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CHAPITRE PREMIER

FORMES DE CAUCHY-FANTAPPIE

§ 2. FORME DIFFERENTIELLE DE CAUCHY-FANTAPPIE

Sur un ouvert W de C" x C", soit f* un n-uplet de formes de

(5’221,0; 0,0) (W)a f1< = {f;k} 1<v<n-
Pour chaque v on définit £, (x, ¥) = f ¥ (x, y) [x—y] et on suppose que
chaque fonction f, (x, y) ainsi définie ne s’annulle pas sur W.

Définition 1.

p =Tina () nng(f)na (L) a . na2)

s’appelle la forme différentielle de Cauchy-Fantappi¢ (C.F. forme) d’ordre g
sur W, associée a f*.

THEOREME 1. D, (f*) est indépendant de f -

- Démonstration. D,(f*)e %(ln’,,_q; 0.q4-1) (W). On va donc faire
agir D, (f*) sur 2n—1 vecteurs et on mettra en évidence une simplification

par f7 [x—Jl.
Onpose X,eE pour 1=v=2n—gq,
X,eF pour 2n—q+1=v=2n-1,
avec les notations du § 1 (ict E=F=C").
Onnote £, =y pour 2=v =g,
E, =x pour g+ 1=v=n,
0,,—1 €st le groupe symétrique d’ordre 2n—1.
I = (iy+4, --» I,) Un arrangement & (n—g) €éléments de {1,..,2n—¢q},

J = (jay ..., j,) une permutation a (g—1) éléments de { 2n—q+1,...2n—1},

K ={ky ...k,}, ky <..<k, un ensemble tel que KnlI={1,..,
2n—q}, Knl = 0.

|
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On a alors une écriture intéressante de D, (f*).

Dq(f*) [X1> "'9X2n—1]

—_ Z Z f>1k [ch(l)] ﬁ 5 !:f:k[Xa(Zv+1)]
I,J o6eo9n_1 0'(2v)0’=jv ff [X’-y] v=1 & ff[x——y]

2<v<gq 6(2v)=i,

g+1<v<n

] (XG(ZV)) .

La sommation pour I, J fixés est une forme n-C-linéaire alternée de
Xips oor Xy,; €lle est donc parfaitement déterminée par sa valeur sur une
base de C" dans laquelle on va choisir X, = [x—y]. On peut le faire car ce
vecteur se comporte comme un vecteur constant vis-a-vis de 0, et d,. Si
01y # kq3vavec Xy3,+1y = X, = [x—y] pour ce v on a

s [XG(2v+1)]}
3 — 0.
é”[ Silx—y]

Les seuls termes restants sont des termes avec o (1) = k, et on a la
simplification

Silx=y] _
filx—y]

Le théoréme est démontré.

1.

§ 3. UNE FORMULE D’HOMOTOPIE

Nous allons utiliser le théoréme 1 pour rechercher la connexion entre
différentes C.F. formes. Nous entrevoyons ensuite les cas particuliers
importants pour la suite.

1. Soit toujours W un ouvert de C" x C”.

Définition 2. Pour 1 =v <r, soit f¥e %’{}’,v, avs rr sy (W) et ay, ..., o,
des entiers tels que a; + ... + «, = n.

Doproan (FFs oS5 = (A 5 Al A (K [,

Définition 3. Soit f* e (6(21,0; 0,0y (W) avec f(x,y) = f*(x,y) [x—y]
ne s’annulle pas sur W.

Dyii(f9) =D, ,, (f syff,a f)

f T f
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C’est exactement la définition 1 dans le cas ou toutes les formes
sont €gales.

Remarque. D, (f*) = Dy, (f yf ¥ 0Lf )

fof

_f*  _ /1 o,f*
0.— = 0. | — * R
car v 7 y(f>/\f + 7

et le premier terme disparait dans le produit extérieur avec f*.

Soit maintenant g* € €(;. o, o, oy (W) vérifiant de plus d, g* = 0.

On définit comme pour f*, g(x, y) = g*(x, y) [x—y] supposée non nulle
en tout point de Wet D, ; (g*); dés que ¢ > 0 on remarque que D, (g*)
== (.,

Lemme 3.1. Soitg+r=1,qg+r+ s+ 1 = n. Alors
ol )51 (0)
NS f f g
qg - g* f* ~(f\ < (f*\ = (9*
= Oy Dy 1 getws|—> =5 Ol =], O |— ), 0.|—
r4gq T (g f (f) (f> (9>>
— ’ ngllqr—ls<£:jj: 5)}(&), 5x<£)a 5x<g_*)>
r+q T \g S 1 b g
I f* B f* _ f* _ g*
D r—1,s+ ) ay — > ax P ax - .
T g et 1<f <f> (f> <9>>

Démonstration. Nous supposons tout d’abord ¢ =1 et r =1 et
abrégeons les notations par F* = f* [ fet G* = g*/ g.
D’aprés le théoréme 1

Q)

Ql

D, (F* 8, F* 8 _F* 3.G* = D,,,,(G* 8,F* 8,F* 3, G¥).
Au membre de droite de cette €galité ajoutons la forme
gyDl,l,q—l,r,s (G¢9 F*> gyF*a 5xF*a gx G*)

et soustrayons-la de nouveau aprés l'avoir différentiée conformément au
§1 (3.3 et 4.3)
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Dy yrs(F* 0,F* 0, F* 0,G*) = Dy, (F*, d,F*, 0, F*, 0, G*)
4 3, D11 go1s(G* F*, 3, F* 3_F*, 3, G¥

— { Dy 4rs(G*, 0,F*, 0, F*, 0, G¥)

+ (="' Dy y1.1.,-1,s(G*, F*, 0,F*, 0,0, F*, 0,F*, 0, G*)
+

+ (=D 'Dyyg1.,-11,s(G* F*, 0,F* 0, F* 0,0, F*, 0, G*).
D’apres le § 1.3.3 c’est aussi

Dy ,rs(F*,0,F* 0 ,F*, 0, G¥)

= 0,D1,-1.,s(G* F*, 0,F* 0,F*, 0, G¥)

+ (=1)'pDyy4-11,-1:(G* F* 0,F* 0,0, F* 0,F* 0,G*).

Au membre de droite de cette égalité ajoutons maintenant
ro. _ _ -
——‘axDl’l’q,r..l,s(G*,F*, 5J,F*, axF*,ax G*) I
q

et soustrayons cette forme apres avoir différentiée

ngl,l,q,r—l,s (G*, F*, gyF*, 0, F*, 0, G¥)
= Dl,l,q,r—l,s (gx G*, F*, gyF*, ng*, B_x G*)

- Dl,l,q,r—l,s (G*> 5xF*9 ayF*, axF*a ax G*)
+ Dl,l,l,q*l,r—l,s (G*SF*S 5x 5yF*9 gyF*a ng*s gx G*)

+ ...
+ (—' l)q—I Dl,l,q—l,l,r—-l,s(G*>F*> gyF*a gx 8_yF*: ng*a gx G*) .

En utilisant encore le § 1.3.3 il vient

| Dy (F*,8,F* 8, F*, 3, G*)

t = gyDl,l,q——l,r,s(G*aF*a yF*, ng*a gx G*)

r _ — - =
- —axDl,l,q,r—-l,s(G*aF*a ayF*: axF*, ax G*)
q

r - = -
- _Dl,q,r—l,s+1 (F*: 6y F*a ax F*a ax G*)
q

r = = =
- Zl—Dl,q,r,s(G*a ay F*a ax F*s ax G*) .
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En appliquant encore le théoréme 1 au dernier terme du second membre
et en le faisant passer au premier membre on obtient exactement le lemme 3.1
Sig =0etr=1Ile lemme devient

Dl,r,s(F*) ng*a éx G*) = - ngl,l,r-—l,s(G*:F*a 8x G*)
53 Dl,r—l,s+1 (F*a ng*a gx G*) .

Sig=0etr = 0le lemme devient
Dy, (F*,0,F* 0,G*) = 0,Dy 1, 1,(G* F* 0,F* 0, G*).

Dans les deux cas, la différentiation du premier terme du second membre
par le § 1.4.3 puis I'application du § 1.3.3 donnent immédiatement le résultat.

2. Nous appliquons maintenant le lemme dans le cas ¢ = 0 et r
=n—1:

Dy (f*) = Dy, (f*/f, 0 (f*/f)) (par définition).

D1 (f*) = - 5xD1,1,r—1<%, %’ 5x<zf“>>

el 2(5)22)

On recommence sur le deuxiéme terme du second membre:

- g* f* _[(f*
) = =0 Dl r—1\ 7 " T ax S
Dl(f ) x ,1,‘ <g f (f>>

- g* (f* N\ = (g%
—0,Dy 4, —, =) 0\ =), 0| —
b 2’1<(9 <f> <f) <g)>
C(fE (Y L [9F
D 22\ ", > ax N E ax — .
 Ser ’(f (f) <g>>

Aprés avoir répété r fois 'opération

Dl(f*) = — ng‘l,l,r—1<g_a ‘Jf’“a gx(zi— ) T e

— ng1,1,1,r—2<g'; ’Lf_ ’ a’c(fT), 5x<%>>
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B g* f* _ [g*
- axD1,1,r—1<"g_a 7—9 ax(—g_

® _ g*
+D1,,(ff_, ax?>.

Une nouvelle application du théoréme 1 au dernier terme de cette somme
donne immédiatement:
THEOREME 2. D; (f*) — Dy (g*) = 0. A(S*,9%),

ot A (f*, g*) est la double forme

r g* f* B f*) _ (g*>)
* ) = — —kk—1\V" 2 T, ax — ] a;yc — .
A(f*, g% k;1D1,1,r k.k (g i (f g

Par application du lemme 3.1 pour ¢ = 1 on obtient une relation simi-
laire si on remarque que D, ., (g*) = 0. Clest:

THEOREME 3.

Pour q=1 et q +r + 1 = n il existe des formes doubles A (f*, g*)
et C(f*,g*) sur W telles que :

D, (f*) = 0, A(f* g% + 0,C(f*,g9%) ou

. gty = 3 AN N AN N EAAYY NN
A(f » g ) —kzzlale,l,q,r-k,k—1<g ) f Day<f>9ax<f>9ax(g))

C(f*9% =

r+1 " N ] f* ] ) ] \ ,
kZ1 D1t g-1,r—k+14-1 (% , —];— , 0, <_f_> , D, (_{_f_) 3. (%))

avec ay et ¢, coefficients rationnels.

La démonstration est exactement calquée sur celle du théoréme 2 mais

on applique (r+1) fois le lemme 3.1 (la derniére application donne seu-
lement un terme en 0,).
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§4. LA FORMULE INTEGRALE DE BOCHNER-MARTINELLI GENERALISEE
On supposera désormais que C" est muni de sa structure d’espace
Hilbertien.

1. Soit W = {(x,y)e C" x C"|x # y}; alors sur W la C.F. forme
définie a partir de (X —y)* (voir (1))

q(g—1) sn—1
B, (x,y) = (—-1) ? ( )Dq-l((f—f)*)

q

est bien définie.
(1) Notons que, vu e C", u* désigne la forme C-linéaire

u*: h-><h.ou).

Définition 4. B,,(x,y) s’appelle le noyau de Bochner-Martinelli pour
une (0,q) forme (B.M. Kern)

Bnq 8 (52’3, n—q—1; 0,q) (W).

Nous prolongeons la définition paf B, _y=B8B,,=0.

Lemme 4.2. 0.B,, = (=1)?0,B,,-1, 0 =g =n.
Ce lemme résulte de (n—q) 0, D,4( (f*) = — q 0, D, (f*).

Démonstration. Remarquons que d’aprés le théoréme 1 (ou sa
démonstration)

Dq,,H(B'y(-f};), Ex(—’;)> =0 avec q+r+1=n.

0.D —, Oy —, O, —
g "q”(f f f)
f*

=q(—1)"Dy 411, <“f— ) 53;7—

*

= (1+r)(—-1)4—11)1,‘1_1,1,,(-7, éy-j-;—, Exéy-j;—, 5%,—)-
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On a utilisé les formules de dérivation et de commutation des § 1.3.3 et
1.4.3. En tenant compte des coefficients on obtient le lemme 4.2.

Lemme 4.3.

q(g+1)

B,, (x,y) =(=1) 2 (n-1! Z [(ik_yk) dx; A i\l (dy;y, Adx;,)

A (dXndx; )] [ x—y | =2,

ol la sommation est étendue aux indices vérifiant 1 =k =n, 1 =i,
<. <pp=nl=j <. <ji4-1=n

11 est clair que seuls les termes ou k, iy, ... iy, j1 ... Ju—4—1 €St UNE permu-
~ tation de (1, ..., #n) ne sont pas nuls.

Démonstration. On développe Iexpression de D, . (X—y)*)
donnée dans (§ 3.1 Remarque) en utilisant de plus les régles de commu-
tation.

2. Soit maintenant G un domaine borné dans C" avec une fronticre
0G de classe €'. On prend lorientation naturelle de C", c’est-a-dire
X1y X1 ooy Xy X, aVEC X, = X', 4+ ix”, est un systéme de coordonnées de
R?" orienté positivement et sur G on choisit I'orientation induite (celle du
théoréme de Stokes). Ainsi les signes sont déterminés pour l'intégration.

Lemme 4.4. Soit y € €5 ;.4 (G), y bornée sur G. Alors

o;(y) = | Gv(x) A B, (x,9) €%, (G)

X e

Démonstration. D’abord l'intégrale a un sens car

1
iBnq(xay)l =0< 21’2—-1)
| x -yl

d’apres le lemme 4.3.

Montrons la différentiabilité pour y, € G; soit f fonction de classe €~
de R dans R telle que 0 = f = 1 partout, f = 1 dans un voisinage compact
K, de y,, f est & support compact K, avec K; c = K, < = G.

a(y) = | 'G[l—f(x)]v(x)Bnq(x,y) +J Gf(x)v(C)Bnq(x,J’)-

X
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Le premier terme est de classe ¥ car l'intégration porte en réalité
(pour y voisin de y,) sur un domaine ou le dénominateur ne s’annulle pas.

Pour le deuxiéme terme o, (¥) on effectue le changement de variable
d’intégration x = y + z. Il vient pour y voisin de y,

Zy

(=) [ yO+2)f(y+2)

zeG =, |z |

dzy ...

Sous cette forme la différentiabilité en y ne pose plus de probleme car
v (y+z) est de classe ¥*. Le raisonnement vaut naturellement pour tout
y, dans G.

3. THEOREME 4.

Soit y € €y (G). Alors pour chaque y € G

y(y) = 7(c) A B (x,y) — | G[Exv (X) A B, (x, )]

1
(27Z l)n [jxeaG xe
- gyj Gy(x) A Bnq—l (xs y)] .

C’est la formule de Bochner-Martinelli généralisée, pourn = 1, g = 0,
on retrouve la formule de Cauchy.

a) Ona d.[y(x) A B,(x,y)] = 0:[y(*) A By (x,)]
= [0,7(®)] A By (x,) + (= Dy (x) A 0, B,,(x,)
= [ng(X)] A Bnq(x:' y) + V(x) A gan,(q—l)(xa y) )

en appliquant le lemme 4.2 pour la derniére égalité.

b) Soit tout d’abord g = 0; y est une fonction, et B, ,_; = B, _4
disparait. |
Nous choisissons y € G et posons

K, ={xeG| |x—y| =Ze}ccG e G, =G\K,
"Nousv appliquons le théoréme de Stokes sur G, a la forme trouvée en a).

§ . 0,7(c) A By (x,)
8 = j '}’(X) N Bno(xa y) - j '))(X) A Bno(xa y)

xedGg xedKg
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Dans cette égalité on fait ¢ — 0, l'intégrale de « volume » converge vers
I’intégrale étendue a tout G et la premicre intégrale de « surface » ne change

pas.
Pour la deuxiéme intégrale de « surface » on a

I v® AB,(x,») =] & —yW]B,&,») +7y» IaK B,,(x, ).

0K, 0K, ¢

La premiére intégrale du second membre tend vers O avec ¢ car

1
[y —yWIB,(x, 0| = 0( 2n—2>‘
|x — y|

Le deuxieme terme est y (y) & un facteur numérique pres, en effet on fait
le changement x — y = et dans ’expression de B,, (x, y) donnée par le
lemme 4.3.

j Bno(x,y)=(n—1)'j kadtk A (dii/\dt}v).
0K 1

£ ltl=1 k=1 A=
A#k

En utilisant les coordonnées réelles ¢, = ¢, + i ¢,

jé’ Bno (xn y)

K¢

n (21)" n
=m-1!] Y ——(=t" dt'y +t', dt") A dt', Adt",,
ltl=1 k=1 A=1
A¥k
ou on a remarqué que les termes
(' dt' +t" dt") = — Y t/,dt'; +t",dt", sur |t] =1

A¥k

ont disparu dans le produit extérieur.
Mais on reconnait

n n
Y (=t dt + 1 dt) A dt', A dt”,
itf=1 k=1 A=1
A#1
21"

, d’ou
I' (n)

= aire de la sphére de rayon 1 en dimension 2n =

J‘ Bno (xa y) =(2HL)n,

xe0Kg

En reportant cette valeur au début de b) on obtient le théoréme 4 pour
qg = 0.
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c) Soit maintenant ¢ quelconque et y, € G; nous choisissons une fonc-
tion f de classe ¥ avec 0 = f = 1 dont le support est compact et contenu
dans G et qui vaut 1 dans un voisinage K de y,.

On décompose y (x) = (1—=1) y(x) + fy (x).
La formule de Stokes appliquée a la différentielle trouvée en a) avec (1 —f)
y donne le théoréme pour (1—f) y.

d) On peut donc sans restreindre la généralité supposer maintenant que
y est a support compact.
On écrit conformément aux notations du paragraphe 1 (2.3)

7(x) = ; 71 (x) dx;

et on cherche & démontrer

(3.1) (Y dyr =

(2Hl)n [— ijng’))I(x) dk_l A Bnq(xa y)

- gy j Gy(x)dxl A Bnq—'l (x9 y)] >

X e

Occupons-nous d’abord du deuxiéme terme (en B, ,_ ;). On remarque
au départ que

_ . ovr ,_
5yj. G’)’I(x) dx; A Bnq—l(x»y) = j Z——IdJ’k A deBnq—l(xa y),

we xeG h ax—k

en utilisant la technique de dérivation vue a la fin de la démonstration du
lemme 4.4. On remplace alors B,,_; (x, y) par sa valeur explicite donnée
au lemme 4.3.

gy 5 G?’I (x)dx; A Bnq—l (x, )

q(q—1) 4 Oy (x
=§ (=) 2 (n=D! ) YI_( )d?iv A dXp A (X, —Pi) dx,
xeG v=1 6xiv
q n—q
A 1/3\1 (dy;, A dx;) A ,,/=\1 dx;, A dx;,
VY

g Oy (%)

~o-ntlf ¥

— djc—iv A (fiv _'yiv) dxiv
xeG v=1 axiv

i=1
AFEY

q
A A dX, /\dx{l A dy; .
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On rappelle I = (iy, ... Iy, ooy Bp), 11 < oo < I

et on a pos€ J = (jy, oo s Jughr J1 < oo <Jn—g>

de telle sorte que I U J est une permutation de (1, ..., n).
Occupons-nous de la méme fagon du terme en B,, (x, y).

I gx ’))I(x) d)—CI A Bnq (xa y)

xeG
q(q+1) n—gq 5)) X 3 _
=m-D!I(-) 2 [ ¥ ’_()dfjﬂAdifA(x,-,,—y,-u)
xeG pu=1 axju
q n—q
dxj# AN A (dj}-iv A dxiv) AA (d)—Cj}. A dxfl)
v 2
ooy (%) - -
=m-1! [f Y S d%, A dx, (=)
xeG pu=1 Xiu

(dx, ndx;) | dy; .
A=1
a=jy,

On reconnait dans la somme des deux intégrales en B,, et B, _, inter-
venant dans (3.1)

f 5.\- Y1 (x) A By, (x,y)dy, = — QI y;(y)dy;,

xeG

d’apres le théoréme 4 démontré pour ¢ = 0. On reporte dans (3.1) et on
obtient exactement le résultat désiré.

CHAPITRE II

FORMES DE CAUCHY-FANTAPPIE
SUR DES DOMAINES STRICTEMENT PSEUDO-CONVEXES

Indiquons tout d’abord quelques notations: soit © un ouvert de C";
si @ est une fonction réelle de classe €2 sur Q, d ® d ¢ (x) est la forme bili-
néaire symétrique

d®de(x)[hk] =d{de(x)[h]}[k].




	Chapitre Premier  FORMES DE CAUCHY-FANTAPPIÈ
	§2. Forme différentielle de Cauchy-Fantappiè
	§3. Une formule d'homotopie
	§4. La formule intégrale de Bochner-Martinelli généralisée


