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CHAPITRE PREMIER

FORMES DE CAUCHY-FANTAPPIE

§ 2. FORME DIFFERENTIELLE DE CAUCHY-FANTAPPIE

Sur un ouvert W de C" x C", soit f* un n-uplet de formes de

(5’221,0; 0,0) (W)a f1< = {f;k} 1<v<n-
Pour chaque v on définit £, (x, ¥) = f ¥ (x, y) [x—y] et on suppose que
chaque fonction f, (x, y) ainsi définie ne s’annulle pas sur W.

Définition 1.

p =Tina () nng(f)na (L) a . na2)

s’appelle la forme différentielle de Cauchy-Fantappi¢ (C.F. forme) d’ordre g
sur W, associée a f*.

THEOREME 1. D, (f*) est indépendant de f -

- Démonstration. D,(f*)e %(ln’,,_q; 0.q4-1) (W). On va donc faire
agir D, (f*) sur 2n—1 vecteurs et on mettra en évidence une simplification

par f7 [x—Jl.
Onpose X,eE pour 1=v=2n—gq,
X,eF pour 2n—q+1=v=2n-1,
avec les notations du § 1 (ict E=F=C").
Onnote £, =y pour 2=v =g,
E, =x pour g+ 1=v=n,
0,,—1 €st le groupe symétrique d’ordre 2n—1.
I = (iy+4, --» I,) Un arrangement & (n—g) €éléments de {1,..,2n—¢q},

J = (jay ..., j,) une permutation a (g—1) éléments de { 2n—q+1,...2n—1},

K ={ky ...k,}, ky <..<k, un ensemble tel que KnlI={1,..,
2n—q}, Knl = 0.

|
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On a alors une écriture intéressante de D, (f*).

Dq(f*) [X1> "'9X2n—1]

—_ Z Z f>1k [ch(l)] ﬁ 5 !:f:k[Xa(Zv+1)]
I,J o6eo9n_1 0'(2v)0’=jv ff [X’-y] v=1 & ff[x——y]

2<v<gq 6(2v)=i,

g+1<v<n

] (XG(ZV)) .

La sommation pour I, J fixés est une forme n-C-linéaire alternée de
Xips oor Xy,; €lle est donc parfaitement déterminée par sa valeur sur une
base de C" dans laquelle on va choisir X, = [x—y]. On peut le faire car ce
vecteur se comporte comme un vecteur constant vis-a-vis de 0, et d,. Si
01y # kq3vavec Xy3,+1y = X, = [x—y] pour ce v on a

s [XG(2v+1)]}
3 — 0.
é”[ Silx—y]

Les seuls termes restants sont des termes avec o (1) = k, et on a la
simplification

Silx=y] _
filx—y]

Le théoréme est démontré.

1.

§ 3. UNE FORMULE D’HOMOTOPIE

Nous allons utiliser le théoréme 1 pour rechercher la connexion entre
différentes C.F. formes. Nous entrevoyons ensuite les cas particuliers
importants pour la suite.

1. Soit toujours W un ouvert de C" x C”.

Définition 2. Pour 1 =v <r, soit f¥e %’{}’,v, avs rr sy (W) et ay, ..., o,
des entiers tels que a; + ... + «, = n.

Doproan (FFs oS5 = (A 5 Al A (K [,

Définition 3. Soit f* e (6(21,0; 0,0y (W) avec f(x,y) = f*(x,y) [x—y]
ne s’annulle pas sur W.

Dyii(f9) =D, ,, (f syff,a f)

f T f
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