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On a remarqué que (x,y)€dG, X G, = @ (x) — @ (y) =0 et ce terme
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§ 9. EVALUATIONS POUR LA FONCTION g (X, y) DU THEOREME 5

1. D’aprés sa « construction », g ainsi que ses dérivées premiéres sont
majorées sur un voisinage compact de 0G x G, donc sur dG, x G, indé-
pendamment de v pour v supérieur a un v, convenable. Pour majorer le
noyau 4,, (x, y) le seul probléme est donc de minorer le dénominateur ol
intervient g a une certaine puissance.

Lemme 9.1. 11 existe un voisinage compact de G x G, des constantes
K; > 0 et b > 0 de telle sorte que 1’on ait

v, »)eK avec |w—y|=b, g, »)|=K|P(x,p)].

Ceci résulte immédiatement de la « construction » de g; avec les notations
de la démonstration du théoréme 5, on avait

x=y| =b, g(x,3) = P(x,)) £ 4G

d’ou le résultat.
Nous sommes ramené a minorer [ P(x,y) |

2. Minoration de Re P (x, y).

On rappelle qu’on a obtenu en (6) § 5.2.

ReP(x,y) =@(x) —@(y) + 0 ®dp(x)[x—y,x—y] + O(Ix—yl3)-

La plurisousharmonicité de ¢ entraine que, pour x dans un voisinage
compact de 0G, il existe C > 0 tel que

0@ Ip(X)[x—y,x—=y]=Clx—y|*.
On a aussi 39, |x—-y|é5=>0(|x—y|3)é—2c—|x——y|2.
Donc yy v = v, (v, choisi assez grand)
[ (x,y)€dG, x G,
(2) 3 =>ReP(x,y)éT2C—[x—y|2.

| [x—y| =09

disparait.
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3. Minoration de | Im P (x, y) [
Utilisons ici la définition de P (x, »), § 5.2 (4),

P(x,y) =20p(x)[x—y] — 0 ® dp (x)[x—y,x—y],

dot P(x,y) =200 (»)[x—yl +0(|x—y|?. Mais do () [x—y] = %
{dp (y) [x—y] —idep(y)[i(x—y)]} daprés le §1.1, lemme 1.1, d’ou
ImP(x,y) = —idp () [i(x=»]+0(x—y[?.

Pour chaque y utilisons maintenant un systéme de coordonnées d’ori-
gine y, tel que I’hyperplan tangent H a la « surface » { x | px) =0}

est x'y =0,etiH = {x | x"y =0}, x—=y = (X1, X"1, o0y X'y X7
d
Dans ces conditions (p/ M| = |de ()|,
dx,
do ; | 2
[ Im P (x,y)| = Idx,(y)l X [xy | +0(x=yl*).
1

] do (y) l est une fonction continue dans un voisinage compact de G, donc
minorée par une constante strictement positive. Il existe donc 4 > 0,
B> 0etv,tel que si v=v,

(3 v »eiG, xG,,[ImP(x,y)|=A[x",| =B|x—y|*.

4. Minoration de | P (x, y) | et | g (x, ) |.

Pour tirer le meilleur parti de (2) et (3) nous avons besoin du lemme

Lemme 9.2. [2] Vo B,y dans R, 0<a, 0<pfB, 0<y,

o
icax (o, f—y)> +p).
@ f =)= 5 @+h)
Démonstration. Sia=f — vy,
o + (o +
max (¢, f—y) = o = « ( y)> (x+p).

20 +79 20 47y

Sta<fB—y, a+y<pf Alors (x+7y)> =B (x+7y), ou 0? = — 92
— 200y + Po+y, o +af =2af — 2ay — % + By, a(e+f) =(B—1y)
(20+7), |
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o

d’ou max (o, f—y) = —y > . ‘
=) = B =y=5 = @+p)

A partir de (2) et (3) il est clair que pour (x, y) convenables

c
| P(x,y)|= max (—2-|x—-y[2, Alx"y | -—le—ylz)

|

(SIRY

dol |P(x,y)|=

¢
—|x—y]* + A]|x" d’aprés le lemme 9.2.
c + B (2 | V| x5 l) P

Concluons:

[ 3k, >0, v,eN,5 >0,
4 | ,
V&, »)edG, x G, Yyv=v, |x—y|=6}=|P(x,y)]

=k (lx—y > +1x"])

En tenant compte du lemme 9.1 on a:
3k >0, 3v,eN, 371 >0,

(41 { {v(x,»)€dG, x G, yv=v,,|x—y| =1}
=g, I =k(x=y*> +[x"1]).

§ 10. SOLUTION BORNEE DE 0o =f

1. Majoration des (..

On rappelle
(-1
LO) =~  BX) A A4,(x,y) §7.1)

(zni)n xedGy

et d’aprés les théorémes 7 (§ 5), 2 et 3,

q(g+1) n—1
Anq = (_1) 2 (T>A(f*ag*)9

r g* f* _ f* fx g*
A(f*,g%) = Diyorre | =, 2=, 8,2, 5.2, 5.9).
(f*,9% kZIaqk 1,1,q,r—k,k 1(g I y I 7 g)
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