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Martinelli généralisée, mais le noyau n’est pas holomorphe (contrairement
au noyau de Cauchy pour » = 1). Un théoréme d’homotopie (§ 3) permet
de nous ramener a un noyau dont certains termes sont holomorphes; pour
obtenir ce dernier, nous devons prouver I’existence d’une fonction g conve-
nable (th. 5, ch. II). Aprés quoi, on obtient assez facilement les résultats
cherchés.

Je me suis inspiré pour ce travail de I’article de Ingo-Lieb [1], mais j’ai
€té amené a remanier profondément certaines notations et démonstrations
(notamment aux § 2 et 5) dans un but de simplification.

§ 1. PRELIMINAIRES SUR LES FORMES DIFFERENTIELLES EXTERIEURES

E est un espace vectoriel de dimension #n sur C.

1. FORMES DIFFERENTIELLES DE DEGRE 1.

1.1. Définition. Une forme différentielle de degré 1 sur un ouvert
Q de E, est une application de 2 dans ’espace vectoriel E* des formes
complexes R-linéaires sur E. \yx € 2, w (x) est une forme R-linéaire sur E
a valeur dans C.

Lemme 1.1. Toute forme complexe R-linéaire sur £ est somme d’une
forme antilinéaire et d’une forme C-linéaire et cela de fagon unique:

1 1
l(2) = 5[1(2) = i1G2)] +5[1(2) +i1G2)].

Exemple. Sife®'(Q),f:2 — C,
vxeQ, df(x) = af(x) + df(x) ou df = 0f + 0f.
of (x) désigne la partie C-linéaire de df (x).
0f (x) désigne la partie antilinéaire de df (x).
1.2. Ecriture dans une base. Si E est muni d’une base, £ ~ C”,

xeC': x = (Xg)..0rX,) -

Définition. dx,, respectivement dx,, désigne la forme C-linéaire, respec-
tivement antilinéaire, qui a x fait correspondre x,, respectivement X,.
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Toute forme différentielle de degré 1 sur Q s’écrit

n

w(x) = Y wx)dx, + ) w(x)dX,.

n=1
Par exemple,

: of - af
of = ng—dxv, of = Zéx_dx"’

v v

2. FORMES DIFFERENTIELLES DE TYPE (p . q).

2.1. Définition. (p/’\(n E* est ’espace vectoriel sur C engendré par
’ensemble des produits extérieurs de p formes C-linaires et g formes
antilinéaires.

C’est le sous-espace vectoriel de I’espace des (p+¢g) R-linéaires formes
alternées qui vérifient f(AXy, ..., AX,+,) = Ap Ag f (X, ... X))

Remarques: p =n, g =n (n = dim F).

2.2. Une forme différentielle de type (p, q), de classe €* (0 < k = )

. (p, r)
sur Q ouvert de E est une application de classe ¥* de Q dans ‘N E*,

On appellera % , (Q) espace vectoriel sur C de ces formes.

2.3. Représentation dans une base. D’aprés (1.2), si we(g’;,q(g),
xe{, ona

w(x) =) w,x)dx; A dXy,
7

ou  dx; = dxi;..dxi,, i <..<i,,

dx‘] == d.)_(:]l ...dj('—jq, jl < ... <jq,

w;y (x) est une application de classe ¥* de Q dans C.

3. DOUBLE FORME DIFFERENTIELLE EXTERIEURE.
(E, F sont des espaces vectoriels de dimension finie sur C).

3.1. Soit W un ouvert de E x F, une double forme différentielle de

type (p, q;r,s) de classe € (0 =k = o) sur W est une application de
(p, q)

classe ¥ de W dans A E* ® (r’/\s) F*.

L’Enseignement mathém., t. XVIII, fasc. 3. 21
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On appellera (g';,, q:r.s (W) I'espace vectoriel ainsi défini.

Si on note (x, y) les éléments de W, on définit pour w € (6)];, g:r,s(2)deg, o
=p+gq,deg, o =r+s. o

3.2.  Représentation dans une base

w(x,y) = Z Orrx(X, y)dxy A dXy . dyg A dyy
ITKL

avec des notations similaires a celles du § 0.2.3 et par définition

dx; ndx;.dyg Ndy, = (dx; AndX)) @ (dyg Adyy) .

3.3.  Produit extérieur de formes doubles.

Soient u € ¥~ W), vebs oo o (W)

p,q;r,s
On définit u A v comme un élément de €%, . ,4y: r4r. 545 (W) par
u A U(x, J’) [Xla '°'9Xp+q+p'+q’7 Y1: e sy Yr+s+r’+s’]
= Z eryexrtt (x, ) [ X1, Ye]v(x, ») [X,, Yi],

1,J,K,L

ou les notations ont le sens suivant:

I - {il < e < ip+q}
J = {jl << ... <jp’+q’}
IJ = {ig, cosiprgoji>--sjprq } €St une permutation de

{1,...,p+q+p +q'},

K ={k <..<k.}
L ={<..<ls}
KL = {ky,...keps 1y, ..., [,y } estune permutation de

{A,..,r+s+r +s"},

X; signifie (X;, ..., Xip+q), de méme Y, X, Y.

o7, r . + g .
Propriétés. u A v = (—1)Ldcext-dogav T degytidegytly 4

Ainsi dx; . dy; = dx; A dy;. Mais dx; A dy; = dy; A dx;. .
Le produit extérieur est évidemment distributif par rapport a ’addition et
associatif.
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4. DIFFERENTIELLE EXTERIEURE.

4.1. we%: o W), k=1

(psqsr,
0, w est un élément de F{, 11 ,. ) (W) défini par

[0, @0, 1] [Xts oo Xprgets Yo oo Yprsl

ptq+l

= Z (—1)k—1 5x{a)(x, y) [X19 "”Xk—l’Xk-i'l’ ...,Xp+1 ’
k=1
Y1> £2%3 Yp+s]} [Xk] .

Définitions similaires pour 0y, d,, 0,.

4.2. Propriétés 0,0, w =0, 0,0, 0w =0 0,0, 0 = — 0,0, ®.
Les mémes pour y et aussi

0,0, = 8,8,...0.(anB) = (3,0 AB + (=D 0 A 0,5 ...

5. NORME SUR B%E(, 4: r. 5 (W).

Pour chaque (x, y) € W on définit

1
o (X, = S , X .. X, ., Y ...Y.
| (x,y) | P+ (r+s)! IXREI | w(x J’)[ 1 p+g> 11 + ]l

[Y;1<1

Si sup |w(xy)| < o, o est dite bornée et on définit |w| =
(x,y)eW

= sup ] o (x,) | L’ensemble des formes bornées est noté @%’{M; r, ().
(x,y)eW

On obtient une norme sur %%, .., s (W). Cette norme munit
( D ) BECY,, 4 v sy (W) d’une structure d’Algebre normée car
D,q;r,s

le Al =lal |B].
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