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On a alors une écriture intéressante de Dq (/*).

./ v <r(2v + 1 )]f i U^cr(i )] A x
ß. H dçvZ Z ^ * iiI, J <J e ex 2n — l tf(2v) jv /iIN"}7] V=1

2<v<q <r(2v) iv
g + 1 < v < n

(U(2v))

La sommation pour /, / fixés est une forme n-C-linéaire alternée de

Xkv elle est donc parfaitement déterminée par sa valeur sur une
base de Cn dans laquelle on va choisir Xkl [x—y]. On peut le faire car ce

vecteur se comporte comme un vecteur constant vis-à-vis de ôx et dy. Si

?d) # k! gv avec X(t(2v+1) Xkl [x—y] pour ce v on a

/ v [^(t(2v+ 1)]
0.

Les seuls termes restants sont des termes avec ff (1) fej et on a la
simplification

1.

Le théorème est démontré.

§ 3. Une formule d'homotopie

Nous allons utiliser le théorème 1 pour rechercher la connexion entre
différentes C.F. formes. Nous entrevoyons ensuite les cas particuliers
importants pour la suite.

1. Soit toujours W un ouvert de Cn x Cn.

Définition 2. Pour 1 ^ v ^ r,soit4%^. rv, Sv) et au ar
des entiers tels que a1 + + ar — n.

Û, ,r(/î,..,/î)«(A/N...A(W:).
Définition 3. Soit /* g <#fuo. 0> 0) (W) avec f(x, y) y) [x-y]

ne s'annulle pas sur W.

Dq + i(/*) =DUq,r[X,dyjr, 0,^-)./*
/
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C'est exactement la définition 1 dans le cas où toutes les formes /*
sont égales.

ff* $ f* $ f*\
Remarque. Dq+1 (/*) Dl q r (L-, ->L-,

f* /1 \ S f*
~e>T d\j)Af*+f

et le premier terme disparaît dans le produit extérieur avec /*.
Soit maintenant g* e o,o) (^0 vérifiant de plus dyg* 0.

On définit comme pour /*, g(x, y) g*(x, j) [x—j] supposée non nulle
en tout point de W et Dq+1 (g*); dès que q > 0 on remarque que Dq+1 (g*)

0.

Lemme 3.1. Soit # + r^l,# + r + .y+l n. Alors

Démonstration. Nous supposons tout d'abord q fe 1 et r ^ 1 et

abrégeons les notations par F* /* jf et G* g* / g.
D'après le théorème 1

DlAr.s(F*>3,F*>ZxF*,8xG*)

Au membre de droite de cette égalité ajoutons la forme

G*, F*, G*)

et soustrayons-la de nouveau après l'avoir différentiée conformément au
§ 1 (3.3 et 4.3)



— 311 —

Di«.rAF*> ByF*>3*F*> 3* G*)Di«.rAF*> S*F*> B* G*>

+ dyDUUq„UrtS(G*,F*, 3yF*,3XF*,3C

~ {Dli9,rtl(G*,d,F*,5xF*,BxG*)
+ (-1)«-1 G*,F*,*,*,+

+ (-1)4"1 Duuq-Ur-i,i, s (G*, F*, dyF*, dxF*> By dxF*> Bx G*).

D'après le § 1.3.3 c'est aussi

D1^s(F*,dyF*,8xF*,dxG*)
àyDi,i,q-i,r<s(.G*, F*,3yF*, *, 3X G*)

+ — I)9p(G*,F*,dydxF*,3x G*)

Au membre de droite de cette égalité ajoutons maintenant

-r-dxDUUq^Us{G*,F*, SyF\ Sx G*)

et soustrayons cette forme après l'avoir différentiée

SxDUUq,r.Us(G*,F*, dyF*,3XF*, 3X G*)

G*, F*, 3yF*, dx G*)

- DUUq^l>s(G*,3XF*,3yF*,3XF*, 3X G*)

+ DUUUq-Ur-Us(G*,F*, 3X 3yF*, 5X G*)

+

+ (-I)«-1 !>!,!,4-i,i.r_lt,(G*,F*, E,F*, ôx G*)

En utilisant encore le § 1.3.3 il vient

D1>q>r>s(F*,3yF*,3xF*,3xG*)

3yDi,i,q-i,rAG*,F*,3XF*, 3X G*)

-r~3xDuu<,,r-xAG*,F*,3yF*,3X G*)

~ -qDUq,r-Us+l (F*,33XG*)

--qDUq>rAG*,dyF*,5xF*,dxG*).
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En appliquant encore le théorème 1 au dernier terme du second membre
et en le faisant passer au premier membre on obtient exactement le lemme 3.1

Si q — 0 et r ^ 1 le lemme devient

DUrta(F*,dxF*,dxG*) -3xDltUr_ltg(G*9F*,3xG*)
+ D1,r-lta+1(F*,SxF*tdxG*).

Si q ^ 0 et r 0 le lemme devient

Di,q,s (F*, dy F*, dx G*) 5yDl9lA-l98(G*9F*,dyF*,dxG*).

Dans les deux cas, la différentiation du premier terme du second membre

par le § 1.4.3 puis l'application du § 1.3.3 donnent immédiatement le résultat.

2. Nous appliquons maintenant le lemme dans le cas q 0 et r
— n — 1 :

£>1 (/*) Dlr(/*//,dx(/*//))(par définition).

Dtuv=-s,Dt,,,Js-,Ç,SJL

(r-k
On recommence sur le deuxième terme du second membre:

(d* /* - (f*Dt(f*)-sxDUUr^rj,

+ (Ç. «.(£). J.(Ç

Après avoir répété r fois l'opération

/u* f* _
£>l(/*) y, aU y

/ö* /* - /7*\ - (g*
-3xDuul^2rj, J-j,«UV)' V



Une nouvelle application du théorème 1 au dernier terme de cette somme

donne immédiatement:

Théorème 2. D1 (/*) — D±(g*) dxA(f*,g*),

où A (/*, g*) est la double forme

s»
Par application du lemme 3.1 pour ^ 1 on obtient une relation similaire

si on remarque que Dq+1 (g*) 0. C'est:

Théorème 3.

Pour q=±l et q + r + l n il existe des formes doubles A (/*, g*)
et C (/*, g*) sur W telles que :

Dq-i (/*) SxA(f*,g*) + 3yC(f*,g*) où

—
avec e/ cfe coefficients rationnels.

La démonstration est exactement calquée sur celle du théorème 2 mais

on applique (r+1) fois le lemme 3.1 (la dernière application donne
seulement un terme en dy).
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