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Faisons dans cette équation v -»• oo ; ainsi, pour y e

BÇV00 + Byv00 ->• fiÇ (y) + By (y),

d'après les lemmes 7.3 et 7.1. Le raisonnement vaut pour tout v0, donc

VJ e G, B a. ß.

Chapitre IV

ÉVALUATION POUR LA NORME UNIFORME

§8

1. Rappelons que la norme uniforme a été définie au § 1.5 pour des

éléments de (G); on obtient

\/yeG, |<*O0l s"P «OOI>i>

| a | sup | a 00 I •

ye G

Le but de ce chapitre est de prouver, avec les notations du chapitre
précédent: si dß 0, g a, K > 0 tels que doc ß et | a | | ß |.

2. Majoration de y

On avait y y)J ß(x)a B„q (x, y).
{2711) xeG

I ß I & n

On en tire
(2tz)" xeG i x-a=i

Soit S la sphère de rayon R (diamètre G) et centrée en 0.

^Kt\ß\ • (dztdzd
A T7F^-K|'" •

où K est indépendant de y, d'où | y | ^ K | ß |.

La majoration de £ est beaucoup plus difficile à obtenir; nous aurons
d'abord besoin de certaines évaluations sur la fonction g du théorème 5.



§ 9. Evaluations pour la fonction g (x, y) du théorème 5

1. D'après sa « construction », g ainsi que ses dérivées premières sont
majorées sur un voisinage compact de dG x G, donc sur ôGv x Gv

indépendamment de v pour v supérieur à un v0 convenable. Pour majorer le

noyau Anq (x, y) le seul problème est donc de minorer le dénominateur où
intervient g à une certaine puissance.

Lemme 9.1. Il existe un voisinage compact de dG x G, des constantes

Kt > 0 et b > 0 de telle sorte que l'on ait

\/(x,y)eKavec \ w-y \ \ g (x,

Ceci résulte immédiatement de la « construction » de g; avec les notations
de la démonstration du théorème 5, on avait

\x—y\^b, g(x,y) P (x, y) ec(x,y)~Aix,y)

d'où le résultat.
Nous sommes ramené à minorer | P (x, y) |.

2. Minoration de ReP(x,y).

On rappelle qu'on a obtenu en (6) § 5.2.

ReP(x,y) cp{x) - <p(y) + d ® d<p (x)[x — y, x — y] + 0(|x-j; |3).

La plurisousharmonicité de cp entraîne que, pour x dans un voisinage

compact de dG, il existe C > 0 tel que

d (x) d(p (x) [x — y, x — y] ^ C | x — y \2

C
On a aussi 3 5, | x — y | ^ ô => 0( [ x —y |3) | x — y \2

Donc (v0 choisi assez grand)

On a remarqué que (x, y) e dGv x Gv => (p (x) — (p (y) ^ 0 et ce terme

disparaît.

(2)

Ix —y I ^ Ô
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3. Minoration de | Im P (x, y) |.

Utilisons ici la définition de P (.x, y), § 5.2 (4),

P (x, y) =2 dcp (x) [x - j;] - d ® ôcp (x) [x -y, x - y]

d'où P (x, y) 2 ôcp (y) [x—y] + 0 (| x—y |2). Mais ôcp (y) [x—y] \
{ dcp (y) [x—y] — i dcp (y) [i (x—y)] } d'après le § 1.1, lemme 1.1, d'où
Im P (x, y) - i dcp (y) [i (x-y)] + 0 (| x-y |2).

Pour chaque y utilisons maintenant un système de coordonnées d'origine

y, tel que l'hyperplan tangent H h la « surface » { x | cp (x) cp (y) }
est x\ 0, et i H — { x | x'\ 0 }, x—y (x'l5 x"t, x'n, x"„).

Dans ces conditions
uX±

M<pOOI

| /m P (x, y) | x I + °(IX_.H2)-

| dcp y)| est une fonction continue dans un voisinage compact de 5G, donc
minorée par une constante strictement positive. Il existe donc >0,
B > 0 et v0, tel que si v =ï v„

(3) \/(x,y)edGvx Gv, \ Im P (x, y) \ A \ x" ^-B\x-y\2

4. Minoration de | P (v, y) | et | g (x, |.

Pour tirer le meilleur parti de (2) et (3) nous avons besoin du lemme

Lemme 9.2.[2] y a, ß, ydans R, 0 < a, 0 < ß, 0 < y

max (a, ß—y)^2a + ß

Démonstration. Si a ^ ß — y,

s na + (a+f) «
max (a,ß-y)a a— (a + ß).

2a + 2a + y

Si a < ß-y,a+ y <ß.Alors(a+y)2 ou a2 ^ -- 2a y + ßa+ y, a2+ aß^2 aß - lay- y2+ ßy, a (a + j8) (j8— y)
(2a+ 7),
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a
d'où max (a, ß — y) ß — y ^ (a +ß)

2a + ß

A partir de (2) et (3) il est clair que pour (x, y) convenables

P (x, y)I ~ max (^\x-y\2 \

c_

d'où | P(x,y)| ^ —-—(-| x— y|2| x", \ ] d'après le lemme 9.2.
c + B\2

Concluons :

3 fej > 0, v0eN, ô>0
(4)

V (x,y) dGvxGv, V v — v<-' I x I — } =* I ^ I

+ \x\ I)

En tenant compte du lemme 9.1 on a:

jk>0,3 v„ e N, 317 >0,

(4')
f {v (*> y)eôGv x Gv,yv ^ v0, i x-y | }

| => \g+ I).

§ 10. Solution bornée de da=ß

1. Majoration des £v.

On rappelle

Cv 00 W- J ß (X) A À (x, y) (§7.1)
(2ni)n XeêGv

et d'après les théorèmes 7 (§ 5), 2 et 3,

q(q + 1)(n — 1

Anq=(-1) 2 (—

)A(f*,g*),'<y_

/ - •/-
/fl* /"* _ /"* f* q*

A(f*,g*) E L, V* y

k= 1
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Nous devons donc majorer

fq* f* f*_ /* _Di,i,q,r-k,k-i(— » -y>dy-jr,> dx —

g* f* Sxf* 8J*
— D l,l,q,r- \g ' / ' / ' / '

le second terme disparaît dans le produit extérieur avec /*, de même pour
les termes en (/*//) et (g*/g). D'où, en tenant compte du § 9, 1 et 4 (4'),

g h1 > 0, g v0eN, grç > 0 : v^v0, \/(x> Gv x Gv e* I x-)71 — V

on a

I DUAr-W-l( )l -(|x_j,|2 + I) |JC—y |i + 2<«-2) »

d'où: g/z > 0, g v0 e N, gj/ > 0,

(5)

(x,j)e(dGy xG,), v^v0,
h

I Aq(x, I ^ -

(Ix-yl2 + |x"x I) I x |2"-3 '

et de façon presque évidente

g K2, \x-y\^rj,v~v0, y(x,y)edGvxG,:| Anq(x,y) |^
Notons bien que toutes les constantes intervenant ne dépendent pas

de y.
On décompose alors l'intégrale

(_l)<z+1
CvOO ^ [" J ß(x) A A,tq(x, y) + J ß (x) a | ;

yZHl) I xedGy xeôGy I

L \x-y\ J
le deuxième terme est majoré par K | ß | x sup {Aire dGv}.

v^v0
Pour le premier terme on utilise (5).

d aI ß(x) a Anq(x,y)
xedGv

|*-y|
\x-y\<tj \x — y \2n 3(|x — y |2 + \x" 11)

X £ dGy

où do est l'élément différentiel d'aire sur ôGv.
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Il se peut que dGv n | x—y | ^ rj 0 tout est alors terminé, sinon

on peut paramétrer ôGv n {| x—y \—r\) par x"1? x'2, x"2,x"n avec
les notations du § 9.3.

On pose r (x,,12 + x/|+x,,22 +...-f
Avec une nouvelle constante / (toujours indépendante de j) on a

J /?(x) A ^„9(x,y)
xedGv

\x-y\<r]

dx'\ dix'2 dx"2 dx"n

s, +

On passe en coordonnées sphériques dans R2" 1
; il vient avec une autre

constante M

J ß(x)ayln8(x,y)
xeôGv

|*-y|

M \ß\ \ j"
r2" 2 dr

n o r(r +r\ cos 0 |)
2

dO.

On a j
dr

Log(rj + | cos 9 I) - Logfl cos 9 |)
o r + | cos 9 |

71

2

et l'intégrale J Log | cos 9 | d9 est convergente, ce qui permet de conclure:

Théorème 10.

a) Soit G un domaine strictement pseudo-convexe avec un bord de classe
(ßAr. Il existe une application linéaire L continue du sous-espace vectoriel des

formes ô-fermées de q+\) (G) dans ^(^()p,q)(G) telle que si

a Lß, da ß.

La continuité se traduit par jK > 0, | a | \ ß \.

b) Il existe une base de voisinage strictement pseudo-convexe Gv de G

tels que a) soit valable avec la même constante K.

Pour p 0 la démonstration a été faite.

Pour p > 0 il suffit d'écrire

ß I ßtA dxi>où 1{ <i 1, ...n}
I

ß1e (G) et Sß 0 => 8ßt 0;

le problème est ramené à p0.
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Le b) résulte de ce que tout ce qui a été fait sur les Gv aurait pu être fait

sur Gv { x | cp (x) < ev}, sv \ 0, pour v suffisamment grand, car la condition

Gv a c G n'a joué aucun rôle; on a seulement utilisé dGv voisin
de ÔG.

Remarque.

On a prouvé l'existence d'un noyau dans le chapitre III; ce noyau
dépend de la fonction g et de la forme g* dont on affirme seulement l'existence

dans le chapitre II. Dans le cas particulier où G est strictement convexe
de bord de classe ^3, la fonction g(x, y) 2 ôcp (x) [x—y] et g* (x, y)

2 ôcp (x) conviennent (à cause de la convexité stricte de g), on a alors une
formule constructive pour l'équation dot — ß lorsque dß 0, (ß e ^ r+1 (G))
et le § 5 (ch. II) serait à supprimer.
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