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1’EQUATION DIFFERENTIELLE DE CAUCHY RIEMANN
SUR UN DOMAINE STRICTEMENT PSEUDO-CONVEXE
SOLUTIONS BORNEES

par M. JAMBON
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INTRODUCTION

Nous recherchons dans ce travail des solutions bornées de da = f
sur un domaine strictement pseudo-convexe de C". On sait que pour n = 1
de telles solutions sont données par une formule intégrale de Cauchy.
Ausst essayons-nous de mettre en évidence une intégrale généralisant la
formule de Cauchy; c’est 'objet du chapitre premier, formule de Bochner-
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Martinelli généralisée, mais le noyau n’est pas holomorphe (contrairement
au noyau de Cauchy pour » = 1). Un théoréme d’homotopie (§ 3) permet
de nous ramener a un noyau dont certains termes sont holomorphes; pour
obtenir ce dernier, nous devons prouver I’existence d’une fonction g conve-
nable (th. 5, ch. II). Aprés quoi, on obtient assez facilement les résultats
cherchés.

Je me suis inspiré pour ce travail de I’article de Ingo-Lieb [1], mais j’ai
€té amené a remanier profondément certaines notations et démonstrations
(notamment aux § 2 et 5) dans un but de simplification.

§ 1. PRELIMINAIRES SUR LES FORMES DIFFERENTIELLES EXTERIEURES

E est un espace vectoriel de dimension #n sur C.

1. FORMES DIFFERENTIELLES DE DEGRE 1.

1.1. Définition. Une forme différentielle de degré 1 sur un ouvert
Q de E, est une application de 2 dans ’espace vectoriel E* des formes
complexes R-linéaires sur E. \yx € 2, w (x) est une forme R-linéaire sur E
a valeur dans C.

Lemme 1.1. Toute forme complexe R-linéaire sur £ est somme d’une
forme antilinéaire et d’une forme C-linéaire et cela de fagon unique:

1 1
l(2) = 5[1(2) = i1G2)] +5[1(2) +i1G2)].

Exemple. Sife®'(Q),f:2 — C,
vxeQ, df(x) = af(x) + df(x) ou df = 0f + 0f.
of (x) désigne la partie C-linéaire de df (x).
0f (x) désigne la partie antilinéaire de df (x).
1.2. Ecriture dans une base. Si E est muni d’une base, £ ~ C”,

xeC': x = (Xg)..0rX,) -

Définition. dx,, respectivement dx,, désigne la forme C-linéaire, respec-
tivement antilinéaire, qui a x fait correspondre x,, respectivement X,.
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