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§ 7. SOLUTION DE L’EQUATION

1. G,G,, 0, W,Q,, A, sont définis comme dans le chapitre précédent.
Soit f € €5 ,+1 (G) bornée sur G pour la norme définie au § 1.5.
Nous posons

1O) = o] PO A B (),
_ q+1
(o) =T B A A ),

(2mi)*  xeoq,
veN,0 =g =n-—1.
Notons qu’on ne peut a priori remplacer G, par G car ff n’est pas définie

sur 0G.

2. Lemme 7.1. La suite y,(y) converge localement uniformément
sur G ainsi que toutes ses dérivées vers

Gyl ) A B )

et YEBq 4 (G).

y(y) =

Ceci résulte du fait que f est bornée et du lemme 4.4.

3. Nous nous occupons des propriétés correspondantes pour (..
Puisqu’on peut différentier sous le signe intégrale a un ordre quelconque,
il vient aussitdt:

Lemme 7.2. Les formes {, sont indéfiniment différentiables sur G,.
Le lemme 7.3 n’est pas tout aussi trivial.

Lemme 7.3. La suite {, converge avec toutes ses dérivées localement
uniformément sur G.

Démonstration. Soit ¢ c < G, et u> v > v,
Cu(y) - Cv(y) = (_1)q+1 j ﬁ(X) A Anq
9G ,—9Gy

(=D B A4,

0(Gy\ Gy)




— 330 —

= (_1)q+1 5 dx(ﬁ (x) A Anq)

Gu\Gv

= (__1)2[q+1]5 ﬁ(X) A gx Anq (x> y) >

Gu\ Gv

a cause de df = 0.
Maintenant d’aprés la construction de g (x, y), la forme d, 4,, (x, »)
pour x € G\G,, et y € G’ est bornée, donc avec une constante convenable

n

1) =L =K A (dxy A dxj).

Gu~Gy A=1

Cela montre la convergence uniforme sur G’ de la suite {,. Par diffé-
rentiation de 0, 4, (x, y) sous le signe intégral par rapport a y, on constate
la convergence uniforme locale de toutes les dérivées de (, ().

4. Nous posons maintenant

C(y) = llm Zv(y)a Ce(gz)),q) (G)'

V=00

Nous formulons alors le résultat de ce chapitre.

THEOREME 9.

Soit pe by ,+1(G), telle que B est bornée sur G et 0f = 0. Alors la
(0, g)-forme o = y + { satisfait a oo = B, ot I’on rappelle

J B AB,(x,y),

Qni)' *xea

__1 g+1
(o) =1im 2 ) A Ay ().

Vo0 (277:1)" xeoGy

y(y) =

Démonstration. A cause de la pseudo-convexité de G, il existe
ne¥sy,(G) telle que on = f; n n’a pas besoin d’étre borné mais posséde
d’aprés le théoréme 8 la représentation

ny) =4LW» +70) + [S . n(x) Q,,(x,y) + 0, F(y)]

(2mi)"

pour ye G,, et v > v,.
De 14 il s’ensuit

B(y) = on(y) = d,(y) + 0y, (y).
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Faisons dans cette équation v — o0; ainsi, pour y € G,,,
3L, (y) + 0y, (») = 3L (y) + 9y (),

d’aprés les lemmes 7.3 et 7.1. Le raisonnement vaut pour tout v,, donc

vyeG, 0a = f.

CHAPITRE IV

EVALUATION POUR LA NORME UNIFORME

§ 38

1. Rappelons que la norme uniforme a été définie au § 1.5 pour des

éléments de #%,, (G); on obtient
Sup a(y)[xla“'ax>QJa

]x1|51...|xq]sl
o] = sup |a(y)].
ye G

VyEGs la(Y)‘ =

Le but de ce chapitre est de prouver, avec les notations du chapitre
précédent: si df = 0, Jo, K > O tels que do = fet |a| =K|B]|.

2. Majoration de vy

) 1
On avait 7y (y) = Gy | . B(x) A B, (x,¥).

X €

: | B | K, "
O t = dx .
nentire |y(y)]| ny j'st e A/=\1( X, Adx,)

Soit S la sphére de rayon R = (diamétre G) et centrée en 0.

KB j (dz, dz;)

Y| = QY s o WéKlﬁl’

n
A

ol K est indépendant de y, d’out |y | =K | B|.
La majoration de { est beaucoup plus difficile & obtenir; nous aurons

d’abord besoin de certaines évaluations sur la fonction g du théoréme 5.
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