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Martineiii généralisée, mais le noyau n'est pas holomorphe (contrairement
au noyau de Cauchy pour n 1). Un théorème d'homotopie (§ 3) permet
de nous ramener à un noyau dont certains termes sont holomorphes ; pour
obtenir ce dernier, nous devons prouver l'existence d'une fonction g convenable

(th. 5, ch. II). Après quoi, on obtient assez facilement les résultats
cherchés.

Je me suis inspiré pour ce travail de l'article de Ingo-Lieb [1], mais j'ai
été amené à remanier profondément certaines notations et démonstrations

(notamment aux § 2 et 5) dans un but de simplification.

§ 1. Préliminaires sur les formes différentielles extérieures

E est un espace vectoriel de dimension n sur C.

1. Formes différentielles de degré 1.

1.1. Définition. Une forme différentielle de degré 1 sur un ouvert
Q de E, est une application de Q dans l'espace vectoriel F* des formes

complexes R-linéaires sur E. \/x e Q, co (x) est une forme R-linéaire sur E
à valeur dans C.

Lemme 1.1. Toute forme complexe R-linéaire sur E est somme d'une
forme antilinéaire et d'une forme C-linéaire et cela de façon unique:

Hz) ^[/(z) - i l (iz)] + ^ [/ (z) + (l'z)]

Exemple. Si f (Q), f : Q -» C,

Y x e Q df(x) ôf(x) + df(x) ou df df + df.

df(x) désigne la partie C-linéaire de df (x).

df(x) désigne la partie antilinéaire de df (x).

1.2. Ecriture dans une base. Si E est muni d'une base, E ~ Cn,

x e Cn : x (x1?..., x„).

Définition. Jxv, respectivement dxx, désigne la forme C-linéaire,
respectivement antilinéaire, qui à x fait correspondre xv, respectivement xv.



— 305 —

Toute forme différentielle de degré 1 sur Q s'écrit

Par exemple.

w (x) y dxß + X co'ß(x) dxß
m=i

- v Sf df
— Z ^—dxv » ^/ £ — dxv •

dxv dxv

2. Formes différentielles de type (p q).

2.1. Définition. (*a?) is* est l'espace vectoriel sur C engendré par
l'ensemble des produits extérieurs de p formes C-linéaires et q formes
antilinéaires.

C'est le sous-espace vectoriel de l'espace des (p + q) R-linéaires formes
alternées qui vérifient f(ÀXtw..., 2Xp+q) Àp lqf{X1 Xp+q).

Remarques: p ^ n, q ^ n (n — dim F1).

2.2. Une forme différentielle de type (p, q), de classe %>k (0 £= k ^ oo)
(p,r)

sur Q ouvert de E est une application de classe ^ de Q dans a E*.
On appellera ^ q (Q) l'espace vectoriel sur C de ces formes.

2.3. Représentation dans une base. D'après (1.2), si co g ^kp>q (Q),
x g fi, on a

œ(x) E cojj(x) dxj a dxj
IJ

où dxj — dxix dxip il < < ip

dxj dxj! ji<
cou (x) est une application de classe de ß dans C.

3. Double forme différentielle extérieure.

(.E, F sont des espaces vectoriels de dimension finie sur C).

3.1. Soit W un ouvert de £ x F, une double forme différentielle de

type (/?, q;r,s) de classe %k (0 k ^ oo) sur W est une application de

classe XA de W dans (//Z E* (g) aS) F*.

L'Enseignement mathém., t. XVUf, fasc. 3. 21
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On appellera r,s(W) l'espace vectoriel ainsi défini.
Si on note (x,y) les éléments de W, on définit pour œ e ^kp q. r s (ß) degx co

p + q, deg^ œ r + s

3.2. Représentation dans une base

w(x,y) £ G>uKL(x>y)dxI a dxj dyK a dyL
IJKL

avec des notations similaires à celles du § 0.2.3 et par définition

dxj a dxj dyK a dyL (dxf a dxj) (x) (dyK a dyL).

3.3. Produit extérieur de formes doubles.

Soient u g VkPtq; r,s(W),ve tf*,. r%s, (W).
On définit u a v comme un élément de cdkp+p,q+q,. r+r'>s+s> (W) par

u a v (x, y) [X!, Xp+q+p>+q', Yu Yr+s+r,+s,~j

Z SU SKL u (x,y) [X,, yj v (x, y) [Xj, yj,
I,J,K,L

où les notations ont le sens suivant:

I {ii<...< ip+q}

J {Ji < <./>+«'}
IJ{ ij,..., ip+q,Ji,...Jp'+q'}est une permutation de

{ 1,

K {ki < < kr+s}
L {li < <lr,+s.}KL { kx, „M, kr+M lx, lr> + s>} est une permutation de

{ y4, r + s + r' +s' }

Xj signifie (Xiv Xip+q), de même YK, Xj, YL.

Propriétés, u a v (-1)1****«'*°**° + ***?«• A Um

Ainsi dxx. dyj dxx a dyj. Mais dxx a dyj dyj a dxx.

Le produit extérieur est évidemment distributif par rapport à l'addition et

associatif.
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4. Différentielle extérieure.

4.1. CO G ^\Pt q; r, s) ^ — 1-

co est un élément de ^(J+i,s; rjS) (W7) défini par

\dx m(x,y)][Xls Yp+8+1, Yi,... Yp+S]

p + g+1

^ — i)k 1 ôx{œ(x>y)•••'^/c+i? •••>»
Y^.., Y,+s]} M.

Définitions similaires pour 5^, 5y> ôy.

4.2. Propriétés dxdxœ =0, ôx dx co =0 5* ôxœ — dx co.

Les mêmes pour j et aussi

djy dyôx dx(a a ß) (dxx)a a

5. Norme sur r<s)(W).

Pour chaque (x, y) e W on définit

I 0} (x,y)I sup I Yp+S, Y, + J |

(P+<Ù!(r + s) [XfiÄi
\YilSl

Si sup | co (x, y) | < oo, co est dite bornée et on définit | co [

(x,}>)eJF

sup | co (x, j>) |. L'ensemble des formes bornées est noté äS^\Pt q;r,s)(W).
(x,y)eW
On obtient une norme sur ^^k(p>q; r s) (W). Cette norme munit
© ^^\p>q. r>s) {W) d'une structure d'Algèbre normée car

(p,q ; r, s)

I a A ß \ — I a I \ß\.
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