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On rappelle I = (iy, ... Iy, ooy Bp), 11 < oo < I

et on a pos€ J = (jy, oo s Jughr J1 < oo <Jn—g>

de telle sorte que I U J est une permutation de (1, ..., n).
Occupons-nous de la méme fagon du terme en B,, (x, y).

I gx ’))I(x) d)—CI A Bnq (xa y)

xeG
q(q+1) n—gq 5)) X 3 _
=m-D!I(-) 2 [ ¥ ’_()dfjﬂAdifA(x,-,,—y,-u)
xeG pu=1 axju
q n—q
dxj# AN A (dj}-iv A dxiv) AA (d)—Cj}. A dxfl)
v 2
ooy (%) - -
=m-1! [f Y S d%, A dx, (=)
xeG pu=1 Xiu

(dx, ndx;) | dy; .
A=1
a=jy,

On reconnait dans la somme des deux intégrales en B,, et B, _, inter-
venant dans (3.1)

f 5.\- Y1 (x) A By, (x,y)dy, = — QI y;(y)dy;,

xeG

d’apres le théoréme 4 démontré pour ¢ = 0. On reporte dans (3.1) et on
obtient exactement le résultat désiré.

CHAPITRE II

FORMES DE CAUCHY-FANTAPPIE
SUR DES DOMAINES STRICTEMENT PSEUDO-CONVEXES

Indiquons tout d’abord quelques notations: soit © un ouvert de C";
si @ est une fonction réelle de classe €2 sur Q, d ® d ¢ (x) est la forme bili-
néaire symétrique

d®de(x)[hk] =d{de(x)[h]}[k].
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D’aprés' le lemme 1.1 appliqué deux fois, on peut introduire la partie
2-C-linéaire, 1-C-linéaire — 1-antilinéaire, l-antilinéaire — 1-C-linéaire,
2-antilinéaire de d ® d ¢ (x). On notera

dRde(X) =0 ®00(X) +0®0p(x) +0®dp(x) +0 R (x).
On remarquera ¢ ® 0 ¢ (x) [h.k] = 0 ® d¢ (x) [k.A].

Hessien complexe. Définition. La forme quadratique réelle
d®0op(x)[hk] =0® 0o (x)[h.k]
est appelé le hessien complexe de ¢ au point x.
Domaine strictement pseudo-convexe. Un domaine G de C" est dit

strictement pseudo-convexe si pour tout y dans dG, il existe un voisinage U
de y et une fonction réelle de classe ¥ définie sur U pour laquelle on ait

(1) GnU ={xeUl|px) <0} et yxedGn U(p(x) =0)de(x)#0
(2) vxedG N U,yweC" avec |w| #0 et dp(x)[w] =0
O ®dp(x)[w,w] >0 (condition de Lévi).
Proposition. Soit G un domaine borné strictement pseudo-convexe avec

un bord de classe 7 (p = 2), il existe alors dans un voisinage de G une
fonction réelle ¢ de classe €7 pour laquelle on ait

p(x) <0}
(2) do (x) # 0 dans un voisinage de 0G.

() G={xeC"

(3) Dans un voisinage de 0G, ¢ est strictement plurisousharmonique
(c’est-a-dire le hessien complexe de ¢ est une forme quadratique définie
positive).

La démonstration est indiquée en [3]. La compacité de G et la classe ¢”
du bord 0G permettent de trouver une fonction i de classe ¢* avec diy (x)
# 0 sur G, G = {xe C" |y (x) < 0}, et vérifiant la condition de Lévi;
en prenant ensuite @ = i e*¥ ol A est un réel suffisamment grand, on
obtient la proposition.

De plus, choisissons une suite strictement monotone de nombres réels
positifs ¢, tendant vers O et posons

G, ={xeC'|p(x) < — ¢}
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Le domaine G, a, au cas ol ¢, est assez petit, les mémes propri€tés que G
etona

G,ccG,,ccG, v G, =¢G.
v>1
On a des propriétés similaires avec G, = { xe C" [ p(x) <e,}

~

Gc <G,y < cgG,.

§ 5. FORMES DIFFERENTIELLES DE RAMIREZ-CHENKIN

Nous désirons construire une fonction g satisfaisant aux hypotheéses
du § 3.1. Pour cela nous avons besoin du lemme:

1. Lemme 5.1. Soient G un domaine pseudo-convexe borné de C”,
Q un ouvert quelconque de C”, f.(y) une (0, 1) forme de classe €7 sur
Q x G, vérifiant 0, f, (y) = 0. Alors I’équation 0, C(x, y) = f,(») a une
solution de classe ¢? sur 2 x G.

Démonstration. On s’appuie sur le théoréme 2.2.3, page 107 de [5]
avec poids nul. On trouve alors que pour chaque x € Q, il existe une solution
u, (y) avec

gyux(y) ::fx(y)a
|| u. || = e [diamétre de GI* || £ || -

|| || désignent les normes dans les espaces L, ,) (G) ou L, ;, (G).

u,(y) e H(ZO 0 (G) ® E(?;, o (G), ou E(Zo, oy (G) est le sous-espace fermé des
fonctions holomorphes sur G de L2, (G) et EZ, (G) son supplémentaire
orthogonal.

Soit C (x, y) la projection de u, (y) sur E? ,(G); on vérifie facilement que
C (x, y) ne dépend que de f, (¥) et que la correspondance

£.0) £, ey
est une application linéaire continue (pour chaque x fixé) de H(ZO 1 (G)
dans L(20 1y (G).
Notons E* I'adjoint de E. Montrons alors que C est de classe €? sur
Q x G. Il suffit de le faire au voisinage de chaque point (x,, y,). On introduit
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a cet effet une fonction y de classe ¥, a support compact dans G telle que
Y (y) = 1 dans un voisinage de y, et 0 = ¢ = 1 partout.
La formule de Bochner-Martinelli appliquée a ¥ (y) x C (x, y) donne

C(x,y) = KnJGC(x,Z)gz!ﬁ(Z) + ¥ (2)0.C(x,2) A B, (2,9) .

L’intégrale se décompose en une somme dont I’'un des termes porte sur
0, C(x,y) = f.(2); ce terme est de classe %7 (voir lemme 4.2). Il reste &
¢tudier

n 6
J E£] (z)(; (2 Bu (z,y)) A Az A dz = d(xY),

ou B,,; est le coefficient du terme sans dz; dans le noyau B,,.

n

0
16.9) = § @B & @ Bun(an) 4 ndz; ndz,.

i=1 A

Sous cette derniére forme on peut dériver par rapport & x sous l'inté-
grale (on pouvait dériver par rapport a y sous la forme initiale). On vérifie
que les limites sont uniformes par rapport a y dans un voisinage convenable
de y,, ce qui permet d’affirmer que les dérivées sont continues par rapport
au couple (x, y) . C (x, y) est donc de classe ¢* sur Q x G.

2. Soit toujours G un domaine borné strictement pseudo-convexe de
bord de classe ¥*. On a le théoréme essentiel de ce chapitre.

THEOREME 5.

11 existe un voisinage W de 0G x G et une fonction g (x, y) de classe €*
sur W pour laquelle on ait

(1) gyg(xa y) =0,
(2) g(x,x) =0,
(3) x#y: gy >0.

Nous construisons cette fonction au moyen de la fonction ¢ de I'intro-
duction et du lemme 1.3 (cette construction est faite dans [7]).
On définit pour x voisin de 0G et y voisin de G

(4) P(x,y) =200 (x)[x—y] — 0 @ dp(x)[x—y,x—y].

i
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On remarque qu’on a pris les termes C-linéaires ou C-bilinéaire du déve-
loppement de Taylor a I’ordre 2 de ¢ (¥) — ¢ (x).

5 00 =0 = do)[y—x] + 34 ®dg () [x =y, ]
F0(lx—y ),
(5") e (y) — @ (x) = 0¢ (x) [y —x] + 0o (x) [y —x]
+1[0® () + 0 ® 0 (9] [x—r, )]

+0®dp () [x—y,x=y] +0(lx—y ).
On reconnait dans (5) Re P (x, y) plus le hessien complexe de ¢, d’ou
(6) ReP(x,y) = ¢(x) —@(») + 0 ® 0 (x) [x —y,x —y]
+0(lx—y |3) :
La stricte plurisousharmonicité de ¢ permet d’écrire
Jy > 0,yxedG, yyeG, @ dp(x)[x—y,x—y]=y|x—y 12 .

D’autre part 36 < 0 tel que 0 (| x—y |*) = 9/2|x—y |* pour | x—y|
=0 d’ou

(7) v (x,»)€0G x Gtelsque |x—y| =20, ReP(x,y) =72 | x—y|*.
Soit 1 :0 < h < y /8.
L’ouvert @ = { x,y| Re P(x,y) > h} contient donc 0G x Gn {(x, )]

——=|x—y| = :
2 Y J
Il existe donc des voisinages ouverts U de 0G, V de G et des réels «,

p tels que 0 < o < B pour lesquels on a
(8) UxVa{x,yle<|x—y| <p} <{(x,y)|ReP(x,y) > h}.

Définissons alors une fonction ¥ de classe ¥ de R dans R telle que
0 =y =1 partout, Y () = 0 pour t = h/2 Y (t) = 1 pour t = h.
Et sur U x V on définit

A(x,y) = logP(x,y) x y[ReP(x,y)] si ReP(x,y) >0,

: h
A(x,y) =0 st ReP(x,y) <§,
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Il est clair que A4 (x, y) est de classe 4 ainsi que 0,A(x,y)sur U x V
et méme sur U x V.
On introduit enfin

5yA(xay) pour Ix_yl <ﬁ>
() =

it s, s et e,

0 pour |x—y| > «a.

f« (») est de classe € par rapport a (x, y) sur U x V et de plus 0,/ ()

= 0. D’apres le lemme 5.1 dont toutes les hypothéses sont vérifiées il existe

une fonction C (x, y) de classe ? sur U x V telle que d, C (x, y) = f, ().
La fonction

g(x,y) = P(x,y) =40 o | x—y| <B,
g(x,y) = v si |x—y|>a,

est de classe € sur U x V = W et vérifie les hypothéses 1), 2), 3) du
théoréeme 3.

On pourra méme prendre V' = G, avec les notations de I'introduction

pour v assez petit et U = G,\G,.

3. Probléeme de division.
THEOREME 6.

Pour toute fonction g vérifiant les conditions du théoréme 5, il existe un
voisinage W' de 0G x G et g¥e %1, (W') telle que 0,8% =0 et g(x,y)
= g* (x, ) [x—y] sur W'

Démonstration. On introduit une suite finie d’ouverts
0GxGecclU,xV,cc..caclU xV, =UxYV

ol chaque V), est un voisinage strictement pseudo-convexe de G.
On pose w, = U, x Ve { x; =yi]k+ l=i=n}.
On cherche alors a démontrer par récurrence sur k

k
g(x,y) = Z gi(x, ) (x;—y;) sur o,
i=1

gie(ggo(wk) et gygi(x:y) = O

ey eI
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k = n fournira le résultat du théoréme 6.
k = 1 se raméne & un probléme (trivial) de division & une variable.

Il s’agit de passer de k — 1 a k. On suppose donc

k—1
g(x:y) = Z gi(xay)(xi—yi)aaygi(xay) =0
i=1
et g; de classe € sur w,_ ;.
On procede en deux temps.

a) On prolonge les g; (x, y) en des g, (x, y) sur w,, ce sera 'objet du

lemme 5.2.
k-1
b) h(x,») =g(x») — ) g (x ) (x;—y;) définie sur o, s’annulle
i=1
pour x, = ¥, donc % (x,y) = (x,—») & (x, y) (division a une variable)
et on a g, de classe 4° sur w; et J, g, (x,y) = 0.

Donc

k
gx,») = > 9:(x,»)(x;—y) sur w, avec 0J,g;(x,y) =0
i=1

et g; de classe €* sur w,.

Lemme 5.2. (x,y) — y(x,y) fonction de classe > sur w,_, avec
d, 7 (x,») = 0 se prolonge en I' de classe %* sur w, avec d,T (x,y) =0.

Démonstration. On introduit
Q= Uy xVi_p)n{x; = yilk +1=i=n},
w = {X, Y € Q[ (Xg5 ves Xps oo Xs Y1y oo Ve 15 Xp - X ) €Q Y
w, -, est fermé dans Q, o est ouvert dans Q.

Donc K; = w1 nw, et K, = (Cow) N @, sont deux compacts
disjoints de Q. 1l existe donc une fonction  (x, y) réelle

l//(xa y) =1 pour (X, y)EKl ’
Y (x,y) = 0 pour (x,y) ek, ,

0 = (x,y) =1 partout, y de classe ¥ et & support compact dans Q.

v se prolonge en y sur @ holomorphe en y par

L’Enseignement mathém., t. XVIII, fasc. 3-4. 22
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;(X, V) = Y (Xgs eees Xy o5 X Vs ooy V=15 Xpes -5 Xp) -
On recherche alors I' sous la forme
F(x,y) = y(x, ) x¥(x,9) + (X —y)v(x,¥).

La condition d, I" (x, y) = O entraine

7 (x,9) 0, ¥ (x,)

Xk — Vi

3,v(x,y) = =f:(.

On a trivialement 0, f; (») = 0 et f; (») est de classe € sur Q; le lemme
5.1 appliquée a f, (y) (mais avec y e C* et x, ..., x, comme paramétre)
donne une solution v de classe €* sur Q qui prolonge y en I' sur w,, avec
0, T (x,y) = 0 et I' de classe €.

4. Avec les notations précédentes, compte tenu des théorémes 5 et 6,
g*e s, (W) avec W’ voisinage de 0G x G, vérifie les hypothéses du
§3sur W= W\{(x,»)|x = y}.

Nous posons maintenant

q(q—1) /n—1
Q,,q(x,y) =(_1) 2 < )Dq+1(g*)a

q

ane(g(ln,n-q—l;o,q)(W)a gy an(xa y) = 0.

Il résulte du théoréme 2 (¢=0) et du théoréme 3 (g =1) que si B,,
désigne a nouveau le noyau de Bochner-Martinelli:

THEOREME 7.

1l existe des doubles formes A,, et C,, dans ‘g(l,,,,,_ a-2;:0,q) (W)
et ‘5(1,,,,,_,1_1; 0.q—1y (W) telles que

By (%, ¥) = Qg (X,9) + 0x Ay (%, ) + 0, Cpy (%, )

Les formes du second membre sont appelées formes de Ramirez-Chenkin.
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§ 6. UNE REPRESENTATION INTEGRALE
SUR UN DOMAINE STRICTEMENT PSEUDO-CONVEXE

Nous conservons les notations utilisées jusqu’ici. Soit y une (0, g)-forme
indéfiniment différentiable sur G. D’aprés le théoréme 7 on a
[ 9 AB(y) =1 70D A Q)+ () A O Ay (x, )

xepG xeglG xepG

+ [ 9 AJ,Cpulx,y).

xeoG

Toutes les formes intervenant sont de classe €' sur W (B, @, Ang> Cag)
et de classe ¥ en y. Dans la derniére intégrale échangeons la différen-
tiation et I'intégration.

[ 7&®) A0, Cpux,y) =0, yx ACpux,y) = 0,B()

xepG xeoG
~ o0
ou Be %y, 4-1y (G).
Pour transformer la deuxiéme intégrale du second membre, nous avons - i
besoin de

gx Anq (x’ y) = dx Anq (xa y) .
Nous construisons pour y € G l'intégrale

Iade (X)) A Ay (x, ).

Pour chaque y fixé, c’est I'intégrale d’une forme d, exacte qui est donc
nulle.
D’autre part

de[y(x) A Ay (x,1)] = dy(x) A 4,,(x, )
+ (=D (x) A d[A4, (9]
= 0:7(X) A Ay (%,3) + (=177 (x) A 3, A4,,(x, ),
d’ou

0 =0 0,700 A A,y +(=D1f  9(x) AT, A, (x, ).

xeoG xedG

Et par conséquent

JG}’(X) A B, (x,y) = JGv(x) A Q. (x,y)

5

+ ("‘1)q+1jaG ng(x) A Anq(x’y) + gyB(y)"
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On porte cette relation dans le théoréme 4 ainsi on en tire:

THEOREME 8.

Pour chaque domaine strictement pseudo-convexe G de C", avec un bord
de classe €*, il existe des doubles formes Q,,(x,y) et A4,,(x,y) €
(gi,n—q—lg 0, (W) et C,f,n_q_z; 0,q (W) sur un ouvert W contenant 0G x G,
de telle sorte que ce qui suit est valable :

Si ye b, (G), alors yye G

y(y) = [f () A Q%) + (=D Oy (x) A A, (X,

xeoG xeoG

(2mi)"
- ngxY(X) A Bnq (x9 y):l + gy F(y) .
Avec T'e€%(; ,—1y(G). On rappelle 0,2,, =0 pour ¢ =0, ,, =0
pour g > 0, Q, et 4., sont de classe ¥* en y.

Il est clair que pour les domaines G, introduits au début de ce chapitre,
la méme représentation est valable avec les mémes noyaux.

CuAPITRE 111

UNE FORMULE DE RESOLUTION
POUR L’EQUATION DE CAUCHY-RIEMANN

Si G est un domaine borné dans le plan avec un bord suffisamment
régulier et g une fonction bornée ¥ sur G, alors la fonction

1
f0) == 2 4y aax, yea,
2ni g X — Yy
satisfait ’équation différentielle — = g .
y

Dans ce chapitre nous construisons au moyen du théoreme 8 une solu-
tion de du = f§ sur un domaine strictement pseudo-convexe au moyen d’une
intégrale de la méme forme.
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