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On rappelle I0\,... i„...,iq), < <
et on a posé J(j\, -,jn-q),ji<-
de telle sorte que Iu/ est une permutation de (1,..., n).

Occupons-nous de la même façon du terme en Bnq y).

J oxy,(x)dx, a Bnq (x, y)
x e G

g(g+1> n-q dy (x)
(n — 1) — 1) 2 J £ ^— A A ~yji)

x e G n 1 jß

q n-q
dxjß a a (dyiv a dxiv) a a (dxjx a dxJÀ)

v =1 X— 1

X^ p

(n -1)
' " « dy, (x) _
1 L —— dxy„ A dxjß(Xjll-yjß)
xeG p 1 VXjfi

A A (dx} A dx,)
J

A — Jß

On reconnaît dans la somme des deux intégrales en Bnq et Bnq_ ±

intervenant dans (3.1)

J Sx y,(x) a Bno (x, y) dy, - (277i)"}', (y) dy,,
xe G

d'après le théorème 4 démontré pour q — 0. On reporte dans (3.1) et on
obtient exactement le résultat désiré.

Chapitre II

FORMES DE CAUCHY-FANTAPPIÈ
SUR DES DOMAINES STRICTEMENT PSEUDO-CONVEXES

Indiquons tout d'abord quelques notations: soit Q un ouvert de C";
si cp est une fonction réelle de classe sur Q, d (x) d cp (x) est la forme bili-
néaire symétrique

d ® d cp (x) [fo./c] — d {dcp (x) \h] } [fc]
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D'après le lemme 1.1 appliqué deux fois, on peut introduire la partie
2-C-linéaire, 1-C-linéaire — 1-antilinéaire, 1-antilinéaire — 1-C-linéaire,
2-antilinéaire dt d ® d cp (x). On notera

d 0 à cp(x) d 0 d cp (x) + d (x) d cp (x) + d ® d cp (x) + d ® d cp (x)

On remarquera d (x) ô cp (x) [h.k] ô ® dcp (x) [k.h\.

Hessien complexe. Définition. La forme quadratique réelle

d 0 d cp (x) [/z./c] B 0 Ô cp (x) [h.k~\

est appelé le hessien complexe de cp au point x.

Domaine strictement pseudo-convexe. Un domaine G de C" est dit
strictement pseudo-convexe si pour tout y dans ôG, il existe un voisinage U
de y et une fonction réelle de classe définie sur U pour laquelle on ait

(1) G n U { x g U | cp (x) < 0 } et \/x e dG n U (cp (x) 0) dcp (x) ^ 0

(2) \/x g dG n U, \/w eCn avec | w | ^0 et dcp (x) [w ] 0

d ® dcp (x) [vv w ] >0 (condition de Lévi).

Proposition. Soit G un domaine borné strictement pseudo-convexe avec

un bord de classe ^p (p ^ 2), il existe alors dans un voisinage de G une
fonction réelle (p de classe ^p pour laquelle on ait

(1) G { x g C" | (p (x) < 0 }

(2) dcp (x) ^ 0 dans un voisinage de dG.

(3) Dans un voisinage de dG, cp est strictement plurisousharmonique
(c'est-à-dire le hessien complexe de cp est une forme quadratique définie

positive).

La démonstration est indiquée en [3]. La compacité de G et la classe ^p
du bord dG permettent de trouver une fonction xj/ de classe avec dij/ (x)

^ 0 sur dG, G { x g C" | \j/ (x) < 0 }, et vérifiant la condition de Lévi ;

en prenant ensuite cp ij/ eA* où A est un réel suffisamment grand, on
obtient la proposition.

De plus, choisissons une suite strictement monotone de nombres réels

positifs ev tendant vers 0 et posons

Gv { X G C" I cp (x) < - 8V}
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Le domaine Gv a, au cas où sx est assez petit, les mêmes propriétés que G

et on a

Gv c= ci Gv+1 c c G, u Gv G
v> 1

On a des propriétés similaires avec Gv { x g Cn | cp (x) < sv }

G a a Gv+1 c= a Gv

§ 5. Formes différentielles de Ramirez-Chenkin

Nous désirons construire une fonction g satisfaisant aux hypothèses
du § 3.1. Pour cela nous avons besoin du lemme:

1. Lemme 5.1. Soient G un domaine pseudo-convexe borné de C",
Q un ouvert quelconque de C", fx (y) une (0, 1) forme de classe cßp sur
Q x G, vérifiant dyfx (y) 0. Alors l'équation dy C(x,y) fx(y) a une
solution de classe #p sur Q x G.

Démonstration. On s'appuie sur le théorème 2.2.3, page 107 de [5]

avec poids nul. On trouve alors que pour chaque x e Q, il existe une solution
ux (y) avec

».x- (y)•

Il ux\\~e[diamètrede G]2 ||

H y désignent les normes dans les espaces L2^0 0) (G) ou L^0 l) (G).

ux (y) e H(0 0) (G) ® Ef0 o) (G), où 0) (G) est le sous-espace fermé des

fonctions holomorphes sur G de L2 0(G)et G2
„ (G) son supplémentaire

orthogonal.

Soit C(x, y)laprojection de wY (y) sur £2
0 (G); on vérifie facilement que

C (x, y) ne dépend que de fx (y) et que la correspondance

fx (y) —L C(x, y)

est une application linéaire continue (pour chaque x fixé) de //(20 ; (G)
dans L\0i> (G)-

Notons E*l'adjointde E. Montrons alors que C est de classe sur
Q x G. Il suffit de le faire au voisinage de chaque point (x0, On introduit
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à cet effet une fonction \j/ de classe à support compact dans G telle que
^ (y) 1 dans un voisinage de y0 et 0 ^ ç ^ 1 partout.

La formule de Bochner-Martinelli appliquée à \j/ (y) x C (x, y) donne

C(x, y)K„J C(x, z)dz i//(z) + ij/(z) (x, z) a Bn0 (z, y)
G

L'intégrale se décompose en une somme dont l'un des termes porte sur
dz C (x, y) fx (z); ce terme est de classe %>p (voir lemme 4.2). Il reste à

étudier

J Iefx](z)£ pr (z) Bnoi (z, y)) A a dz, a - à (x, y)
G \ i=i OZi J

où Bnoi est le coefficient du terme sans dzt dans le noyau Bno.

d(x,y)J fx(z)E*(y ^r(z)B„oi(z,y) \ a a a dzA
G \i=l ÖZj / A

Sous cette dernière forme on peut dériver par rapport à x sous l'intégrale

(on pouvait dériver par rapport à y sous la forme initiale). On vérifie

que les limites sont uniformes par rapport à y dans un voisinage convenable
de yQ, ce qui permet d'affirmer que les dérivées sont continues par rapport
au couple (x, y). C (x, y) est donc de classe sur Q x G.

2. Soit toujours G un domaine borné strictement pseudo-convexe de

bord de classe cAr. On a le théorème essentiel de ce chapitre.

Théorème 5.

Il existe un voisinage W de ÔG x G et une fonction g (x, y) de classe r2
sur W pour laquelle on ait

(1) dyg(x,y)=0,
(2) g(x,x) 0

(3) x # y:| g(x,y)|> 0.

Nous construisons cette fonction au moyen de la fonction cp de

l'introduction et du lemme 1.3 (cette construction est faite dans [7]).

On définit pour x voisin de dG et y voisin de G

(4) P (x, y) 2 d(p (x) [x —y] — d ® d(p (x) [x — y, x — y]



On remarque qu'on a pris les termes C-linéaires ou C-bilinéaire du

développement de Taylor à l'ordre 2 de cp (y) — cp (x).

(5) (p (y) - <P (x) dcp (x) \_y-x] + — d ® dcp (x) [x-y, x -y]
+ 0(| x — y |3),

(5') cp(y) - cp (x) dcp (x) [y -x] + dcp (x) [y -x]

+ ^ \ß ® dcp (x) + d (x) dcp (x)] [x-y, x - y]

+ d ® dcp (x) [x - y, x - y] + 0(|x—y |3)

On reconnaît dans (5') Re P (x, y) plus le hessien complexe de cp, d'où

(6) Re P (x, y) cp (x) — cp (y) + ô (x) dcp (x) [x — y, x — y]

+ 0 (| x — y |3).

La stricte plurisousharmonicité de cp permet d'écrire

37 > 0 \/x e dG yy e G d ® dcp (x) [x — y, x — y] ^ y | x — y |2

D'autre part 3Ô < 0 tel que 0 (| x—y |3) ^ y/2 | x—y \2 pour | x—y |

^ ô d'où

(7) y (x, y) e dG x G tels que | x—y | ^ ô, Re P (x, y) ^ y/2 | x—y |2

Soit h : 0 < h < y <52/8.

L'ouvert Q { x, y | Re P (x, y) > h } contient donc dG x Gn {(x, y) |

<5

^ x—y ^ <5 }
2 J

Il existe donc des voisinages ouverts U de dG, F de G et des réels a,
ß tels que 0 < a < ß pour lesquels on a

(8) Ux Fn {(x,jO \a < \x-y\ < ß} <={(x,y) | > h}

Définissons alors une fonction i// de classe V de R dans R telle que
0 ^ ip^1 partout, \p (t)0 pour t ^ hß, pour ^ h.

Et sur Ux Vondéfinit

A (x, y) log P (x, y) x ip [Re (x, y)] si Re

h
A{x,y) =0 si ReP(x, y) < -
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Il est clair que A (x, y) est de classe ainsi que dy A (x, y) sur U x V

et même sur Ü x F.

On introduit enfin

lôyA(x,y) pour \x-y\<ß,
fx (y) ]

[ 0 pour | x — y | > a

fx(y) est de classe par rapport à (x, y) sur U x V et de plus dyfx(y)
0. D'après le lemme 5.1 dont toutes les hypothèses sont vérifiées il existe

une fonction C (x, y) de classe të2 sur U x V telle que dy C (x, y) fx (y).
La fonction

g(x,y) P(x, y) ec(x>y)~A(x'y) si |x-y| <ß,
g (x, y) cC(A%-v) si | x - y | > a

est de classe ^2 sur U x V W et vérifie les hypothèses 1), 2), 3) du
théorème 5.

On pourra même prendre V Gv avec les notations de l'introduction

pour v assez petit et Um GV\GV.

3. Problème de division.

Théorème 6.

Pour toute fonction g vérifiant les conditions du théorème 5, il existe un

voisinage W' de ÔG x G et g* e 0 (JV) telle que dyg* — 0 et g (x, y)
g* (x, y) [x—y] sur W'.

Démonstration. On introduit une suite finie d'ouverts

dG x G C C Un x Vn c c= CZ C x V1 U x V

où chaque Vk est un voisinage strictement pseudo-convexe de G.

On pose ojk Uk x Vk n { xA y t
\ k + l ^ i ^ n}.

On cherche alors à démontrer par récurrence sur k

k

g(x,y)y gi(x,.y)(xi-yi) sur eu

i= 1

0{mk) et 8ygi(x,y)=0.
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k n fournira le résultat du théorème 6.

k 1 se ramène à un problème (trivial) de division à une variable.

Il s'agit de passer de k — 1 à k. On suppose donc

k- 1

g(x,y) Y9i(x,y)(xi-yi),3ygi(x,}>) 0
i= 1

et gt de classe sur
On procède en deux temps.

a) On prolonge les gt (x, y) en des gt (x, y) sur œk, ce sera l'objet du
lemme 5.2.

k- 1

b) h(x, y) g (x, y) - YSi O, y) Of-Jh) définie sur s'annulle
i= 1

pour xk yk, donc h (x, y) (xk—yk)gk(x,y) (division à une variable)
et on a gk de classe &2 sur œk et ôy gk (x, y) 0.

Donc

k

d(x,y)Y 9i(x,y)(xi-yi)surcak avec Bygi(x,y) 0
i= 1

et gi de classe ^2 sur œk.

Lemme 5.2. (x, y) y (x, y) fonction de classe ^2 sur œk^1 avec
Oy y (x, y) 0 se prolonge en r de classe ^2 sur œk avec ôy r (x, y) 0.

Démonstration. On introduit

Q =s (Uk_ 1 x Ffc_ i) n { X| | /c + 1 — i ^ n }

cofc_ x est fermé dans Q, œ est ouvert dans Q.

Donc K1 mk-x n œk et K2 (C#œ) n cok sont deux compacts
disjoints de Q. Il existe donc une fonction ij/ (x, y) réelle

•A (x, y) 1 pour (x, y)eK1,
•A (x, y)0 pour (x,

0 i// fx, y) 1 partout, f de classe #°° et à support compact dans Ü.

y se prolonge en y sur co holomorphe en y par

L'Enseignement mathém., t. XVIII, fasc. 3-4. 22
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y <X y) y(xt, ...,xk, ...,xn,

On recherche alors r sous la forme

r(x,y) y(x,y) x\j/(x,y) + (xk-yk) v(x, y).

La condition ôy r (x, y) 0 entraîne

x y(x,y)dy\l/(x,y)
ôyv(x9y) =fx(y)'

xk - yk

On a trivialement ôyfx (y) 0 et fx (y) est de classe ^2 sur Q; le lemme
5.1 appliquée à fx(y) (mais avec y e Ck et xl9 xn comme paramètre)
donne une solution v de classe W2 sur Q qui prolonge y en r sur cok, avec

dy r (x, y) 0 et r de classe ^2.

4. Avec les notations précédentes, compte tenu des théorèmes 5 et 6,

g*ec&li(W) avec W voisinage de dG x G, vérifie les hypothèses du
§ 3 sur W IT\{(x, y) | x y}.

Nous posons maintenant

g(g-1) /n~1\
J7) (-1) 2

jDq+1(g*),

Q«qe<#l»,n-q-i;0 ,q) (w) > 0.

Il résulte du théorème 2 (g=0) et du théorème 3 (q ^ 1) que si

désigne à nouveau le noyau de Bochner-Martinelli :

Théorème 7.

Il existe des doubles formes Anq et Cnq dans %>\n,n-q-2;o,q) (B7)
e? (W)tellesque

B„q (x,y) Qnq (x, y)+ <!x (x, y) +

Les formes du second membre sont appelées formes de Ramirez-Chenkin.



§ 6. Une représentation intégrale
SUR UN DOMAINE STRICTEMENT PSEUDO-CONVEXE

Nous conservons les notations utilisées jusqu'ici. Soit y une (0, #)-forme
indéfiniment differentiate sur G. D'après le théorème 7 on a

S y(x)a B„q (x, y) Sy<X>A Qni 1 (*) A Anq (x,y)
xedG xedG xedG

J a Cnq (x, y)
xedG

Toutes les formes intervenant sont de classe &1 sur W (Bnq, Qnq, Anq, Cnq)

et de classe ^°° en y. Dans la dernière intégrale échangeons la differentiation

et l'intégration.

J y(x) a ôyC„g(x,y)Sy J y(x)a C„q(x,y) 3yB(y)
xedG xeôG

0Ù56Ï(;rl)(G).
Pour transformer la deuxième intégrale du second membre, nous avons

besoin de

3xA„q(x,y)

Nous construisons pour y e G l'intégrale

j" dx (y (x) a Anq (x, y)).
ôG

Pour chaque y fixé, c'est l'intégrale d'une forme dx exacte qui est donc
nulle.

D'autre part

dx[_y(x)aA„q(x,y)~\ dxy(x) a Anq(x,y)

+ -1)« (x) a dx (x, y)]
ôx y(x) a Anq (x, y)+ -1)« y(x) a Anq (x, y)

d'où

-0 J Sxy(x) a A„q(x,y) + (-1)" j
xeôG xedG

Et par conséquent

J y(x) a Bnq(x,y) J" y(x) a Q„q(x,y)
dG QG

+ (-l)"+1J Sxy(x) a (x, + dyB(y).
dG
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On porte cette relation dans le théorème 4 ainsi on en tire:

Théorème 8.

Pour chaque domaine strictement pseudo-convexe G de Cn, avec un bord
de classe il existe des doubles formes Qnq (x, y) et Anq (x, y) e

o q (W) et C^n-q-2; 0>q (W) sur un ouvert W contenant dG x G,
de telle sorte que ce qui suit est valable :
Si y e y>fq (G), alors \/y e G

y00 V5 7^— I I ïW Aß„,(x,y)+(-l)5+1j
{Z7ZI) |_xedG xeôG

~ y 00 A Bnq (x, y)l + r (y)

Avec r (G). On rappelle dyQnq 0 pour q — 0, Qnq 0

pour q > 0, Qnq et Aqn sont de classe ^°° en y.
Il est clair que pour les domaines Gv introduits au début de ce chapitre,

la même représentation est valable avec les mêmes noyaux.

Chapitre III

ONE FORMULE DE RÉSOLUTION
POUR L'ÉQUATION DE CAUCHY-RIEMANN

Si G est un domaine borné dans le plan avec un bord suffisamment

régulier et g une fonction bornée ^°° sur G, alors la fonction

1 g (x)
f(y)-r-H dx A 6 >

2ni g x — y

df
satisfait l'équation différentielle —z=g.ôy

Dans ce chapitre nous construisons au moyen du théorème 8 une solution

de da ß sur un domaine strictement pseudo-convexe au moyen d'une

intégrale de la même forme.
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