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Chapitre Premier

FORMES DE CAUCHY-FANTAPPIÈ

§ 2. Forme différentielle de Cauchy-Fantappiè

Sur un ouvert W de Cn x CM, soit /* un /2-uplet de formes de

«0.0; 0,0) OU, /* {/v}lSvS„-
Pour chaque v on définit /v (x, y) f* (x, j) [x—y] et on suppose que

chaque fonction /v (x, y) ainsi définie ne s'annulle pas sur W.

Définition 1.

s'appelle la forme différentielle de Cauchy-Fantappiè (C.F. forme) d'ordre q
sur W, associée à/*.

Théorème 1. Dq(f*) est indépendant de f*.
Démonstration. Dq(f*)ecê\n>n_q.0q_1)(W). On va donc faire

agir Dq{f*) sur 2n — \ vecteurs et on mettra en évidence une simplification

par /î [x-yl
On pose Xv e E pour 1 ^ v ^ 2 n — q,

XveF pour 2/z — q+l Xv X: 2n — 1,

avec les notations du § 1 (ici E=F=Cn).

On note £v y pour 2 v ^ q,

£v x pour q + 1 v ^ n,

°2n-î est Ie groupe symétrique d'ordre 2/2—1.

/ (iq+1, in) un arrangement à (;n — q) éléments de { 1, 2n — q },

j (/2,jq) une permutation à (q— 1) éléments de { 2n — q+ 1,... 2/2—1},

K {ku ...,kn}9 k1 < < kn un ensemble tel que K n / { 1,...,

2n-q},KnI 0.
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On a alors une écriture intéressante de Dq (/*).

./ v <r(2v + 1 )]f i U^cr(i )] A x
ß. H dçvZ Z ^ * iiI, J <J e ex 2n — l tf(2v) jv /iIN"}7] V=1

2<v<q <r(2v) iv
g + 1 < v < n

(U(2v))

La sommation pour /, / fixés est une forme n-C-linéaire alternée de

Xkv elle est donc parfaitement déterminée par sa valeur sur une
base de Cn dans laquelle on va choisir Xkl [x—y]. On peut le faire car ce

vecteur se comporte comme un vecteur constant vis-à-vis de ôx et dy. Si

?d) # k! gv avec X(t(2v+1) Xkl [x—y] pour ce v on a

/ v [^(t(2v+ 1)]
0.

Les seuls termes restants sont des termes avec ff (1) fej et on a la
simplification

1.

Le théorème est démontré.

§ 3. Une formule d'homotopie

Nous allons utiliser le théorème 1 pour rechercher la connexion entre
différentes C.F. formes. Nous entrevoyons ensuite les cas particuliers
importants pour la suite.

1. Soit toujours W un ouvert de Cn x Cn.

Définition 2. Pour 1 ^ v ^ r,soit4%^. rv, Sv) et au ar
des entiers tels que a1 + + ar — n.

Û, ,r(/î,..,/î)«(A/N...A(W:).
Définition 3. Soit /* g <#fuo. 0> 0) (W) avec f(x, y) y) [x-y]

ne s'annulle pas sur W.

Dq + i(/*) =DUq,r[X,dyjr, 0,^-)./*
/
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C'est exactement la définition 1 dans le cas où toutes les formes /*
sont égales.

ff* $ f* $ f*\
Remarque. Dq+1 (/*) Dl q r (L-, ->L-,

f* /1 \ S f*
~e>T d\j)Af*+f

et le premier terme disparaît dans le produit extérieur avec /*.
Soit maintenant g* e o,o) (^0 vérifiant de plus dyg* 0.

On définit comme pour /*, g(x, y) g*(x, j) [x—j] supposée non nulle
en tout point de W et Dq+1 (g*); dès que q > 0 on remarque que Dq+1 (g*)

0.

Lemme 3.1. Soit # + r^l,# + r + .y+l n. Alors

Démonstration. Nous supposons tout d'abord q fe 1 et r ^ 1 et

abrégeons les notations par F* /* jf et G* g* / g.
D'après le théorème 1

DlAr.s(F*>3,F*>ZxF*,8xG*)

Au membre de droite de cette égalité ajoutons la forme

G*, F*, G*)

et soustrayons-la de nouveau après l'avoir différentiée conformément au
§ 1 (3.3 et 4.3)
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Di«.rAF*> ByF*>3*F*> 3* G*)Di«.rAF*> S*F*> B* G*>

+ dyDUUq„UrtS(G*,F*, 3yF*,3XF*,3C

~ {Dli9,rtl(G*,d,F*,5xF*,BxG*)
+ (-1)«-1 G*,F*,*,*,+

+ (-1)4"1 Duuq-Ur-i,i, s (G*, F*, dyF*, dxF*> By dxF*> Bx G*).

D'après le § 1.3.3 c'est aussi

D1^s(F*,dyF*,8xF*,dxG*)
àyDi,i,q-i,r<s(.G*, F*,3yF*, *, 3X G*)

+ — I)9p(G*,F*,dydxF*,3x G*)

Au membre de droite de cette égalité ajoutons maintenant

-r-dxDUUq^Us{G*,F*, SyF\ Sx G*)

et soustrayons cette forme après l'avoir différentiée

SxDUUq,r.Us(G*,F*, dyF*,3XF*, 3X G*)

G*, F*, 3yF*, dx G*)

- DUUq^l>s(G*,3XF*,3yF*,3XF*, 3X G*)

+ DUUUq-Ur-Us(G*,F*, 3X 3yF*, 5X G*)

+

+ (-I)«-1 !>!,!,4-i,i.r_lt,(G*,F*, E,F*, ôx G*)

En utilisant encore le § 1.3.3 il vient

D1>q>r>s(F*,3yF*,3xF*,3xG*)

3yDi,i,q-i,rAG*,F*,3XF*, 3X G*)

-r~3xDuu<,,r-xAG*,F*,3yF*,3X G*)

~ -qDUq,r-Us+l (F*,33XG*)

--qDUq>rAG*,dyF*,5xF*,dxG*).
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En appliquant encore le théorème 1 au dernier terme du second membre
et en le faisant passer au premier membre on obtient exactement le lemme 3.1

Si q — 0 et r ^ 1 le lemme devient

DUrta(F*,dxF*,dxG*) -3xDltUr_ltg(G*9F*,3xG*)
+ D1,r-lta+1(F*,SxF*tdxG*).

Si q ^ 0 et r 0 le lemme devient

Di,q,s (F*, dy F*, dx G*) 5yDl9lA-l98(G*9F*,dyF*,dxG*).

Dans les deux cas, la différentiation du premier terme du second membre

par le § 1.4.3 puis l'application du § 1.3.3 donnent immédiatement le résultat.

2. Nous appliquons maintenant le lemme dans le cas q 0 et r
— n — 1 :

£>1 (/*) Dlr(/*//,dx(/*//))(par définition).

Dtuv=-s,Dt,,,Js-,Ç,SJL

(r-k
On recommence sur le deuxième terme du second membre:

(d* /* - (f*Dt(f*)-sxDUUr^rj,

+ (Ç. «.(£). J.(Ç

Après avoir répété r fois l'opération

/u* f* _
£>l(/*) y, aU y

/ö* /* - /7*\ - (g*
-3xDuul^2rj, J-j,«UV)' V



Une nouvelle application du théorème 1 au dernier terme de cette somme

donne immédiatement:

Théorème 2. D1 (/*) — D±(g*) dxA(f*,g*),

où A (/*, g*) est la double forme

s»
Par application du lemme 3.1 pour ^ 1 on obtient une relation similaire

si on remarque que Dq+1 (g*) 0. C'est:

Théorème 3.

Pour q=±l et q + r + l n il existe des formes doubles A (/*, g*)
et C (/*, g*) sur W telles que :

Dq-i (/*) SxA(f*,g*) + 3yC(f*,g*) où

—
avec e/ cfe coefficients rationnels.

La démonstration est exactement calquée sur celle du théorème 2 mais

on applique (r+1) fois le lemme 3.1 (la dernière application donne
seulement un terme en dy).
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§ 4. La formule intégrale de Bochner-Martinelli généralisée

On supposera désormais que Cn est muni de sa structure d'espace
Hilbertien.

1. Soit W { (x, y) g Crt x Cn | x ^ y } ; alors sur W la C.F. forme
définie à partir de (x — y)* (voir (1))

g(g-i) /n_1\
B„q(x,y)=(-1) 2

J A,-i((x-j>)*)

est bien définie.

(1) Notons que, \/u e C", m* désigne la forme C-linéaire

w* : h -* (h il)

Définition 4. Bnq (x, y) s'appelle le noyau de Bochner-Martinelli pour
une (0,q) forme (B.M. Kern)

Bnq£W.
Nous prolongeons la définition par 2?„ _ x Zi„ „ 0.

4.2. Bnq -1)« 0 ni g ^ n

Ce lemme résulte de (« —#) D+ (/*) — qdy Dq (/*).

Démonstration. Remarquons que d'après le théorème 1 (ou sa

démonstration)

^.(â,(Ç).^(y))-o avec + r + i-„.
(f* f* f*
— Bv—, Bx—f'f f

(f* f* f*
S,j-,

r - r»ry
f ' yf'x f

f* f* f*
7- s'7' l'7

^l,q—l,r+l\ /.
'"v

(1+>")(-Wy-T'
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On a utilisé les formules de dérivation et de commutation des § 1.3.3 et

1.4.3. En tenant compte des coefficients on obtient le lemme 4.2.

Lemme 4.3.

q(q + 1 <1

Bnq(.x?y) — (— 1) 2 (n — 1) ^ yk) dXfc a a (dyivAdxiv)
v 1

n — q— 1

A (dxjflAdXjJ]Ix-pr2",
*1=1

où la sommation est étendue aux indices vérifiant 1 ^k^n, 1 ^ /
< < iq ^ n, 1 < < jn-q-! ^ w.

Il est clair que seuls les termes où k, iu ...jn-q^1 est une permutation

de (1, ...,«) ne sont pas nuls.

Démonstration. On développe l'expression de Dq+ x ((3c — y)*)
donnée dans (§3.1 Remarque) en utilisant de plus les règles de commutation.

2. Soit maintenant G un domaine borné dans Cn avec une frontière
ôG de classe c1. On prend l'orientation naturelle de C", c'est-à-dire

x[, x"u xm x"n avec xv x'v + ix\ est un système de coordonnées de
R2" orienté positivement et sur dG on choisit l'orientation induite (celle du
théorème de Stokes). Ainsi les signes sont déterminés pour l'intégration.

Lemme 4.4. Soit y e ^o,q + i (G), y bornée sur G. Alors

"W f 7(x)ABnq(x,y)eré(0 q) (G)
xeG

Démonstration. D'abord l'intégrale a un sens car

\Bnq(x,y)\o(—i—2n-i)
\U-fl /

d'après le lemme 4.3.

Montrons la différentiabilité pour y0 e G; soit / fonction de classe #°°
de R dans R telle que 0 1 partout,/ 1 dans un voisinage compact

de y0, f est à support compact K2 avec K1 c a K2 <= c= G.

a 00 J
'

[1 - /(*)] y (*) Bnq (x, y) + j f(x) y (c) Bnq (x, y)
xeG xeG
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Le premier terme est de classe #°° car l'intégration porte en réalité
(pour y voisin de y0) sur un domaine où le dénominateur ne s'annulle pas.

Pour le deuxième terme a2 (y) on effectue le changement de variable
d'intégration x y + z. Il vient pour y voisin de y0

«2(y) Z J y(y + z)f(y + z)j^w-ndzk...
zeG-y0 I Z |

Sous cette forme la différentiabilité en y ne pose plus de problème car
y (y-h z) est de classe ^°°. Le raisonnement vaut naturellement pour tout
y0 dans G.

3. Théorème 4.

Soit y e (G). Alors pour chaque y e G

7 (y) [ J 7(c) a Bnq (x- j (x) a Bnq (x, y)]
{Z71 l) xedG xe G

a (x, y)].
xe G

C'est la formule de Bochner-Martinelli généralisée, pour n — 1, f 0,

on retrouve la formule de Cauchy.

a) On a dx [y (x) a Bnq (x, y)] ôx [y (x) a Bnq (x, y)]

[5* y 00] a Bnq (x, y) +(-l)îy(x) a

[3*y(*)] a Bnq(x,y)+ y (x) a ByBaAq.t) (x, y)

en appliquant le lemme 4.2 pour la dernière égalité.

b) Soit tout d'abord q 0; y est une fonction, et Bn Bn _1
disparaît.

Nous choisissons y e G et posons

Ke {x e G | \x — y \ ^£}ccG et Gs G\KS

Nous appliquons le théorème de Stokes sur Ge à la forme trouvée en a).

J ôxy(c) a Bn0(x, y)
xeG g

j 700a -ß„„ (x, y) - J y (x) a Bno (x, y)
xeôGe xedKe
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Dans cette égalité on fait s - 0, l'intégrale de « volume » converge vers

l'intégrale étendue à tout G et la première intégrale de « surface » ne change

pas.
Pour la deuxième intégrale de « surface » on a

J r 00 A Bno (x,y) j [y (x) - y (y)] Bno + (y) j Bno (x,y).
ÔKS ÔKe ÔK8

La première intégrale du second membre tend vers 0 avec s car

| [y (x) - y(y)] Bno(x,y)| 0 '

\x - y I2"'

Le deuxième terme est y (y) à un facteur numérique près, en effet on fait
le changement x — y — et dans l'expression de Bno (x, y) donnée par le

lemme 4.3.

n n

I Bno(x, y)0-1) J a (dtxAdtx).
dKs Uï t k= 1 2=1

En utihsant les coordonnées réelles tx t'x + i tx

J Bno (X, }>)

dKe
" (2/)""(n ~1) J Ü — - + a A À,

Ul 1 k=l 2, 2=1
29±k

où on a remarqué que les termes

(t'kdt'k + t"kdt"k)- Y t'x dt' x+ sur |t| 1

ont disparu dans le produit extérieur.
Mais on reconnaît

n n

j Yj — t"kdt'k + t'kdt"^) a dt'x a dt"x
Ul 1 k= 1 2=1

2^1

2nn- aire de la sphère de rayon 1 en dimension 2 — d'où
r(n)

J B„0(x,y) (277/)",
xedKe

En reportant cette valeur au début de b) on obtient le théorème 4 pour
q 0.



c) Soit maintenant q quelconque et y0e G; nous choisissons une fonction

/ de classe ^°° avec 0 =f= 1 dont le support est compact et contenu
dans G et qui vaut 1 dans un voisinage K de yQ.

On décompose y (x) (1 —f) y (x) + fy (x).
La formule de Stokes appliquée à la différentielle trouvée en a) avec (1 —/)
y donne le théorème pour (1 —/) y.

d) On peut donc sans restreindre la généralité supposer maintenant que
y est à support compact.
On écrit conformément aux notations du paragraphe 1 (2.3)

y (X) Zy

Occupons-nous d'abord du deuxième terme (en Bnq^1). On remarque
au départ que

en utilisant la technique de dérivation vue à la fin de la démonstration du
lemme 4.4. On remplace alors Bnq„t (x,y) par sa valeur explicite donnée

au lemme 4.3.

Syj yi(x)dx, a Bnq^l (x,y)

I

et on cherche à démontrer

(3.1) y I(y)dyt
—2— [ - J (x) dxt a Bnq (x,
{Zill) xeG

- S, j y (x) dx, a _ y)]

x e G

n-q
A a (dyix a dxi;) a a dxjß a dxj

v

(n — 1) U i|_ xe G v
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On rappelle I0\,... i„...,iq), < <
et on a posé J(j\, -,jn-q),ji<-
de telle sorte que Iu/ est une permutation de (1,..., n).

Occupons-nous de la même façon du terme en Bnq y).

J oxy,(x)dx, a Bnq (x, y)
x e G

g(g+1> n-q dy (x)
(n — 1) — 1) 2 J £ ^— A A ~yji)

x e G n 1 jß

q n-q
dxjß a a (dyiv a dxiv) a a (dxjx a dxJÀ)

v =1 X— 1

X^ p

(n -1)
' " « dy, (x) _
1 L —— dxy„ A dxjß(Xjll-yjß)
xeG p 1 VXjfi

A A (dx} A dx,)
J

A — Jß

On reconnaît dans la somme des deux intégrales en Bnq et Bnq_ ±

intervenant dans (3.1)

J Sx y,(x) a Bno (x, y) dy, - (277i)"}', (y) dy,,
xe G

d'après le théorème 4 démontré pour q — 0. On reporte dans (3.1) et on
obtient exactement le résultat désiré.

Chapitre II

FORMES DE CAUCHY-FANTAPPIÈ
SUR DES DOMAINES STRICTEMENT PSEUDO-CONVEXES

Indiquons tout d'abord quelques notations: soit Q un ouvert de C";
si cp est une fonction réelle de classe sur Q, d (x) d cp (x) est la forme bili-
néaire symétrique

d ® d cp (x) [fo./c] — d {dcp (x) \h] } [fc]
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