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§ 6. UNE REPRESENTATION INTEGRALE
SUR UN DOMAINE STRICTEMENT PSEUDO-CONVEXE

Nous conservons les notations utilisées jusqu’ici. Soit y une (0, g)-forme
indéfiniment différentiable sur G. D’aprés le théoréme 7 on a
[ 9 AB(y) =1 70D A Q)+ () A O Ay (x, )

xepG xeglG xepG

+ [ 9 AJ,Cpulx,y).

xeoG

Toutes les formes intervenant sont de classe €' sur W (B, @, Ang> Cag)
et de classe ¥ en y. Dans la derniére intégrale échangeons la différen-
tiation et I'intégration.

[ 7&®) A0, Cpux,y) =0, yx ACpux,y) = 0,B()

xepG xeoG
~ o0
ou Be %y, 4-1y (G).
Pour transformer la deuxiéme intégrale du second membre, nous avons - i
besoin de

gx Anq (x’ y) = dx Anq (xa y) .
Nous construisons pour y € G l'intégrale

Iade (X)) A Ay (x, ).

Pour chaque y fixé, c’est I'intégrale d’une forme d, exacte qui est donc
nulle.
D’autre part

de[y(x) A Ay (x,1)] = dy(x) A 4,,(x, )
+ (=D (x) A d[A4, (9]
= 0:7(X) A Ay (%,3) + (=177 (x) A 3, A4,,(x, ),
d’ou

0 =0 0,700 A A,y +(=D1f  9(x) AT, A, (x, ).

xeoG xedG

Et par conséquent

JG}’(X) A B, (x,y) = JGv(x) A Q. (x,y)

5

+ ("‘1)q+1jaG ng(x) A Anq(x’y) + gyB(y)"
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On porte cette relation dans le théoréme 4 ainsi on en tire:

THEOREME 8.

Pour chaque domaine strictement pseudo-convexe G de C", avec un bord
de classe €*, il existe des doubles formes Q,,(x,y) et A4,,(x,y) €
(gi,n—q—lg 0, (W) et C,f,n_q_z; 0,q (W) sur un ouvert W contenant 0G x G,
de telle sorte que ce qui suit est valable :

Si ye b, (G), alors yye G

y(y) = [f () A Q%) + (=D Oy (x) A A, (X,

xeoG xeoG

(2mi)"
- ngxY(X) A Bnq (x9 y):l + gy F(y) .
Avec T'e€%(; ,—1y(G). On rappelle 0,2,, =0 pour ¢ =0, ,, =0
pour g > 0, Q, et 4., sont de classe ¥* en y.

Il est clair que pour les domaines G, introduits au début de ce chapitre,
la méme représentation est valable avec les mémes noyaux.

CuAPITRE 111

UNE FORMULE DE RESOLUTION
POUR L’EQUATION DE CAUCHY-RIEMANN

Si G est un domaine borné dans le plan avec un bord suffisamment
régulier et g une fonction bornée ¥ sur G, alors la fonction

1
f0) == 2 4y aax, yea,
2ni g X — Yy
satisfait ’équation différentielle — = g .
y

Dans ce chapitre nous construisons au moyen du théoreme 8 une solu-
tion de du = f§ sur un domaine strictement pseudo-convexe au moyen d’une
intégrale de la méme forme.




	§6. Une représentation intégrale sur un domaine strictement pseudo-convexe

