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§ 7. Solution de l'équation

1. G, Gv, (p, W, Qm, Anqsont définis comme dans le chapitre précédent.

Soit ße^o,q+i (G)bornée sur Gpour la norme définie au § 1.5.

Nous posons

Tv(30=7^4;1 ß(x) a
(2711) xsGv

CvOO J
(2TZI) xedGv

v e N, 0 — 1.

Notons qu'on ne peut a priori remplacer Gv par G car ß n'est pas définie

sur dG.

2. Lemme 7.1. La suite yv (j) converge localement uniformément

sur G ainsi que toutes ses dérivées vers

y 0) tt-L j ß(x)a Bnq (x, y)
(2711) xeG

et yeK,q(G).
Ceci résulte du fait que ß est bornée et du lemme 4.4.

3. Nous nous occupons des propriétés correspondantes pour Çv.

Puisqu'on peut différentier sous le signe intégrale à un ordre quelconque,
il vient aussitôt:

Lemme 7.2. Les formes Çv sont indéfiniment differentiates sur Gv.

Le lemme 7.3 n'est pas tout aussi trivial.

Lemme 7.3. La suite Cv converge avec toutes ses dérivées localement
uniformément sur G.

Démonstration. Soit G' c c= Gxo et > v > v0.

ç„0) - Cv(y) (-i)ï+1 J
öGß—dGy

(-l)î+1J
d(Gu\Gv)



(-l)'+1| dJIHx) A A„q)
Gß\Gv

(_1)2[«+1]| ß(x) a cxAnq(x,y),

à cause de dß 0.

Maintenant d'après la construction de g (x, y), la forme Anq (x, y)
pour x g G\GV0 et y e G' est bornée, donc avec une constante convenable

IC„(y) -Cv(y)I^ k j a (dx'x a dx"x).
Gß\Gv A=1

Cela montre la convergence uniforme sur G' de la suite £v. Par diffé-
rentiation de ôx Anq (x, y) sous le signe intégral par rapport à y, on constate
la convergence uniforme locale de toutes les dérivées de Cv (y)-

4. Nous posons maintenant

C(y) lim Cv 00 > Cs
V->00

Nous formulons alors le résultat de ce chapitre.

Théorème 9.

Soit ße(£fq + 1 (G), telle que ß est bornée sur G et dß — 0. Alors la

(0, q)-forme oc y + Ç satisfait à doc ß, où l'on rappelle

yOO fx, 1 ß(x) A Bnq (x, y),ylui)xeG
C (y) lim J (x) a Anq (x, y).

v-+oo \Z7ll) xedGv

Démonstration. A cause de la pseudo-convexité de G, il existe

rj g q (G) telle que drj ß; r\ n'a pas besoin d'être borné mais possède

d'après le théorème 8 la représentation

-1- r j
(2 myln (y) Cv (y) + 7v (y) + Il (*) 0, + (y)

X E QGy

pour y e Gmetv > v0.

De là il s'ensuit

ß (y) dn (y) dÇv (y) + (y)
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Faisons dans cette équation v -»• oo ; ainsi, pour y e

BÇV00 + Byv00 ->• fiÇ (y) + By (y),

d'après les lemmes 7.3 et 7.1. Le raisonnement vaut pour tout v0, donc

VJ e G, B a. ß.

Chapitre IV

ÉVALUATION POUR LA NORME UNIFORME

§8

1. Rappelons que la norme uniforme a été définie au § 1.5 pour des

éléments de (G); on obtient

\/yeG, |<*O0l s"P «OOI>i>

| a | sup | a 00 I •

ye G

Le but de ce chapitre est de prouver, avec les notations du chapitre
précédent: si dß 0, g a, K > 0 tels que doc ß et | a | | ß |.

2. Majoration de y

On avait y y)J ß(x)a B„q (x, y).
{2711) xeG

I ß I & n

On en tire
(2tz)" xeG i x-a=i

Soit S la sphère de rayon R (diamètre G) et centrée en 0.

^Kt\ß\ • (dztdzd
A T7F^-K|'" •

où K est indépendant de y, d'où | y | ^ K | ß |.

La majoration de £ est beaucoup plus difficile à obtenir; nous aurons
d'abord besoin de certaines évaluations sur la fonction g du théorème 5.


	§7. Solution de l'équation

