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§ 9. Evaluations pour la fonction g (x, y) du théorème 5

1. D'après sa « construction », g ainsi que ses dérivées premières sont
majorées sur un voisinage compact de dG x G, donc sur ôGv x Gv

indépendamment de v pour v supérieur à un v0 convenable. Pour majorer le

noyau Anq (x, y) le seul problème est donc de minorer le dénominateur où
intervient g à une certaine puissance.

Lemme 9.1. Il existe un voisinage compact de dG x G, des constantes

Kt > 0 et b > 0 de telle sorte que l'on ait

\/(x,y)eKavec \ w-y \ \ g (x,

Ceci résulte immédiatement de la « construction » de g; avec les notations
de la démonstration du théorème 5, on avait

\x—y\^b, g(x,y) P (x, y) ec(x,y)~Aix,y)

d'où le résultat.
Nous sommes ramené à minorer | P (x, y) |.

2. Minoration de ReP(x,y).

On rappelle qu'on a obtenu en (6) § 5.2.

ReP(x,y) cp{x) - <p(y) + d ® d<p (x)[x — y, x — y] + 0(|x-j; |3).

La plurisousharmonicité de cp entraîne que, pour x dans un voisinage

compact de dG, il existe C > 0 tel que

d (x) d(p (x) [x — y, x — y] ^ C | x — y \2

C
On a aussi 3 5, | x — y | ^ ô => 0( [ x —y |3) | x — y \2

Donc (v0 choisi assez grand)

On a remarqué que (x, y) e dGv x Gv => (p (x) — (p (y) ^ 0 et ce terme

disparaît.

(2)

Ix —y I ^ Ô
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3. Minoration de | Im P (x, y) |.

Utilisons ici la définition de P (.x, y), § 5.2 (4),

P (x, y) =2 dcp (x) [x - j;] - d ® ôcp (x) [x -y, x - y]

d'où P (x, y) 2 ôcp (y) [x—y] + 0 (| x—y |2). Mais ôcp (y) [x—y] \
{ dcp (y) [x—y] — i dcp (y) [i (x—y)] } d'après le § 1.1, lemme 1.1, d'où
Im P (x, y) - i dcp (y) [i (x-y)] + 0 (| x-y |2).

Pour chaque y utilisons maintenant un système de coordonnées d'origine

y, tel que l'hyperplan tangent H h la « surface » { x | cp (x) cp (y) }
est x\ 0, et i H — { x | x'\ 0 }, x—y (x'l5 x"t, x'n, x"„).

Dans ces conditions
uX±

M<pOOI

| /m P (x, y) | x I + °(IX_.H2)-

| dcp y)| est une fonction continue dans un voisinage compact de 5G, donc
minorée par une constante strictement positive. Il existe donc >0,
B > 0 et v0, tel que si v =ï v„

(3) \/(x,y)edGvx Gv, \ Im P (x, y) \ A \ x" ^-B\x-y\2

4. Minoration de | P (v, y) | et | g (x, |.

Pour tirer le meilleur parti de (2) et (3) nous avons besoin du lemme

Lemme 9.2.[2] y a, ß, ydans R, 0 < a, 0 < ß, 0 < y

max (a, ß—y)^2a + ß

Démonstration. Si a ^ ß — y,

s na + (a+f) «
max (a,ß-y)a a— (a + ß).

2a + 2a + y

Si a < ß-y,a+ y <ß.Alors(a+y)2 ou a2 ^ -- 2a y + ßa+ y, a2+ aß^2 aß - lay- y2+ ßy, a (a + j8) (j8— y)
(2a+ 7),
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a
d'où max (a, ß — y) ß — y ^ (a +ß)

2a + ß

A partir de (2) et (3) il est clair que pour (x, y) convenables

P (x, y)I ~ max (^\x-y\2 \

c_

d'où | P(x,y)| ^ —-—(-| x— y|2| x", \ ] d'après le lemme 9.2.
c + B\2

Concluons :

3 fej > 0, v0eN, ô>0
(4)

V (x,y) dGvxGv, V v — v<-' I x I — } =* I ^ I

+ \x\ I)

En tenant compte du lemme 9.1 on a:

jk>0,3 v„ e N, 317 >0,

(4')
f {v (*> y)eôGv x Gv,yv ^ v0, i x-y | }

| => \g+ I).

§ 10. Solution bornée de da=ß

1. Majoration des £v.

On rappelle

Cv 00 W- J ß (X) A À (x, y) (§7.1)
(2ni)n XeêGv

et d'après les théorèmes 7 (§ 5), 2 et 3,

q(q + 1)(n — 1

Anq=(-1) 2 (—

)A(f*,g*),'<y_

/ - •/-
/fl* /"* _ /"* f* q*

A(f*,g*) E L, V* y

k= 1
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