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On a alors une écriture intéressante de D, (f*).

Dq(f*) [X1> "'9X2n—1]

—_ Z Z f>1k [ch(l)] ﬁ 5 !:f:k[Xa(Zv+1)]
I,J o6eo9n_1 0'(2v)0’=jv ff [X’-y] v=1 & ff[x——y]

2<v<gq 6(2v)=i,

g+1<v<n

] (XG(ZV)) .

La sommation pour I, J fixés est une forme n-C-linéaire alternée de
Xips oor Xy,; €lle est donc parfaitement déterminée par sa valeur sur une
base de C" dans laquelle on va choisir X, = [x—y]. On peut le faire car ce
vecteur se comporte comme un vecteur constant vis-a-vis de 0, et d,. Si
01y # kq3vavec Xy3,+1y = X, = [x—y] pour ce v on a

s [XG(2v+1)]}
3 — 0.
é”[ Silx—y]

Les seuls termes restants sont des termes avec o (1) = k, et on a la
simplification

Silx=y] _
filx—y]

Le théoréme est démontré.

1.

§ 3. UNE FORMULE D’HOMOTOPIE

Nous allons utiliser le théoréme 1 pour rechercher la connexion entre
différentes C.F. formes. Nous entrevoyons ensuite les cas particuliers
importants pour la suite.

1. Soit toujours W un ouvert de C" x C”.

Définition 2. Pour 1 =v <r, soit f¥e %’{}’,v, avs rr sy (W) et ay, ..., o,
des entiers tels que a; + ... + «, = n.

Doproan (FFs oS5 = (A 5 Al A (K [,

Définition 3. Soit f* e (6(21,0; 0,0y (W) avec f(x,y) = f*(x,y) [x—y]
ne s’annulle pas sur W.

Dyii(f9) =D, ,, (f syff,a f)

f T f
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C’est exactement la définition 1 dans le cas ou toutes les formes
sont €gales.

Remarque. D, (f*) = Dy, (f yf ¥ 0Lf )

fof

_f*  _ /1 o,f*
0.— = 0. | — * R
car v 7 y(f>/\f + 7

et le premier terme disparait dans le produit extérieur avec f*.

Soit maintenant g* € €(;. o, o, oy (W) vérifiant de plus d, g* = 0.

On définit comme pour f*, g(x, y) = g*(x, y) [x—y] supposée non nulle
en tout point de Wet D, ; (g*); dés que ¢ > 0 on remarque que D, (g*)
== (.,

Lemme 3.1. Soitg+r=1,qg+r+ s+ 1 = n. Alors
ol )51 (0)
NS f f g
qg - g* f* ~(f\ < (f*\ = (9*
= Oy Dy 1 getws|—> =5 Ol =], O |— ), 0.|—
r4gq T (g f (f) (f> (9>>
— ’ ngllqr—ls<£:jj: 5)}(&), 5x<£)a 5x<g_*)>
r+q T \g S 1 b g
I f* B f* _ f* _ g*
D r—1,s+ ) ay — > ax P ax - .
T g et 1<f <f> (f> <9>>

Démonstration. Nous supposons tout d’abord ¢ =1 et r =1 et
abrégeons les notations par F* = f* [ fet G* = g*/ g.
D’aprés le théoréme 1

Q)

Ql

D, (F* 8, F* 8 _F* 3.G* = D,,,,(G* 8,F* 8,F* 3, G¥).
Au membre de droite de cette €galité ajoutons la forme
gyDl,l,q—l,r,s (G¢9 F*> gyF*a 5xF*a gx G*)

et soustrayons-la de nouveau aprés l'avoir différentiée conformément au
§1 (3.3 et 4.3)
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Dy yrs(F* 0,F* 0, F* 0,G*) = Dy, (F*, d,F*, 0, F*, 0, G*)
4 3, D11 go1s(G* F*, 3, F* 3_F*, 3, G¥

— { Dy 4rs(G*, 0,F*, 0, F*, 0, G¥)

+ (="' Dy y1.1.,-1,s(G*, F*, 0,F*, 0,0, F*, 0,F*, 0, G*)
+

+ (=D 'Dyyg1.,-11,s(G* F*, 0,F* 0, F* 0,0, F*, 0, G*).
D’apres le § 1.3.3 c’est aussi

Dy ,rs(F*,0,F* 0 ,F*, 0, G¥)

= 0,D1,-1.,s(G* F*, 0,F* 0,F*, 0, G¥)

+ (=1)'pDyy4-11,-1:(G* F* 0,F* 0,0, F* 0,F* 0,G*).

Au membre de droite de cette égalité ajoutons maintenant
ro. _ _ -
——‘axDl’l’q,r..l,s(G*,F*, 5J,F*, axF*,ax G*) I
q

et soustrayons cette forme apres avoir différentiée

ngl,l,q,r—l,s (G*, F*, gyF*, 0, F*, 0, G¥)
= Dl,l,q,r—l,s (gx G*, F*, gyF*, ng*, B_x G*)

- Dl,l,q,r—l,s (G*> 5xF*9 ayF*, axF*a ax G*)
+ Dl,l,l,q*l,r—l,s (G*SF*S 5x 5yF*9 gyF*a ng*s gx G*)

+ ...
+ (—' l)q—I Dl,l,q—l,l,r—-l,s(G*>F*> gyF*a gx 8_yF*: ng*a gx G*) .

En utilisant encore le § 1.3.3 il vient

| Dy (F*,8,F* 8, F*, 3, G*)

t = gyDl,l,q——l,r,s(G*aF*a yF*, ng*a gx G*)

r _ — - =
- —axDl,l,q,r—-l,s(G*aF*a ayF*: axF*, ax G*)
q

r - = -
- _Dl,q,r—l,s+1 (F*: 6y F*a ax F*a ax G*)
q

r = = =
- Zl—Dl,q,r,s(G*a ay F*a ax F*s ax G*) .
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En appliquant encore le théoréme 1 au dernier terme du second membre
et en le faisant passer au premier membre on obtient exactement le lemme 3.1
Sig =0etr=1Ile lemme devient

Dl,r,s(F*) ng*a éx G*) = - ngl,l,r-—l,s(G*:F*a 8x G*)
53 Dl,r—l,s+1 (F*a ng*a gx G*) .

Sig=0etr = 0le lemme devient
Dy, (F*,0,F* 0,G*) = 0,Dy 1, 1,(G* F* 0,F* 0, G*).

Dans les deux cas, la différentiation du premier terme du second membre
par le § 1.4.3 puis I'application du § 1.3.3 donnent immédiatement le résultat.

2. Nous appliquons maintenant le lemme dans le cas ¢ = 0 et r
=n—1:

Dy (f*) = Dy, (f*/f, 0 (f*/f)) (par définition).

D1 (f*) = - 5xD1,1,r—1<%, %’ 5x<zf“>>

el 2(5)22)

On recommence sur le deuxiéme terme du second membre:

- g* f* _[(f*
) = =0 Dl r—1\ 7 " T ax S
Dl(f ) x ,1,‘ <g f (f>>

- g* (f* N\ = (g%
—0,Dy 4, —, =) 0\ =), 0| —
b 2’1<(9 <f> <f) <g)>
C(fE (Y L [9F
D 22\ ", > ax N E ax — .
 Ser ’(f (f) <g>>

Aprés avoir répété r fois 'opération

Dl(f*) = — ng‘l,l,r—1<g_a ‘Jf’“a gx(zi— ) T e

— ng1,1,1,r—2<g'; ’Lf_ ’ a’c(fT), 5x<%>>
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B g* f* _ [g*
- axD1,1,r—1<"g_a 7—9 ax(—g_

® _ g*
+D1,,(ff_, ax?>.

Une nouvelle application du théoréme 1 au dernier terme de cette somme
donne immédiatement:
THEOREME 2. D; (f*) — Dy (g*) = 0. A(S*,9%),

ot A (f*, g*) est la double forme

r g* f* B f*) _ (g*>)
* ) = — —kk—1\V" 2 T, ax — ] a;yc — .
A(f*, g% k;1D1,1,r k.k (g i (f g

Par application du lemme 3.1 pour ¢ = 1 on obtient une relation simi-
laire si on remarque que D, ., (g*) = 0. Clest:

THEOREME 3.

Pour q=1 et q +r + 1 = n il existe des formes doubles A (f*, g*)
et C(f*,g*) sur W telles que :

D, (f*) = 0, A(f* g% + 0,C(f*,g9%) ou

. gty = 3 AN N AN N EAAYY NN
A(f » g ) —kzzlale,l,q,r-k,k—1<g ) f Day<f>9ax<f>9ax(g))

C(f*9% =

r+1 " N ] f* ] ) ] \ ,
kZ1 D1t g-1,r—k+14-1 (% , —];— , 0, <_f_> , D, (_{_f_) 3. (%))

avec ay et ¢, coefficients rationnels.

La démonstration est exactement calquée sur celle du théoréme 2 mais

on applique (r+1) fois le lemme 3.1 (la derniére application donne seu-
lement un terme en 0,).
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