $K_r \subseteq \Omega\left(\frac{n_r}{2}\right)$ et $\Omega\left(n_r\right)$ ne serait pas le plus petit corps cyclotomique

contenant K_r . De même si $u_r = 2$ et $a_0 \in S_r$ alors on aurait $K_r \subseteq \Omega\left(\frac{n_r}{4}\right)$.

Le reste de la démonstration est identique à la démonstration de I.3.

I.7. Construction d'extensions cycliques de degré $2^{\rm r}$ sur Q Proposition I.4 bis

Réciproquement, soit r un entier positif et $(\Omega(n_i))_{1 \le i \le r}$ une suite de corps cyclotomiques vérifiant les conditions I.2.A bis et I.2.B bis.

— Si $3 \le u_r \le r + 1$, soient des nombres: $\alpha_0 \equiv 0 \ (2^{r-1}), \ \alpha'_0$, vérifiant I.3.A bis, α_j , pour $2 \le j \le m_r$, vérifiant I.3.B bis. Soit S_r

le sous-groupe de $G(n_r)$ engendré par:

$$\{c_1^{2r}, c_1^{\alpha_0}a_0, c_1^{\alpha_0}a_0', c_1^{\alpha_j}c_j; 2 \leq j \leq m_r\}.$$

- $Si\ u_r = r + 2$, soient des nombres $\alpha_0 \equiv 0\ (2^{r-1})$ et α_j , pour $1 \leq j \leq m_r$ vérifiant I.3.B bis. Soit S_r le sous-groupe de $G(n_r)$ engendré par: $\{a_0^{'\alpha_0}a_0, a_0^{'\alpha_j}c_j; 1 \leq j \leq m_r\}$.
- Si $u_r = 2$, soient des nombres α_j , pour $2 \le j \le m_r$, vérifiant I.3.B bis. Soit S_r le sous-groupe de $G(n_r)$ engendré par:

$$\{c_1^{2^{r-1}}a_0, c_1^{\alpha_j}c_j; 2 \leq j \leq m_r\}.$$

— $Si \ u_r = 0$, soient des nombres α_j , pour $2 \le j \le m_r$, vérifiant I.3.B bis. Soit S_r le sous-groupe de $G(n_r)$ engendré par:

$$\{c_1^{2^r}, c_1^{\alpha j}c_j; 2 \leq j \leq m_r\}.$$

Soit enfin, K_r le sous-corps de $\Omega(n_r)$, corps fixe de S_r . Alors: K_r est une extension cyclique sur Q, de degré 2^r . La suite de corps cyclotomiques associée à K_r est la suite $(\Omega(n_i))_{1 \le i \le r}$.

I.8. Nombre d'extensions associées a une même suite de corps cyclotomiques

Proposition I.5.

Soit p un nombre premier impair et $(\Omega(n_i))_{1 \leq i \leq r}$ une suite de corps cyclotomiques vérifiant les conditions I.2.A et I.2.B. Le nombre d'extensions K_r de degré p^r sur Q, cycliques sur Q, admettant la suite $(\Omega(n_i))_{1 \leq i \leq r}$ comme suite de corps cyclotomiques associée est:

— Dans le cas où
$$2 \leq u_r \leq r$$
:
$$\varphi(p^{r-l+1}) \varphi(p^r)^{m_1-1} \prod_{2 \leq i \leq r} \varphi(p^{r-i+1})^{m_i-m_{i-1}}$$

— Dans le cas où
$$u_r = r + 1$$
, et en posant $m_0 = 0$:
$$\prod_{1 \le i \le r} \varphi(p^{r-i+1})^{m_i - m_{i-1}}$$

— Dans le cas où
$$u_r = 0$$
:

$$\varphi(p^r)^{m_1-1} \prod_{2 \le i \le r} \varphi(p^{r-i+1})^{m_i-m_{i-1}}$$

Si par exemple, $2
leq u_r
leq r$, on peut remplacer dans le système de générateurs de S_r donné en I.3, $c_1^{\alpha_0}b_0$ par $c_1^{\alpha_0+k_0p^r}b_0$, $c_1^{\alpha_2}c_2$ par $c_1^{\alpha_2+k_2p^r}c_2$, ... et choisir ainsi des α_i , compris entre 0 et p^r . Vérifiant cette condition supplémentaire, les valeurs de α_i sont alors déterminées de façon unique par le

choix d'un sous-groupe S_r . Il suffit alors de chercher le nombre de valeurs que peuvent prendre les α_i vérifiant cette condition, I.3.A et I.3.B.

Proposition I.5 bis.

Etant donnée une suite de corps cyclotomiques $(\Omega(n_i))_{1 \leq i \leq r}$ vérifiant les conditions I.2.A bis et I.2.B bis, le nombre d'extensions K_r , de degré 2^r sur Q, cycliques sur Q, admettant comme suite de corps cyclotomiques associée, la suite $(\Omega(n_i))_{1 \leq i \leq r}$ est:

- Dans le cas où
$$3 \le u_r \le r + 1$$
:
$$2^{r-l+1} 2^{(r-1)(m_1-1)} \prod_{2 \le i \le r} 2^{(r-i)(m_i-m_{i-1})}$$
- Dans le cas où $u_r = r + 2$, en posant $m_0 = 0$:
$$2 \prod_{1 \le i \le r} 2^{(r-i)(m_i-m_{i-1})}$$
- Dans le cas où $u_r = 0$ ou 2:
$$2^{(r-1)(m_1-1)} \prod_{2 \le i \le r} 2^{(r-i)(m_i-m_{i-1})}$$

I.9. Conditions d'inclusion de K_r dans $K_{r'}$

Proposition I.6.

Soit K_r une extension cyclique de degré p^r sur Q (p premier impair). Soit $(\Omega(n_i))_{1 \le i \le r}$ la suite de corps cyclotomiques associée à K_r et soit r' un entier strictement supérieur à r.

Il existe une extension $K_{r'}$ cyclique de degré $p^{r'}$ sur Q, contenant K_r , si et seulement si la suite $(\Omega(n_i))_{1 \le i \le r}$ vérifie la condition:

I.6.A: Pour tout i de 1 à r et tout
$$j \leq m_i$$
, $p_j \equiv 1 (p^{r'-i+1})$.

Compte tenu de I.2.B, la condition I.6.A est nécessaire.

Pour montrer qu'elle est suffisante, construisons une extension $K_{r'}$ contenant K_r .

Plaçons-nous dans le cas où $2 \le u_r \le r$ et posons $n'_i = n_i$ pour $1 \le i$ $\le r$ et $n'_i = p^{i-r}n_r$ pour $r < i \le r'$. La suite $(\Omega(n'_i))_{1 \le i \le r'}$ vérifie alors les conditions I.2.A et I.2.B.

Soit π la surjection de $G(n'_{r'})$ sur $G(n_r)$ qui à toute classe modulo $n'_{r'}$ fait correspondre la classe modulo n_r qui la contient. C'est aussi l'application qui à tout automorphisme de $\Omega(n'_{r'})$ fait correspondre sa restriction à $\Omega(n_r)$.

Soient $b_0', c_1', c_2', \dots c_{m_r}'$ des générateurs des sous-groupes

$$T\left(n'_{r'}, \frac{n'_{r'}}{p^{u'_{r'}}}\right), T\left(n'_{r'}, \frac{n'_{r'}}{p_1}\right), \dots T\left(n'_{r'}, \frac{n'_{r'}}{p_{m_r}}\right)$$

et soit

$$b_0 = \pi(b'_0), c_1 = \pi(c'_1), \dots c_{m_r} = \pi(c'_{m_r}).$$

Alors $b_0, c_1, \dots c_{m_r}$ sont des générateurs de

$$T\left(n_r, \frac{n_r}{p^{u_r}}\right), T\left(n_r, \frac{n_r}{p_1}\right), \dots T\left(n_r, \frac{n_r}{p_{m_r}}\right).$$

Soit S_r le sous-groupe de $G(n_r)$ admettant K_r comme corps fixe. D'après la proposition I.3, il existe $\alpha_0, \alpha_2, \dots \alpha_{m_r}$ vérifiant I.3.A et I.3.B et tels que S_r soit engendré par:

$$\{c_1^{pr}, c_1^{\alpha_0} b_0, c_1^{\alpha_j} c_j; 2 \leq j \leq m_r \}.$$

Soit $S'_{r'}$ le sous-groupe de $G(n'_{r'})$ engendré par : $\{c_1'^{pr'}, c_1'^{\alpha_0}b_0', c_1'^{\alpha_j}c_j'; 2 \le j \le m_r\}$ et soit $K_{r'}$ le sous-corps de $\Omega(n'_{r'})$ corps fixe de $S'_{r'}$. D'après la proposition I.4, $K_{r'}$ est une extension cyclique de degré $p^{r'}$ de Q.

D'autre part, on vérifie que $\pi(S'_{r'}) \subset S_r$ qui prouve que $K_{r'}$ contient K_r .

Remarque: On a construit, en fait, plusieurs extensions $K_{r'}$ contenant K_{r} . S_{r} étant donné, les α_{i} ne sont déterminés que modulo p^{r} et si l'on remplace α_{i} par α_{i}' tel que $\alpha_{i} \equiv \alpha_{i}'(p^{r})$ et $\alpha_{i} \neq \alpha_{i}'(p^{r'})$ on obtiendra un autre sous-groupe $S_{r'}$.

Dans le cas où $u_r = r + 1$, la démonstration est analogue.

Dans le cas où $u_r = 0$, on pose simplement $n'_i = n_r$ pour tout i entre r et r' et l'application π est alors l'identité.

Proposition I.6 bis.

Soit K_r une extension cyclique de degré 2^r sur Q, $(\Omega(n_i))_{1 \le i \le r}$ la suite de corps cyclotomiques associée à K_r et soit r' un entier strictement supérieur à r. Il existe une extension $K_{r'}$ cyclique de degré $2^{r'}$ sur Q, contenant K_r si et seulement si:

I.6.A bis: Pour tout i de 1 à r et tout $j \le m_i$, $p_j \equiv 1$ $(2^{r'-i+1})$. I.6.B bis: K_r est réelle.

I.6.A bis s'obtient à partir de I.2.B bis.

D'autre part il est nécessaire que K_r soit réelle car: $(-1)^2 = 1 \in S_r$, implique, d'après le lemme I.1, $-1 \in S_i$ pour tout i < r'. Donc tous les sous-corps stricts de $K_{r'}$ sont réels.

Pour démontrer la réciproque, on peut remarquer que:

si $u_r = 0$, -1 se décompose dans les sous-groupes $T\left(n_r, \frac{n_r}{p_j}\right)$ de la façon suivante:

$$-1 = \prod_{1 \le j \le m_r} c_j^{\frac{p_j-1}{2}}.$$

On déduit de la condition I.6.A bis que si $j \le m_i$, alors $\frac{p_j - 1}{2} \equiv 0 \ (2^{r-i+1})$

et compte tenu du lemme I.2 bis, $c_j^{\frac{p_j-1}{2}} \in S_r$. Donc $-1 \in S_r$ et K_r est réelle.

Donc si $u_r = 0$, I.6.B bis est une conséquence de I.6.A bis et on démontre l'existence de K_r comme précédemment.

Si maintenant $u_r \ge 2$, -1 se décompose dans $T\left(n_r, \frac{n_r}{2^{u_r}}\right)$ et $T\left(n_r, \frac{n_r}{p_j}\right)$ sous la forme:

$$-1 = a_0 \prod_{1 \le j \le m_r} c_j^{\frac{p_j - 1}{2}}.$$

La condition I.6.A bis implique donc comme précédemment, que $c_j^{\frac{p_j-1}{2}}$ $\in S_r$ d'où $-a_0 \in S_r$.

Si $u_r = 2$, $a_0 \notin S_r$ (lemme I.2 bis) donc les conditions I.6.A bis et I.6.B bis sont incompatibles.

Si $u_r \ge 3$, les conditions I.6.A bis et I.6.B bis impliquent donc $a_0 \in S_r$, d'où $\alpha_0 \equiv 0$ (2^r).

On termine la démonstration comme précédemment.

CHAPITRE II

DÉCOMPOSITION, RAMIFICATION, DISCRIMINANT

II.1. RAPPELS

Soient K et K' deux corps de nombres, K' étant abélien sur K. Soient A et A' leurs anneaux d'entiers respectifs et $\mathfrak p$ un idéal premier de A. $\mathfrak p A'$ se décompose en idéaux premiers de A' sous la forme: $\mathfrak p A' = (\prod_{1 \le v \le g} \mathfrak p_v)^e$

et pour tout v de 1 à g, $\frac{A'}{p_v}$ a pour dimension $f \operatorname{sur} \frac{A}{p}$. f est le degré résiduel de $p_v \operatorname{sur} K$ et e l'indice de ramification de $p_v \operatorname{sur} K$ (ou de p dans K'). On a les relations:

$$efg = [K':K]$$
 et $N_{K'/K}(\mathfrak{p}_v) = \mathfrak{p}^f$.

Les \mathfrak{p}_v , $1 \leq v \leq g$, sont exactement les idéaux premiers de A' contenant \mathfrak{p} . Soit G(K'/K) le groupe de Galois de K' sur K. L'ensemble des σ de G(K'/K) tel que $\sigma(\mathfrak{p}_v) = \mathfrak{p}_v$ est un sous-groupe de G(K'/K) ne dépendant pas de v et appelé groupe de décomposition de \mathfrak{p}_v sur K (ou de \mathfrak{p} dans K'). Son cardinal est égal à ef. S'il est égal à 1, on dit que \mathfrak{p} se décompose complètement dans K'.

L'ensemble des σ de G(K'/K) tel que $\sigma(x) - x$ appartienne à \mathfrak{p}_v pour tout x de A', est un sous-groupe de G(K'/K) ne dépendant pas de v et appelé groupe d'inertie de \mathfrak{p}_v sur K (ou de \mathfrak{p} dans K').

Son cardinal est égal à e. p est dit ramifié dans K' si $e \ge 2$ ([1] chapitre 5; [2] chapitre 5).

Soit K'' un corps de nombres, contenant K' et abélien sur K, et soit A'' son anneau d'entiers. Si $\mathfrak{p}_v A''$ se décompose en idéaux premiers de A'' sous la forme: $\mathfrak{p}_v A'' = (\prod_{1 \leq v' \leq g'} \mathfrak{p}_{vv'})^{e'}$ et si f' désigne le degré résiduel de

 $\mathfrak{p}_{vv'}$ sur K', les quantités e', g', f' sont les mêmes pour tout v entre 1 et g. L'indice de ramification de \mathfrak{p} dans K'' est ee' et son degré résiduel ff'. Si D est le groupe de décomposition de $\mathfrak{p}_{vv'}$ sur K et π l'application de G(K''/K) sur G(K'/K) qui à tout automorphisme de K'' fait correspondre sa restriction à K', alors $D \cap G(K''/K')$ est le groupe de décomposition de $\mathfrak{p}_{vv'}$ sur K' et $\pi(D)$ est le groupe de décomposition de \mathfrak{p}_v sur K. On a un résultat analogue avec les groupes d'inertie ([3] chapitre 1).

On appelle corps de décomposition de $\mathfrak p$ dans K' le sous-corps de K' laissé invariant par les éléments du groupe de décomposition de $\mathfrak p$ dans K'. C'est le plus grand corps, compris entre K et K', dans lequel $\mathfrak p$ se décompose complètement. De même le corps d'inertie de $\mathfrak p$ dans K' est le sous-corps de K' laissé invariant par les éléments du groupe d'inertie de $\mathfrak p$ dans K'. C'est le plus grand corps compris entre K et K', dans lequel $\mathfrak p$ ne se ramifie pas ([4] chapitre 2).

Différente: L'ensemble des x de K' tels que $Tr_{K'/K}(xA') \subseteq A$, est un idéal fractionnaire de K' dont l'inverse est la différente de K' sur K notée $\delta_{K'/K}$. Elle est engendrée par les F'(x), où x parcourt A' et F désigne le polynome minimal de x sur K. Si $\mathfrak{p}_1 \dots \mathfrak{p}_m$ sont les idéaux de A' ramifiés sur K, alors:

$$\delta_{K'/K} = \prod_{1 \le v \le m} \mathfrak{p}_v^{h_v}.$$

Si e_v est l'indice de ramification de \mathfrak{p}_v sur K on a: $h_v \geq e_v - 1$ et $h_v = e_v - 1$ si et seulement si e_v est premier avec la caractéristique du corps $\frac{A'}{\mathfrak{p}_v}$. Le discriminant de K' sur K est $N_{K'/K}$ ($\delta_{K'/K}$) et on a la formule de transitivité: $\delta_{K''/K} = \delta_{K''/K'} \delta_{K'/K}$ ([2] chapitre 4, [5] chapitre 3).

Corps cyclotomiques: Dans un corps cyclotomique $\Omega(p^s)$, (p premier) p est leur seul nombre premier ramifié et: $p = (1 - \xi)^{\varphi(p^s)}$, ξ désignant une racine primitive $(p^s)^{\text{eme}}$ de 1, est la décomposition de p en idéaux premiers de $\Omega(p^s)$.

p est ramifié dans un corps cyclotomique $\Omega(n)$ si et seulement si p divise n. Si n s'écrit: $n = p^s n'$ avec n' premier avec p, alors le corps d'inertie de p dans $\Omega(n)$ est $\Omega(n')$ et l'indice de ramification de p dans $\Omega(n)$ est $\varphi(p^s)$. Si q est premier avec n, la classe de q modulo n est l'automorphisme de Fræbenius, et elle engendre dans G(n) le groupe de décomposition de q dans $\Omega(n)$. Le degré résiduel de q dans $\Omega(n)$ est donc le plus petit entier f tel que: $q^f \equiv 1(n)$.

Si ξ est une racine primitive n^{eme} de 1, $\{1, \xi, ..., \xi^{\varphi(n)-1}\}$ est une base de l'anneau des entiers de $\Omega(n)$ sur Z. Le discriminant de $\Omega(n)$ sur Q est:

$$\frac{n^{\varphi(n)}}{\prod p^{\frac{\varphi(n)}{p-1}}}$$

ce dernier produit étant étendu à tous les nombres premiers p divisant n ([5] chapitre 4).

II.2. Nombres premiers ramifiés dans une extension abélienne de ${\cal Q}$ Lemme II.1.

Soient K une extension abélienne de Q et Ω (n) le plus petit corps cyclotomique contenant K. Alors un nombre premier p se ramifie dans K si et seulement s'il divise n.

Si p est ramifié dans K, alors il est ramifié dans tout surcorps de K, donc dans $\Omega(n)$ et il divise n.

Réciproquement, si p divise n, posons $n = p^s n'$, avec n' premier avec p.

Alors le corps d'inertie de p dans $\Omega(n)$ est $\Omega(n')$ et son groupe d'inertie T(n, n').

Soit π l'application canonique de G(n) sur $G(^K/_Q)$ qui à tout automorphisme de $\Omega(n)$ fait correspondre sa restriction à K. π a pour noyau $G(^{\Omega(n)}/_K)$ et comme $\Omega(n)$ est le plus petit corps cyclotomique contenant K, on a donc:

$$\Omega(n') \not \equiv K$$
 c'est-à-dire $T(n, n') \not \equiv G(\Omega(n)/K)$.

 π (T(n, n')) qui est le groupe d'inertie de p dans K, n'est donc pas réduit à l'identité et p se ramifie dans K.

II.3. Décomposition d'un nombre q premier, non ramifié dans K_r

 K_r désigne une extension cyclique de degré p^r sur Q (p premier) et $(\Omega(n_i))_{1 \le i \le r}$ la suite de corps cyclotomiques associée. Les notations restent les mêmes qu'au premier chapitre. q est un nombre premier non ramifié dans K_r , c'est-à-dire d'après le lemme précédent, premier avec n_r .

Si p est impair et suivant que $u_r = 0$ ou $u_r \ge 2$,

soit
$$q \equiv c_1^{\beta_1} c_2^{\beta_2} \dots c_{m_r}^{\beta_m} r(n_r)$$
 ou
$$q \equiv b_0^{\beta_0} c_1^{\beta_1} \dots c_{m_r}^{\beta_m} r(n_r),$$

la décomposition de q dans $G(n_r)$.

On posera alors:

— Si
$$2 \le u_r \le r : V(q) = \alpha_0 \beta_0 + \sum_{2 \le j \le m_r} \alpha_j \beta_j - \beta_1$$

— Si
$$u_r = r + 1: V(q) = \sum_{1 \le j \le m_r} \alpha_j \beta_j - \beta_0$$

— Si
$$u_r = 0: V(q) = \sum_{2 \le j \le m_r} \alpha_j \beta_j - \beta_1$$

De même si p=2 et suivant que $u_r=0$, ou $u_r=2$, ou $u_r\geq 3$, soit

$$q \equiv c_1^{\beta_1} c_2^{\beta_2} \dots c_{m_r}^{\beta_{m_r}}(n_r)$$
 ou $q \equiv a_0^{\beta_0} c_1^{\beta_1} \dots c_{m_r}^{\beta_{m_r}}(n_r)$

ou

$$q \equiv a_0^{\beta_0} a_0^{'\beta_0'} c_1^{\beta_1} \dots c_{m_r}^{\beta_{m_r}} (n_r)$$

la décomposition de q dans $G(n_r)$. On posera alors:

- Si
$$3 \le u_r \le r + 1 : V(q) = \alpha_0 \beta_0 + \alpha'_0 \beta'_0 + \sum_{2 \le j \le m_r} \alpha_j \beta_j - \beta_1$$
- Si
$$u_r = r + 2 \qquad : V(q) = \sum_{0 \le j \le m_r} \alpha_j \beta_j - \beta'_0$$
- Si
$$u_r = 2 \qquad : V(q) = 2^{r-1} \beta_0 + \sum_{2 \le j \le m_r} \alpha_j \beta_j - \beta_1$$
- Si
$$u_r = 0 \qquad : V(q) = \sum_{2 \le j \le m_r} \alpha_j \beta_j - \beta_1$$

Proposition II.1.

Soient K_r une extension cyclique de degré p^r sur Q et q un nombre premier, ne divisant pas n_r . Alors la décomposition de q en idéaux premiers de K_r est de la forme:

$$q = \prod_{1 \le v \le g_q} q_v$$

et g_q est le PGCD de p^r et de V(q).

Le groupe de décomposition de q dans $\Omega(n_r)$ est le sous-groupe de $G(n_r)$ engendré par la classe de q modulo n_r et la restriction de q, considéré comme automorphisme de $\Omega(n_r)$, à K_r engendre le groupe de décomposition de q dans K_r .

Le degré résiduel f_q de q dans K_r est donc l'ordre de q S_r dans $\frac{G(n_r)}{S_r}$. Supposons par exemple p impair et $2 \le u_r \le r$ et considérons alors:

$$\begin{split} s &= \left(c_1^{\alpha_0} \, b_0\right)^{\beta_0} \left(c_1^{\alpha_2} \, c_2\right)^{\beta_2} \dots \left(c_1^{\alpha_{m_r}} \, c_{m_r}\right)^{\beta_{m_r}} \\ &= b_0^{\beta_0} \, c_1^{V(q) + \beta_1} \, c_2^{\beta_2} \dots \, c_{m_r}^{\beta_{m_r}} \end{split}$$

D'après la proposition I.3, $s \in S_r$ et l'on a modulo n_r :

$$sq^{-1} = c_1^{V(q)}$$
.

 f_q est donc égal à l'ordre de $c_1^{V(q)}$ S_r dans $\frac{G(n_r)}{S_r}$ et comme l'ordre de c_1S_r

est p^r (lemme I.2), on a donc:

$$f_q = \frac{p^r}{PGCD(p^r, V(q))}$$

et

$$g_q = PGCD(p^r, V(q)).$$

II.4. INDICE DE RAMIFICATION DANS UNE EXTENSION K_r

Proposition II.2.

Soient K_r une extension cyclique de degré p^r sur Q et $(\Omega(n_i))_{1 \le i \le r}$ la suite de corps cyclotomiques associée à K_r . Pour tout i de 1 à r et tout j tel que $m_{i-1} < j \le m_i$, l'indice de ramification de p_j dans K_r est p^{r-i+1} .

Si $u_r \neq 0$, l'indice de ramification de p dans K_r est p^{r-l+1} .

Soit j tel que $m_{i-1} < j \le m_i$. p_j divise donc n_i et ne divise pas n_{i-1} . C'est-à-dire que p_j se ramifie dans Ω (n_i) et ne se ramifie pas dans Ω (n_{i-1}) . D'après le lemme II.1, ceci implique que p_j se ramifie dans K_i et ne se ramifie pas dans K_{i-1} . K_{i-1} est donc le corps d'inertie de p_j dans K_r et l'indice de ramification de p_j dans K_r est égal à: $[K_r:K_{i-1}]$.

De même si $u_r \neq 0$, K_{l-1} est le corps d'inertie de p dans K_r .

II.5. DISCRIMINANT DE K_r

Proposition II.3.

 K_r est une extension cyclique de degré p^r sur Q et $(\Omega(n_i))_{1 \le i \le r}$ la suite de corps cyclotomiques associée. Le discriminant de K_r sur Q est:

— Dans le cas où $u_r = 0$:

$$\prod_{1 \le i \le r} \prod_{m_{i-1} < j \le m_i} p_j^{p^{i-1} (p^{r-i+1}-1)}$$

— Dans le cas où p est impair et $u_r \ge 2$:

$$p^{p^{l-1}\left((r-l+2)p^{r-l+1}-\frac{p^{r-l+1}-1}{p-1}-1\right)}\prod_{1\leq i\leq r}\prod_{m_{i-1}< j\leq m_{i}}p_{j}^{p^{i-1}(p^{r-i+1}-1)}$$

— Dans le cas où
$$p = 2$$
 et $u_r = 2$:

$$2^{2^r} \prod_{1 \le i \le r} \prod_{m_{i-1} < j \le m_i} p_j^{2^{i-1}(2^{r-i+1}-1)}$$

— Dans le cas où p = 2 et $u_r \ge 3$:

$$2^{2^{l-1}((r-l+2)2^{r-l+1}-1)} \prod_{1 \leq i \leq r} \prod_{m_{i-1} < j \leq m_i} p_j^{2^{i-1}(2^{r-i+1}-1)}$$

Supposons tout d'abord $u_r = 0$. Désignons par A l'anneau des entiers de K_r . Pour tout j de 1 à m_r soit $p_j A = \prod_{1 \le v \le g_j} \mathfrak{p}_{jv}^{e_j}$ la décomposition de $p_j A$ dans K_r et soit f_j le degré résiduel de p_j dans K_r . Les p_j étant les seuls nombres premiers ramifiés dans K_r et leurs indices de ramification e_j étant premiers à p_j , la différente δ de K_r sur Q est:

$$\delta = \prod_{1 \le j \le m_r} \prod_{1 \le v \le g_j} \mathfrak{p}_{jv}^{e_j - 1}$$

Le déterminant D_f , de K_r sur Q, est donc $D = N_{K_r/Q}(\delta)$ et comme $N_{K_r/Q}(\mathfrak{p}_{jv}) = p_j^f$ on obtient:

$$D = \prod_{1 \le j \le m_r} p_j^{f_{j}g_{j}(e_{j}-1)}$$

qui s'écrit également:

$$D = \prod_{1 \le i \le r} \prod_{m_{i-1} < j \le m_i} p_j^{f_{j}g_{j}(e_j-1)}.$$

Si $m_{i-1} < j \le m_i$, alors $e_j = p^{r-i+1}$ d'après la proposition II.2 et comme $e_j f_j g_j = p^r$, on obtient le résultat annoncé.

Supposons maintenant p impair et $u_r \ge 2$.

Dans ce cas u_r et l sont liés par la relation $u_r = r - l + 2$. On notera toujours D le discriminant de K_r sur Q et on introduit la décomposition $\delta = \delta_0 \delta_1 \dots \delta_{m_r}$ de la différente de K_r sur Q, en idéaux: $\delta_0, \delta_1, \dots \delta_{m_r}$, tels que $D_0 = N_{K_r/Q}(\delta_0)$ soit une puissance de p et tels que $D_j = N_{K_r/Q}(\delta_j)$ soit une puissance de p et tels que p et tels que p soit une puissance de p et tels que p soit une puissance de p et tels que p soit une puissance de p soit p soit une puissance de p soit p soit une puissance de p soit p soi

La formule de transitivité sur les différentes donne:

$$D_0'' = N_{\Omega(n_r)/Q}(\delta_0 \delta_0') = N_{\Omega(n_r)/Q}(\delta_0') N_{K_r/Q}(\delta_0^{[\Omega(n_r):K_r]})$$

d'où

$$D_0'' = N_{\Omega(n_r)/Q}(\delta_0') D_0^{\frac{\varphi(n_r)}{p^r}}$$

Calcul de $N_{\Omega(n_r)/O}(\delta_0)$:

Soient A et A_{Ω} les anneaux d'entiers respectifs de K_r et $\Omega(n_r)$ et soit $pA = \prod_{1 \leq v \leq g} \mathfrak{p}_v^e$ la décomposition de pA dans K_r et f le degré résiduel de p dans K_r . Soient:

 $\mathfrak{p}_v A_\Omega = \prod_{1 \leq v' \leq g'} \mathfrak{p}_{vv'}^{e'}$ la décomposition de $\mathfrak{p}_v A_\Omega$ dans Ω (n_r) et f' le degré résiduel de \mathfrak{p}_v dans Ω (n_r) . L'indice de ramification e de p dans K_r est p^{r-l+1} (proposition II.2) et puisque l'indice de ramification ee' de p dans Ω (n_r) est φ $(p^{u_r}) = (p-1) p^{r-l+1}$, on a donc e' = p-1 et e' est premier à p. On en déduit que:

$$\delta'_0 = \prod_{\substack{1 \le v \le g \\ 1 \le v' \le g'}} \mathfrak{p}_{vv'}^{p-2}$$

et comme $N_{\Omega(n_r)/Q}(\mathfrak{p}_{vv'})=p^{f'}$, on aura donc:

$$N_{\Omega(n_r)/Q}(\delta_0') = p^{ff'gg'(p-2)} = p^{\frac{(p-2)\varphi(n_r)}{(p-1)p^{r-l+1}}}$$

D'autre part on a $D_0'' = p^{\varphi(n_r)} \left(r - l + 2 - \frac{1}{p-1} \right)$ d'où l'égalité:

$$p^{\varphi(n_r)(r-l+2-\frac{1}{p-1})} = p^{\frac{(p-2)\varphi(n_r)}{(p-1)p^{r-l+1}}} D_0^{\frac{\varphi(n_r)}{p^r}}$$

dont on extrait la valeur de D_0 .

Dans le cas p=2 et $u_r=2$; gardant les mêmes notations on a e'=1 et $\delta_0'=1$. On utilise alors comme précédemment la valeur $D_0''=2^{\varphi(n_r)}$.

Supposons maintenant p = 2 et $u_r \ge 3$:

On garde les mêmes notations que précédemment. On a cette fois: $u_r = r - l + 3$ et l'indice de ramification ee' de 2 dans $\Omega\left(n_r\right)$ est maintenant 2^{r-l+2} d'où e' = 2. δ_0' ne peut donc être obtenue comme précédemment. On introduit un corps E compris entre K_r et $\Omega\left(n_r\right)$ de la façon suivante: reprenant les notations introduites dans la proposition I.3 bis posons:

$$h = a_0^{\prime \frac{\alpha_0}{2^{l-1}}} a_0$$
 et $S = \{h, 1\}.$

h est d'ordre 2, S est donc un sous-groupe de $G(n_r)$. Dans le cas où l=1, c'est-à-dire $u_r=r+2$, il apparaît immédiatement que S est inclus dans S_r . Si $l \ge 2$, c'est-à-dire si $3 \le u_r \le r+1$ on constate que:

 $\left(\frac{\alpha'_0}{2^{l-1}}+1\right)\alpha_0\equiv 0\,(2^r)$ et qu'il existe donc un entier β tel que:

$$\left(\frac{\alpha'_0}{2^{l-1}}+1\right)\alpha_0 + 2^r\beta = p_1 - 1.$$

D'où

$$h = \left(c_{10}^{\alpha'} a_{0}'\right)^{\frac{\alpha_{0}}{l-1}} c_{10}^{\alpha_{0}} a_{0} c_{1}^{2r \beta}$$

qui montre que S est inclus dans S_r . E désigne le corps fixe de S, E contient donc K_r .

Le groupe d'inertie de 2 dans $\Omega\left(n_r\right)$ est $T\left(n_r, \frac{n_r}{2^{u_r}}\right)$, le groupe d'inertie de \mathfrak{p}_{vv} , sur E sera donc $T\left(n_r, \frac{n_r}{2^{u_r}}\right) \cap S = S$. \mathfrak{p}_v n'est donc pas ramifié dans E et la différente de E sur K_r est première avec 2.

Si D' est le discriminant de E sur Q, et D_0' la plus grande puissance de 2 divisant D', on aura alors:

$$D_0' = N_{E/Q}(\delta_0) = N_{E/K_r}(D_0) = D_0^{\frac{\varphi(n_r)}{2^{r+1}}}$$

Il reste à calculer D_0' . Pour cela introduisons A_E l'anneau des entiers de E et ξ une racine primitive $(n_r)^{\text{eme}}$ de 1. A partir de l'égalité: $\xi^2 = -\xi^{h+1} + (\xi + \xi^h) \xi$, on constate par récurrence sur t que ξ^t peut toujours se mettre sous la forme $a + b\xi$, avec a et b dans A_E . Comme $\{1, \xi, ..., \xi^{\varphi(n_r)-1}\}$ est une base des entiers de $\Omega(n_r)$ sur Z, on en déduit que $\{1, \xi\}$ est une base des entiers de $\Omega(n_r)$ sur A_E . Le polynome $X^2 - (\xi + \xi^h) X + \xi^{h+1}$ est le polynome minimal de ξ sur E et la différente δ'' de $\Omega(n_r)$ sur E sera donc l'idéal engendré par $\xi - \xi^h$.

La formule de transitivité sur les différentes appliquée entre Q, E et $\Omega\left(n_r\right)$ va donner:

$$D'' = D'^{[\Omega(n_r):E]} N_{\Omega(n_r)/Q}(\delta'') = D'^2 N_{\Omega(n_r)/Q}(\delta'')$$

Pour obtenir la valeur de $N_{\Omega(n_r)/Q}(\delta'')$, montrons que ξ^{h-1} est une racine primitive $(2^{r-l+2})^{\text{eme}}$ de 1. En effet:

 $h \in T\left(n_r, \frac{n_r}{2^{u_r}}\right)$ donc $h - 1 \equiv 0\left(\frac{n_r}{2^{u_r}}\right)$ et d'autre part, h étant premier à 2, on a $h - 1 \equiv 0$ (2).

Mais $h-1 \not\equiv 0$ (4), sinon h appartiendrait à $T\left(n_r, \frac{n_r}{2^{u_r-2}}\right)$ et ce sous-groupe est engendré par a_0' .

On a donc finalement

$$h - 1 \equiv 0 \left(\frac{n_r}{2^{r-l+2}} \right) \quad \text{et} \quad h - 1 \equiv 0 \left(\frac{n_r}{2^{r-l+1}} \right)$$

On en déduit que

$$N_{\Omega(2^{r-l+2})/Q}(1-\xi^{h-1}) = 2$$

et

$$N_{\Omega(n_r)/O}(\delta'') = 2^{\frac{\varphi(n_r)}{2^{r-l+1}}}$$

Comme D_0'' est égal à $2^{\varphi(n_r)(r-l+2)}$, on en déduit les égalités:

$$2^{\varphi(n_r)(r-l+2)} = D'^2 \cdot 2^{\frac{\varphi(n_r)}{2^{r-l+1}}} = D_0^{\frac{\varphi(n_r)}{2^r}} \cdot 2^{\frac{\varphi(n_r)}{2^{r-l+1}}}$$

D'où l'on déduit la valeur de D_0 .

Proposition II.4.

Le discriminant de K_r , extension cyclique de degré p^r sur Q, ne dépend que de la suite de corps cyclotomiques associée à K_r . Réciproquement, si deux extensions cycliques de degré p_r sur Q, ont même discriminant sur Q, alors leurs suites de corps cyclotomiques sont égales.

C'est une conséquence de la proposition II.3.

Précisons pour la réciproque, que si K_r est une extension cyclique de degré p^r sur Q (p premier, par exemple) et si l'on connaît son discriminant D sur Q, alors les nombres premiers divisant n_r sont exactement ceux qui divisent D. L'exposant de p_j dans la décomposition de D en facteurs premiers n'est pas divisible par p^i si et seulement si $j
eq m_i$ c'est-à-dire si et seulement si p_j divise n_i . Ceci permet de préciser quels sont les diviseurs de n_i distincts de p. Si p ne divise pas p0, on a p1 et alors tous les p2 sont p3 et alors tous les p3 et alors tous les p4 sont p5 et alors tous les p5 et alors tous les p6 et alors tous les p7 et alors tous les p8 et alors tous les p9 et alor

nuls. Si
$$p$$
 divise D , et comme $(r-l+2) p^{r-l+1} - \frac{p^{r-l+1}-1}{p-1} - 1$ est

premier à p, on obtient, à partir de la valeur de l'exposant de p dans la décomposition de D, la valeur de l, donc la suite $(u_i)_{1 \le i \le r}$.

CHAPITRE III

BASES D'ENTIERS

III.1. RAPPELS

Bases d'entiers normales

Soit K une extension abélienne de Q. On dit qu'un élément θ de K engendre une base normale des entiers de K si l'anneau des entiers de K admet pour base, sur Z, l'ensemble des conjugués de θ .

Si K possède une base d'entiers normale, engendrée par θ , alors:

— Tout sous-corps L de K possède également une base d'entiers normale engendrée par $Tr_{K/L}(\theta)$.

En effet, tout entier x de L, s'écrit:

$$x = \sum_{\sigma \in G(K/Q)} \lambda_{\sigma} \sigma(\theta), \ \lambda_{\sigma} \text{ appartenant à } Z.$$

Puisque x est invariant par tout L-automorphisme de K, alors $\lambda_{\sigma} = \lambda_{\sigma}$, pour tous σ et σ' situés dans la même classe modulo G(K/L).

— La trace de θ sur Q est égale à ± 1 .

En effet Z n'a pas d'autre base d'entiers que $\{1\}$ ou $\{-1\}$.

Corps cyclotomiques

 ξ étant une racine primitive n^{eme} de 1, on notera $\Phi_n(X)$ le n^{eme} polynome cyclotomique, c'est-à-dire le polynome minimal de ξ sur Q. On rappelle qu'on a la relation: $X^n - 1 = \prod_{k \mid n} \Phi_k(X)$.

Si $n = p_1^{u_1} \dots p_m^{u_m}$ est la décomposition de n en facteurs premiers, on a:

$$\Phi_n(X) = \Phi_{p_1 \dots p_m} \left(X^{p_1^{u_1-1} \dots p_m^{u_m-1}} \right)$$

([6] chapitre 8).

III.2. BASES D'ENTIERS DANS LES CORPS CYCLOTOMIQUES

LEMME III.1.

Soit d un entier sans facteur carré et ξ une racine primitive $d^{\rm eme}$ de 1. On a alors $Tr_{\Omega(d)/Q}(\xi) = (-1)^m$, m étant le nombre de facteurs premiers de d.

On peut raisonner par récurrence sur m, en utilisant: $\Phi_d = \frac{X^d - 1}{\prod\limits_{\substack{k \mid d \\ k \neq d}} \Phi_k}$.

Pour tout diviseur k de d soit m_k le nombre de facteurs premiers de k. D'après l'hypothèse de récurrence, les Φ_k sont de la forme:

$$X^{\varphi(k)} - (-1)^{m_k} X^{\varphi(k)-1} + \dots$$

et $\prod_{\substack{k \mid d \\ k \neq d}} \Phi_k$ sera de la forme:

$$X^{\varphi(d)-d} - s X^{\varphi(d)-d-1} + \dots$$
 avec $s = \sum_{\substack{k | d \ k \neq d}} (-1)^{mk}$.

Comme le nombre de diviseurs k de d, possèdant m_k facteurs premiers est $C_m^{m_k}$, on aura donc:

$$s = \sum_{0 \le j \le m-1} (-1)^j C_m^j = -(-1)^m.$$

 Φ_d sera donc de la forme:

$$X^{\varphi(d)} - (-1)^m X^{\varphi(d)-1} + \dots$$

LEMME III.2.

Soient n et d deux entiers tels que d soit sans facteur carré et premier avec n. Soit ξ une racine primitive $(nd)^{\text{eme}}$ de 1. Soient F l'ensemble des racines primitives $(nd)^{\text{eme}}$ de 1 et F'' l'ensemble des ξ^b tels que: $0 \le b < \varphi(nd)$ et $PGCD(b, n) \ne 1$.

Alors le module engendré sur Z par $F \cup F''$ est l'anneau des entiers de Ω (nd).

Comme $\{1, \xi, \xi^2, ..., \xi^{\varphi(nd)-1}\}$ est une base de l'anneau des entiers de Ω (nd), il suffit de montrer que si c est premier avec n et non premier avec d, alors ξ^c appartient au module engendré par F.

Soit v = PGCD(c, d). $\xi^{\overline{v}}$ est une racine primitive v^{eme} de 1 et v est sans facteur carré. D'après le lemme III.1, on a la relation:

$$\pm 1 = \sum_{\substack{0 < k < v \\ PGCD(k,v) = 1}} \xi^{\frac{ndk}{v}} \text{ d'où: } \xi^{c} = \pm \sum_{\substack{0 < k < v \\ PGCD(k,v) = 1}} \xi^{\frac{ndk}{v} + c}$$

On vérifie que $\frac{ndk}{v} + c$ et nd sont premiers entre eux, c'est-à-dire que les $\frac{ndk}{v} + c$ appartiennent à F.

LEMME III.3.

 $\Omega\left(d\right)$ possède une base d'entiers normale si et seulement si d est sans facteur carré.

En effet si d est sans facteur carré, alors d'après le lemme III.2, appliqué à n=1, les conjugués de ξ , racine primitive $d^{\rm eme}$ de 1, engendrent l'anneau des entiers de Ω (d). Comme ils sont en nombre égal à $[\Omega(d):Q]$, ils forment donc une base de l'anneau des entiers de $\Omega(d)$. Réciproquement soit p un nombre premier et ξ une racine primitive $(p^2)^{\rm eme}$ de 1. Comme $\Phi_{p2}(X) = \Phi_p(X^p)$, on a $Tr_{\Omega(p2)/Q}(\xi) = 0$. D'autre part:

$$Tr_{\Omega(p^2)/Q}(\xi^p) = p Tr_{\Omega(p)/Q}(\xi^p) = -p$$

et la trace de toute racine $(p^2)^{\rm eme}$ de 1, non primitive, est multiple de p. Ainsi la trace de tout entier de $\Omega(p^2)$ est multiple de p, donc ne peut être égale à 1. $\Omega(p^2)$ n'a pas de base d'entiers normale, non plus que tout surcorps de $\Omega(p^2)$. En particulier $\Omega(d)$ n'a pas de base d'entiers normale si d possède un facteur carré.

III.3. Conditions pour qu'une extension abélienne de Q possède une base d'entiers normale

Notation: Si K est une extension cyclique sur Q, θ un élément de K, σ un automorphisme de K, t un entier positif, $B(\theta, \sigma, t)$ désignera l'ensemble des t premiers conjugués successifs de θ par σ , c'està-dire:

$$B(\theta, \sigma, t) = \{ \sigma^{k}(\theta), 0 \le k < t \}$$

Proposition III.1.

Soit K_r une extension cyclique de degré p^r sur Q (p premier). Soit Ω (n_r) le plus petit corps cyclotomique contenant K_r . On suppose que u_r est différent de 0, que ξ est une racine primitive (n_r)^{eme} de 1 et B_{r-1} est une base de l'anneau des entiers de K_{r-1} . Soient $\theta = \sum_{s \in S_r} \xi^s$ et σ un générateur de $G(K_r/Q)$. Alors:

 $B_{r-1} \cup B(\theta, \sigma, \varphi(p^r))$ est une base de l'anneau des entiers de K_r .

Soit g un automorphisme de $\Omega(n_r)$ prolongeant σ . Les classes de $G(n_r)$ modulo S_r sont $g^k S_r$, $0 \le k < p^r$.

Introduisons les ensembles suivants:

F est l'ensemble des racines primitives n_r^{eme} de 1 c'est-à-dire:

$$F = \left\{ \xi^{a}; a \in G(n_{r}) \right\},$$

$$F' = \left\{ \xi^{a}; a \in \bigcup_{\substack{0 \le k \le \varphi(p^{r})}} g^{k} S_{r} \right\}$$

et

$$F'' = \{ \xi^b; 0 \le b < \varphi(n_r) \quad \text{et} \quad p \mid b \}.$$

Puisque p^{ur} est le plus grand facteur carré divisant n_r , le lemme III.2 permet d'affirmer que le module engendré sur Z par $F \cup F''$ est l'anneau des entiers de $\Omega(n_r)$. Montrons que $F' \cup F''$ est une base de cet anneau. Pour cela il suffit de constater que:

- Card $F' \cup F'' = \varphi(n_r)$.
- Tout élément de F F' appartient au module engendré par F'.

La première assertion résulte d'un dénombrement immédiat des éléments de $F' \cup F''$. Pour démontrer la deuxième, on écrit tout d'abord que:

$$\sum_{0 \le k \le p-1} \xi^{\frac{n_r}{p} k} = 0$$

 $(\xi^{\frac{n_r}{p}}$ est une racine primitive p^{eme} de 1).

Soit en multipliant cette égalité par ξ , on obtient:

(1)
$$\sum_{a \in T\left(n_r, \frac{n_r}{p}\right)} \xi^a = 0$$

Examinons comment sont répartis les éléments de $T\left(n_r, \frac{n_r}{p}\right)$ dans les

classes de $G(n_r)$ modulo S_r .

Puisque $K_r \not \equiv \Omega\left(\frac{n_r}{p}\right)$ on a $\Omega\left(n_r\right) = K_r$. $\Omega\left(\frac{n_r}{p}\right)$ et puisque $K_{r-1} \subseteq \Omega\left(\frac{n_r}{p}\right)$ (condition I.2.A sur la suite $(u_i)_{1 \le i \le r}$), on a:

$$K_{r-1} = K_r \cap \Omega\left(\frac{n_r}{p}\right).$$

Les sous-groupes correspondants de $G(n_r)$ vont donc vérifier les égalités:

$$T\left(n_r, \frac{n_r}{p}\right)$$
. $S_r = S_{r-1}$ et $T\left(n_r, \frac{n_r}{p}\right) \cap S_r = \{1\}$,

qui montrent que S_{r-1} , groupe des K_{r-1} -automorphismes de Ω (n_r) , est produit direct de S_r et de $T\left(n_r,\frac{n_r}{p}\right)$. Dans toute classe de S_{r-1} modulo S_r il existe donc un seul élément de $T\left(n_r,\frac{n_r}{p}\right)$. Ces classes sont $g^{kp^{r-1}}$ S_r , $0 \le k \le p-1$. Si $sg^{p^{r-1}}$ est l'unique élément de $g^{p^{r-1}}$ $S_r \cap T\left(n_r,\frac{n_r}{p}\right)$, alors pour tout k entre 0 et p-1, $s^k g^{kp^{r-1}}$ est l'unique élément de $g^{kp^{r-1}}$ $S_r \cap T\left(n_r,\frac{n_r}{p}\right)$ et les éléments de $T\left(n_r,\frac{n_r}{p}\right)$ sont donc $s^k g^{kp^{r-1}}$, $0 \le k \le p-1$. L'égalité (1) va donc s'écrire:

(2)
$$\sum_{0 \le k \le p-1} \xi^{s^k g^{kp^{r-1}}} = 0,$$

s appartenant à S_r .

Tout élément de F - F'' peut s'écrire sous la forme:

$$\xi^{s's^{p-1}g^{t+(p-1)p^{r-1}}}$$
 avec $s' \in S_r$ et $0 \le t < p^{r-1}$.

Transformant alors l'égalité (2) par l'automorphisme $s'g^t$, on obtiendra:

$$\xi^{s's^{p-1}} g^{t+(p-1)p^{r-1}} = -\sum_{0 \le k \le p-2} \xi^{s's^k} g^{t+kp^{r-1}}.$$

Les racines primitives de 1, intervenant sous le signe \sum sont dans F'. $F' \cup F''$ est donc une base des entiers de $\Omega(n_r)$.

Soit x un entier de K_r . On a x=x'+x'' avec x' (respectivement x'') appartenant au module engendré zur Z, par F' (respectivement F''). Soit s un K-rautomorphisme. Comme F'' est une base de l'anneau des entiers de $\Omega\left(\frac{n_r}{p}\right)$. s(x'') appartient encore à $\Omega\left(\frac{n_r}{p}\right)$, donc au module engendré par F''. De même s(x') appartient encore au module engendré par F', car s permute entre eux les éléments de F'. Comme enfin s(x)=x, on aura donc s(x')=x' et s(x'')=x''.

x'' étant invariant par tout K_r -automorphisme, appartient à $\Omega\left(\frac{n_r}{p}\right) \cap K_r$ c'est-à-dire à K_{r-1} .

Quant à x', il s'écrit:

$$\sum_{\substack{a \in O \leq k < \varphi(p^r)}} \int_{g^k S_r} \lambda_a \xi^a, \ \lambda_a \in Z$$

De x' = s(x') on déduit que $\lambda_a = \lambda_{a'}$ si a et a' sont congrus modulo S_r . Posant alors $\mu_k = \lambda_{gk}$, on obtient:

$$x' = \sum_{0 \le k < \varphi(p^r)} \mu_k \left(\sum_{a \in S_r} \xi^{ag^k} \right) = \sum_{0 \le k < \varphi(p^r)} \mu_k \sigma^k(\theta)$$

Remarque III.1.

On n'utilise pas complètement le fait que $\Omega\left(n_r\right)$ est le plus petit corps cyclotomique contenant Kr, mais seulement que n_r est de la forme $p^{u_r}n'$, avec n' premier avec p, sans facteur carré, $K_r \subseteq \Omega\left(n_r\right)$ et $K_r \not\subseteq \Omega\left(\frac{n_r}{p}\right)$.

Proposition III.2.

Soit K une extension abélienne de Q. Les conditions suivantes sont équivalentes:

III.2.A: K possède une base d'entiers normale.

III.2.B: Il existe un entier θ de K tel que $Tr_{K/Q}(\theta) = 1$.

III.2.C: Le plus petit corps cyclotomique contenant K possède une base d'entiers normale.

III.2.D: K est modérément ramifiée.

 $C \Rightarrow A$ et $A \Rightarrow B$ résultent des rappels effectués au paragraphe III.1.

 $B \Rightarrow C$ résulte pour les extensions cycliques de degré p^r sur Q de la proposition III.1. Reprenant les mêmes notations, si $\Omega(n_r)$ ne possède pas de base d'entiers normale, alors, d'après le lemme III.3, n_r possède un facteur carré, donc $u_r \ge 2$.

Comme $\Phi_{n_r}(X) = \Phi_{n_r \atop n}(X^{p^u r^{-1}})$, la trace de ξ sur Q est nulle, donc celle

de θ également. Si x est un entier de K_r , x se décompose comme précédemment en x = x' + x'' et l'on a:

$$Tr_{K_{r}/Q}(x) = Tr_{K_{r}/Q}(x'') = p Tr_{K_{r-1}/Q}(x'').$$

La trace d'un entier de K_r ne peut donc être égale à 1.

Soit maintenant K une extension abélienne de Q et $\Omega(n)$ le plus petit corps cyclotomique contenant K. Supposons qu'il existe un entier θ de K tel que: $Tr_{K/O}(\theta) = 1$.

Le groupe de Galois de K sur Q est produit direct de m groupes cycliques d'ordre $p_i^{r_i}$.

Soit K_i le corps fixe de $G_1 \times ... \times G_{i-1} \times \{1\} \times G_{i+1} \times ... \times G_m$. K_i est cyclique de degré $p_i^{r_i}$ sur Q et $K = K_1 K_2 ... K_m$.

Soit $\theta_i = Tr_{K/K_i}(\theta)$. θ_i est un entier de K_i tel que $Tr_{K_i/Q}(\theta_i) = 1$.

Si $\Omega(n_i)$ est le plus petit corps cyclotomique contenant K_i alors n_i est sans facteur carré d'après la démonstration précédente.

n est le PPCM des n_i , donc il est sans facteur carré.

Soit p un nombre premier se ramifiant dans K, c'est-à-dire divisant n. Si n est sans facteur carré, alors l'indice de ramification de p dans $\Omega(n)$ est p-1 et l'indice de ramification de p dans K, divise p-1, donc est premier à p.

Réciproquement, si n possède un facteur carré, alors n est de la forme $n = p^s n'$, avec p premier, ne divisant pas n' et $s \ge 2$. Soit π l'application de G(n) sur G(K/Q) qui à tout automorphisme de $\Omega(n)$ fait correspondre

sa restriction à K. Puisque $K \nsubseteq \Omega\left(\frac{n}{p}\right)$, alors

$$Ker \pi = G(\Omega(n)/K) \not\supseteq T\left(n, \frac{n}{p}\right).$$

Donc $\pi\left(T\left(n,\frac{n}{p}\right)\right)$ a pour ordre p et il est inclus dans $\pi\left(T\left(n,n'\right)\right)$ qui est le groupe d'inertie de p dans K. L'indice de ramification de p dans K est donc multiple de p.

III.4. Bases d'entiers dans les extensions K_r

Proposition III.3.

Soit K_r une extension cyclique de degré p^r sur Q, $\Omega(n_r)$ le plus petit corps cyclotomique contenant K_r .

On suppose que $u_r \ge 2$; c'est-à-dire que K_r ne possède pas de base d'entiers normale. ξ désignant une racine primitive n_r^{eme} de 1, on pose $\theta_i = \sum_{s \in S_r} \xi^{sp^r-i}$ pour tout i de l à r.

Si p est impair ou si p = 2 et $u_r = 2$, on pose:

$$\theta_{l-1} = \sum_{s \in S_r} \xi^{sp^{r-l+1}}$$

Si p = 2 et $u_r \ge 3$, on pose:

$$\theta_{l-1} = \frac{1}{2} \sum_{s \in S_r} \xi^{s2^{r-l+2}}$$

 σ est un générateur du groupe de Galois de K_r sur Q. Alors:

$$B(\theta_{l-1}, \sigma, p^{l-1}) \cup \left(\bigcup_{1 \le i \le r} B(\theta_i, \sigma, \varphi(p^i))\right)$$

est une base de l'anneau des entiers de K_r .

On montre tout d'abord que $B(\theta_{l-1}, \sigma, p^{l-1})$ est une base de l'anneau des entiers de K_{l-1} .

Dans le cas où p est impair ou p=2 et $u_r=2$, on a: $u_r=r-l+2$, $K_{l-1}\subseteq \Omega\left(\frac{n_r}{p^{r-l+1}}\right)\cdot \frac{n_r}{p^{r-l+1}}$ est sans facteur carré, donc $\xi^{p^{r-l+1}}$ engendre

une base normale des entiers de $\Omega\left(\frac{n_r}{p^{r-l+1}}\right)$.

 $Tr_{\Omega\left(\frac{n_r}{p^{r-l+1}}\right)/K_{l-1}}(\xi^{p^{r-l+1}})$ engendre donc une base normale des entiers de K_{l-1} . Il reste donc à montrer que cette quantité est égale à θ_{l-1} . Pour cela introduisons l'application π_{l-1} de $G\left(n_r\right)$ dans $G\left(\frac{n_r}{p^{r-l+1}}\right)$ qui à toute classe modulo n_r fait correspondre la classe modulo $\frac{n_r}{p^{r-l+1}}$ qui la contient. S_r étant le groupe des K_r -automorphismes de $\Omega\left(n_r\right)$, $\pi_{l-1}\left(S_r\right)$ sera le groupe

 $\operatorname{des} K_r \cap \Omega\left(\frac{n_r}{p^{r-l+1}}\right) \text{-automorphismes de } \Omega\left(\frac{n_r}{p^{r-l+1}}\right).$

Comme $K_l \not\equiv \Omega\left(\frac{n_r}{p^{r-l+1}}\right)$, (condition I.2.A; $u_l = 2$) on a donc

$$K_{l-1} = K_r \cap \Omega\left(\frac{n_r}{p^{r-l+1}}\right)$$

 π_{l-1} (S_r) est donc le groupe des K_{l-1} -automorphismes de $\Omega\left(\frac{n_r}{p^{r-l+1}}\right)$ On aura donc l'égalité:

$$Tr_{\Omega(\frac{n_r}{p^{r-l+1}})/K_{l-1}}(\xi^{p^{r-l+1}}) = \sum_{s' \in \pi_{l-1}(S_r)} \xi^{s'p^{r-l+1}}$$

D'autre part, on déduit des égalités:

$$\left[K_r \cdot \Omega\left(\frac{n_r}{p^{r-l+1}}\right) \colon \Omega\left(\frac{n_r}{p^{r-l+1}}\right)\right] = \left[K_r \colon K_r \cap \Omega\left(\frac{n_r}{p^{r-l+1}}\right)\right] = p^{r-l+1}$$

et

$$\left[\Omega\left(n_r\right):\Omega\left(\frac{n_r}{p^{r-l+1}}\right)\right] = p^{r-l+1},$$

que

$$\Omega(n_r) = K_r \cdot \Omega\left(\frac{n_r}{p^{r-l+1}}\right).$$

Les sous-groupes de $G(n_r)$ correspondants vont donc vérifier:

$$T\left(n_r, \frac{n_r}{p^{r-l+1}}\right) \cap S_r = 1$$

La restriction de π_{l-1} à S_r est donc bijective. On en déduit:

$$\sum_{s' \in \pi_{l-1}(S_r)} \xi^{s'p^{r-l+1}} = \sum_{s \in S_r} \xi^{\pi_{l-1}(s)p^{r-l+1}}.$$

Cette dernière quantité est égale à θ_{l-1} puisque, par définition de π_{l-1} :

on a

$$s \equiv \pi_{l-1}(s) \left(\frac{n_r}{p^{r-l+1}} \right)$$

d'où

$$sp^{r-l+1} \equiv \pi_{l-1}(s) p^{r-l+1}(n_r)$$

Dans le cas où p=2 et $u_r \ge 3$, on a alors: $u_r=r-l+3$ et l'on utilise alors l'application π_{l-2} de $G(n_r)$ sur $G\left(\frac{n_r}{2^{r-l+2}}\right)$. La démonstration est identique à la précédente, à ceci près que:

$$\left[\Omega\left(n_r\right): K_r \cdot \Omega\left(\frac{n_r}{2^{r-l+2}}\right)\right] = 2$$

c'est-à-dire que $T\left(n_r, \frac{n_r}{2^{r-l+2}}\right) \cap S_r$ possède deux éléments. On aura cette fois:

$$\sum_{s' \in \pi_{l-2}(S_r)} \xi^{s'2^{r-l+2}} = \frac{1}{2} \sum_{s \in S_r} \xi^{\pi_{l-2}(s) 2^{r-l+2}}$$

On montre ensuite par récurrence sur t que:

$$B_{t} = B(\theta_{l-1}, \sigma, p^{l-1}) \cup \left(\bigcup_{1 \leq i \leq t} B(\theta_{i}, \sigma, \varphi(p^{i})) \right)$$

est une base de K_t . Supposons donc que B_{t-1} soit une base de l'anneau des entiers de K_{t-1} . Soit π_t l'application canonique de $G(n_r)$ sur $G\left(\frac{n_r}{p^{r-t}}\right)$.

Comme $K_t \subseteq \Omega\left(\frac{n_r}{p^{r-t}}\right)$ et $K_{t+1} \not \subseteq \Omega\left(\frac{n_r}{p^{r-t}}\right)$ (proposition I.2; condition I.2.A; $u_{i+1} = u_i + 1$), on a

$$K_t = \Omega\left(\frac{n_r}{p^{r-t}}\right) \cap K_r$$

et $\pi_t\left(S_r\right)$ est le groupe des K_t -automorphismes de $\Omega\left(\frac{n_r}{p^{r-t}}\right)$. Si $\theta_t^{'} = \sum\limits_{s' \in \pi_t\left(S_r\right)} \xi^{s'p^r-t}$, la proposition III.1 et la remarque III.1, appliquées à $\Omega\left(\frac{n_r}{p^{r-t}}\right)$ et K_t permettent de conclure que: $B_{t-1} \cup B\left(\theta_t^{'},\sigma,\,\phi\left(p^t\right)\right)$ est une base de l'anneau des entiers de K_t . Il reste alors à montrer que $\theta_t^{'} = \theta_t$. Ceci se déduit comme précédemment de l'égalité $T\left(n_r, \frac{n_r}{p^{r-t}}\right) \cap S_r = 1$, toujours vraie si $l \leq t \leq r$.

On utilisera dans le paragraphe suivant les remarques:

Remarque III.3.A

Pour tout $i \ge l \operatorname{Tr}_{K_i/K_{i-1}}(\theta_i) = 0$. En effet:

$$Tr_{K_{i}/K_{i-1}}(\theta_{i}) = Tr_{\Omega\left(\frac{n_{r}}{p^{r-i}}\right)/K_{i-1}}\left(\xi^{p^{r-i}}\right)$$

$$= Tr_{\Omega\left(\frac{n_{r}}{p^{r-i+1}}\right)/K_{i-1}}\left(Tr_{\Omega\left(\frac{n_{r}}{p^{r-i}}\right)/\Omega\left(\frac{n_{r}}{p^{r-i+1}}\right)}\left(\xi^{p^{r-i}}\right)\right)$$

Cette quantité est nulle car $X^p - \xi^{p^{r-i+1}}$ est le polynome minimal de $\xi^{p^{r-i}}$ sur $\Omega\left(\frac{n_r}{p^{r-i+1}}\right)$.

Remarque III.3.B

$$Tr_{K_{l-1}/Q}(\theta_{l-1}) = (-1)^{m_r+1}$$

Il suffit d'appliquer le lemme III.1 à $\Omega\left(\frac{n_r}{p^{r-l+1}}\right)$ ou $\Omega\left(\frac{n_r}{2^{r-l+2}}\right)$, suivant les cas.

Remarque III.3.C

Dans le cas où p = 2 et $u_r \ge 3$, on a:

$$\sum_{s \in S_r} \xi^{s2^{r-l+1}} = 0$$

En effet:

$$\sum_{s \in S_r} \xi^{s2^{r-l+1}} = Tr_{\Omega\left(\frac{n_r}{2^{r-l+1}}\right)/K_{l-1}} \left(\xi^{2^{r-l+1}}\right)$$

et d'autre part

$$K_{l-1} \subseteq \Omega\left(\frac{n_r}{2^{r-l+3}}\right)$$

et

$$Tr_{\Omega\left(\frac{n_r}{2^{r-l+1}}\right)/\Omega\left(\frac{n_r}{2^{r-l+3}}\right)} \left(\xi^{2^{r-l+1}}\right) = 0$$

car $X^2 - \xi^{2^{r-l+2}}$ est le polynome minimal de $\xi^{2^{r-l+1}}$ sur $\Omega\left(\frac{n_r}{2^{r-l+3}}\right)$.

III.5. Exemple

Soit B la base introduite à la proposition III.3. On se propose de chercher les polynomes caractéristiques des θ_i . Pour cela, il faut pouvoir calculer les coordonnées, par rapport à B, des produits mutuels d'éléments de B.

Les θ_i sont des périodes de Gauss ([7] chapitre 7). On pose pour tout entier $a: \eta(a) = \sum_{s \in S_a} \xi^{as}$.

On a en particulier:

$$\theta_i = \eta(p^{r-i})$$
 pour $l \le i \le r$

et suivant les cas:

$$\theta_{l-1} = \eta(p^{r-l+1})$$
 ou $\frac{1}{2}\eta(2^{r-l+2})$.

Pour tout b appartenant à $G(n_r)$, le transformé de $\eta(a)$ par b est $\eta(ab)$. En particulier les conjugués de θ_i , pour $l \le i \le r$, seront:

$$\sigma^k(\theta_i) = \eta(g^k p^{r-i}).$$

Le produit de deux périodes $\eta(a)$ et $\eta(a')$ est donné par: $\eta(a) \eta(a')$ = $\sum_{s \in S_r} \eta(a+a's)$. Appliquant cette formule à deux éléments de B, on est alors ramené au problème suivant: donner les coordonnées de $\eta(a)$, a entier quelconque, dans la base B.

c et c' désignent dans ce qui suit, des nombres premiers avec p.

1. Dans le cas p impair ou p=2 et $u_r=2$, $\eta(p^uc)$, avec $u \ge r-l+2$, peut s'exprimer comme somme de périodes de la forme $\eta(p^{r-l+1}c')$. Il suffit d'écrire l'égalité:

$$\sum_{0 < k < p} \xi^{\frac{n_r}{p}k} = -1;$$

multipliant alors cette égalité par ξ^{puc} on obtient:

$$\sum_{0 < k < p} \eta \left(\frac{n_r}{p} k + p^u c \right) = - \eta \left(p^u c \right).$$

Les quantités $\frac{n_r}{p}k + p^u c$ sont de la forme $p^{r-l+1}c'$.

Dans le cas où p=2 et $u_r\geq 3$, η (2^uc), avec $u\geq r-l+3$, est l'opposé d'une période η (2^{r-l+2}c').

2. $\eta(p^uc)$, avec $u \le r - l + 1$ (ou $u \le r - l + 2$, suivant les cas) peut s'exprimer comme somme de périodes de la forme $\eta(p^uc')$, c' appartenant à $G(n_r)$, en procédant de la même façon qu'au lemme III.2. C'està-dire: si v désigne le PGCD de c et de n_r , et m_v le nombre de diviseurs premiers de v, on a:

$$\sum_{\substack{0 < k < v \\ PGCD(k,v) = 1}} \xi^{\frac{n_r}{v}k} = (-1)^{m_v}$$

d'où:

$$(-1)^{m_v} \eta (p^u c) = \sum_{\substack{0 < k < v \\ PGCD(k,v) = 1}} \eta \left(\frac{n_r}{v} k + p^u c \right)$$

Les quantités $\frac{n_r}{v}k + p^u c$ sont de la forme $p^u c'$, avec c' premier avec n_r .

Cas particulier:

Si
$$K_r \cap \Omega\left(\frac{n_r}{v}\right) \subset K_r \cap \Omega\left(\frac{n_r}{p^u}\right)$$
 et $u \leq r - l$, alors $\eta\left(p^u c\right) = 0$.

En effet on a: $PGCD\left(\frac{n_r}{p^u}, \frac{n_r}{v}\right) = \frac{n_r}{p^u v}$.

D'où $K_r \cap \Omega\left(\frac{n_r}{v}\right) \subset \Omega\left(\frac{n_r}{p^u v}\right)$. En employant la même méthode que dans la démonstration de la proposition III.3, $\eta\left(p^u c\right)$ est égal, à un coefficient près, à:

$$Tr_{\Omega\left(\frac{n_r}{p^{u_v}}\right)/K_r \cap \Omega\left(\frac{n_r}{v}\right)}(\xi^{p^{u_c}})$$

Comme $K_r \cap \Omega\left(\frac{n_r}{p^u}\right) \supset K_r \cap \Omega\left(\frac{n_r}{v}\right)$ et comme $u \leq r - l$, on aura donc:

$$K_r \cap \Omega\left(\frac{n_r}{p^{u+1}}\right) \supseteq K_r \cap \Omega\left(\frac{n_r}{v}\right).$$

 $\Omega\left(\frac{n_r}{p^{u+1}v}\right)$ sera donc compris entre $K_r \cap \Omega\left(\frac{n_r}{v}\right)$ et $\Omega\left(\frac{n_r}{p^uv}\right)$ et l'on a

$$Tr_{\Omega\left(\frac{n_r}{p^{u_v}}\right)/\Omega\left(\frac{n_r}{p^{u+1}v}\right)}(\xi^{p^{u_c}}) = 0$$

3. $\eta(p^uc)$, avec $u \le r - l + 1$ (ou $u \le r - l + 2$ suivant le cas) et c premier avec n_r , est un conjugué de $\eta(p^u) = \theta_{r-u}$ (à moins qu'il ne soit nul; remarque III.3.C).

S'il n'est pas dans B, alors ses conjugués sur K_{r-u-1} , seront dans B et il suffit alors d'utiliser la remarque III.3.A.

Considérons par exemple, la suite de corps cyclotomiques vérifiant les conditions I.2.A bis et I.2.B bis: Ω (17), Ω (8.17), Ω (16.17).

On a donc r = 3; l = 2; $m_1 = m_2 = m_3 = 1$; $p_1 = 17$.

Il y a quatre extensions K_3 , cycliques de degré 8 sur Q associées à cette suite (proposition I.5 bis).

Elles ont pour discriminant sur $Q: 2^{22} 17^7$ (proposition II.3).

T (16.17, 17) a pour éléments 1, 35, 69, 103, 137, 171, 205, 239.

 $a_0 = 239$ et l'on peut choisir comme générateur de T(16.17, 4.17):

$$a_0^{'} = 69.$$

On cherche de même les éléments de T(16.17, 16) et un générateur c_1 de ce sous-groupe. On peut prendre par exemple $c_1 = 65$. Les puissances successives de c_1 sont données par le tableau suivant:

 S_3 est engendré par $\{c_1^8, c_1^{\alpha_0}a_0, c_1^{\alpha'_0}a_0^{'}\}$, α_0 et α'_0 vérifiant les conditions $\alpha_0 \equiv 0$ (4); $\alpha'_0 \equiv 0$ (2) et $\alpha'_0 \equiv 0$ (4) (proposition I.4 bis). Les éléments de S_3 sont de la forme:

$$s = c_{1} \qquad a_{0}\beta_{0} + \alpha_{0}'\beta_{0}' \quad \beta_{0} \quad \beta_{0}'$$

avec $\beta_0 = 0$ ou 1; $\beta'_0 = 0$, 1, 2 ou 3; $\beta_1 = 0$ ou 1.

Prenons par exemple: $\alpha_0 = 4$ et $\alpha_0' = 2$.

Le tableau suivant donne les valeurs de s, en fonction de β_0 , β_0' , β_1 . On trouve donc à la dernière ligne les éléments de S_3 :

$eta_0' egin{pmatrix} 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 \\ \end{bmatrix}$		11
	1 2	3
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1	1
s 1 213 217 253 33 229 89 189 47 219 135 195 191	155 103	179

On remarque que $3^4=81$ n'appartient pas à S_3 , c'est-à-dire que la classe de 3 modulo S_3 est un générateur de $\frac{G(16.17)}{S_3}$.

On prendra donc g = 3. Les classes de G(16.17) mod. S_3 sont données dans le tableau suivant:

S_3	1	213	217	253	33	229	89	189	47	219	135	195	191	155	103	179
3S ₃	3	95	107	215	99	143	267	23	141	113	133	41	29	193	37	265
3^2S_3	9	13	49	101	25	157	257	69	151	67	127	123	87	35	111	251
3^3S_3	27	39	147	31	75	199	227	207	181	201	109	97	261	105	61	209
3^4S_5	81	117	169	93	225	53	137	77	271	59	55	19	239	43	183	83
$3^{5}S_{3}$	243	79	235	7	131	159	139	231	269	177	165	57	173	129	5	249
3^6S_3	185	237	161	21	121	205	145	149	263	259	223	171	247	115	15	203
3^7S_3	11	167	211	63	91	71	163	175	245	233	125	241	197	73	45	65

 $B = \{ \eta(1), \eta(3), \eta(3^2), \eta(3^3), \eta(2), \eta(2.3), \frac{1}{2}\eta(8), \frac{1}{2}\eta(8.3) \}$ est une base de l'anneau des entiers de K_3 . On cherche le polynome minimal de $\eta(1)$ sur K_2 . Le conjugué de $\eta(1)$ sur K_2 est $\eta(3^4)$ et d'après la remarque III.3.A, $\eta(1) + \eta(3^4) = 0$.

D'autre part: $\eta(1)^2 = \sum_{s \in S_3} \eta(1+s)$.

Il reste à exprimer chacun des η (1+s) en fonction de: η (2), η (2.3), η (8), et η (8.3).

Par exemple: pour s=213: $\eta(1+213)=\eta(2.107)=\eta(2.3)$ car $107 \in 3$ S_3 .

Pour s = 33: $\eta(1+33) = \eta(2.17) = 0$ car $\Omega(16) \cap K_3 = Q \subset K_2 = \Omega(8.17) \cap K_3$.

Pour s=47, on écrit $\xi^{8.17}=-1$ d'où $\xi^{8.17+48}=-\xi^{48}$ c'est-à-dire: $\eta(1+47)=-\eta(8.23)=-\eta(8.3)$.

Pour s = 195: $\eta (1+195) = \eta (4.49) = 0$ compte tenu de la remarque III.3.C.

Finalement on obtient: $\eta(1)^2 = -16 - \eta(2) - 2\eta(8.3) + \eta(8)$. Le polynome minimal de $\eta(1)$ sur K_2 est donc:

$$X^2 + 16 + \eta(2) + 2\eta(3.8) - \eta(8)$$

On calcule de la même façon le polynome minimal de η (2) sur K_1 : $X^2 - \eta$ (8) - 16 et celui de η (8) sur Q: $X^2 - 2X - 16$.

Les 8 nombres:

$$\frac{1+\sqrt{17}}{2}, \frac{1-\sqrt{17}}{2}, \sqrt{17+\sqrt{17}}, \sqrt{17-\sqrt{17}},$$

$$\sqrt{-17+3\sqrt{17}-\sqrt{17+\sqrt{17}}}, \sqrt{-17-3\sqrt{17}-\sqrt{17}-\sqrt{17}}$$

$$\sqrt{-17+3\sqrt{17}+\sqrt{17}+\sqrt{17}} \text{ et } \sqrt{-17-3\sqrt{17}+\sqrt{17}-\sqrt{17}}$$

forment une base de l'anneau des entiers de K_3 .

Pour les autres valeurs de α_0 et α_0' le résultat est le suivant: les polynomes minimaux de η (8) et η (2) restent les mêmes que précédemment. Pour obtenir une base des entiers des autres extensions K_3 admettant la même suite de corps cyclotomiques associée: Ω (17), Ω (8.17), Ω (16.17), il suffit d'ajouter aux quatre nombres:

$$\frac{1+\sqrt{17}}{2}$$
, $\frac{1-\sqrt{17}}{2}$, $\sqrt{17+\sqrt{17}}$, $\sqrt{17-\sqrt{17}}$,

les quatre autres quantités:

Pour le corps K_3 correspondant à $\alpha_0 = 4$ et $\alpha_0' = 6$:

$$\sqrt{-17+3\sqrt{17}+3\sqrt{17}-4\sqrt{17}-4\sqrt{17}-\sqrt{17}},$$

$$\sqrt{-17-3\sqrt{17}+3\sqrt{17}-\sqrt{17}+4\sqrt{17}+\sqrt{17}},$$

$$\sqrt{-17+3\sqrt{17}-3\sqrt{17}+\sqrt{17}+4\sqrt{17}-\sqrt{17}},$$

$$\sqrt{-17-3\sqrt{17}-3\sqrt{17}-\sqrt{17}-4\sqrt{17}+\sqrt{17}},$$

Pour le corps K_3 correspondant à $\alpha_0 = 8$ et $\alpha_0' = 2$:

$$\sqrt{17+3\sqrt{17}+\sqrt{17}-\sqrt{17}}, \sqrt{17-3\sqrt{17}-\sqrt{17}+\sqrt{17}}$$

$$\sqrt{17+3\sqrt{17}-\sqrt{17}-\sqrt{17}}, \sqrt{17-3\sqrt{17}+\sqrt{17}+\sqrt{17}}$$

Pour le corps K_3 correspondant à $\alpha_0 = 8$ et $\alpha_0' = 6$:

$$\sqrt{17-3\sqrt{17}+3\sqrt{17}-4\sqrt{17}-4\sqrt{17}-\sqrt{17}},$$

$$\sqrt{17+3\sqrt{17}+3\sqrt{17}-\sqrt{17}+4\sqrt{17}+\sqrt{17}},$$

$$\sqrt{17-3\sqrt{17}-3\sqrt{17}+\sqrt{17}+4\sqrt{17}-\sqrt{17}},$$

$$\sqrt{17+3\sqrt{17}-3\sqrt{17}-\sqrt{17}-4\sqrt{17}+\sqrt{17}}.$$

BIBLIOGRAPHIE

- [1] Samuel, P. Théorie algébrique des nombres (Hermann).
- [2] Mac Carthy, P. J. Algebraic extensions of fields (Blaisdell Publishing Company).
- [3] HERBRAND, J. Développement moderne de la théorie des corps algébriques. Mémorial des Sciences Mathématiques (fasc. LXXV, 1936).
- [4] Chevalley, C. Théorie du corps de classes dans les corps finis et les corps locaux. Journ. of the Faculty of Sciences, Tokyo 1933, 365.
- [5] LANG, S. Algebraic Numbers (Addison-Wesley Publishing Company).
- [6] Algebra (Addison-Wesley Publishing Company).
- [7] VAN DER WAERDEN, B. L. Modern Algebra, vol. I (F. Ungar Publishing Company).

(Reçu le 26 octobre 1971)

Bernard Oriat
Faculté des sciences
Route de Gray
F-25 — Besançon