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1’EQUATION DIFFERENTIELLE DE CAUCHY RIEMANN
SUR UN DOMAINE STRICTEMENT PSEUDO-CONVEXE
SOLUTIONS BORNEES

par M. JAMBON
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INTRODUCTION

Nous recherchons dans ce travail des solutions bornées de da = f
sur un domaine strictement pseudo-convexe de C". On sait que pour n = 1
de telles solutions sont données par une formule intégrale de Cauchy.
Ausst essayons-nous de mettre en évidence une intégrale généralisant la
formule de Cauchy; c’est 'objet du chapitre premier, formule de Bochner-
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Martinelli généralisée, mais le noyau n’est pas holomorphe (contrairement
au noyau de Cauchy pour » = 1). Un théoréme d’homotopie (§ 3) permet
de nous ramener a un noyau dont certains termes sont holomorphes; pour
obtenir ce dernier, nous devons prouver I’existence d’une fonction g conve-
nable (th. 5, ch. II). Aprés quoi, on obtient assez facilement les résultats
cherchés.

Je me suis inspiré pour ce travail de I’article de Ingo-Lieb [1], mais j’ai
€té amené a remanier profondément certaines notations et démonstrations
(notamment aux § 2 et 5) dans un but de simplification.

§ 1. PRELIMINAIRES SUR LES FORMES DIFFERENTIELLES EXTERIEURES

E est un espace vectoriel de dimension #n sur C.

1. FORMES DIFFERENTIELLES DE DEGRE 1.

1.1. Définition. Une forme différentielle de degré 1 sur un ouvert
Q de E, est une application de 2 dans ’espace vectoriel E* des formes
complexes R-linéaires sur E. \yx € 2, w (x) est une forme R-linéaire sur E
a valeur dans C.

Lemme 1.1. Toute forme complexe R-linéaire sur £ est somme d’une
forme antilinéaire et d’une forme C-linéaire et cela de fagon unique:

1 1
l(2) = 5[1(2) = i1G2)] +5[1(2) +i1G2)].

Exemple. Sife®'(Q),f:2 — C,
vxeQ, df(x) = af(x) + df(x) ou df = 0f + 0f.
of (x) désigne la partie C-linéaire de df (x).
0f (x) désigne la partie antilinéaire de df (x).
1.2. Ecriture dans une base. Si E est muni d’une base, £ ~ C”,

xeC': x = (Xg)..0rX,) -

Définition. dx,, respectivement dx,, désigne la forme C-linéaire, respec-
tivement antilinéaire, qui a x fait correspondre x,, respectivement X,.
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Toute forme différentielle de degré 1 sur Q s’écrit

n

w(x) = Y wx)dx, + ) w(x)dX,.

n=1
Par exemple,

: of - af
of = ng—dxv, of = Zéx_dx"’

v v

2. FORMES DIFFERENTIELLES DE TYPE (p . q).

2.1. Définition. (p/’\(n E* est ’espace vectoriel sur C engendré par
’ensemble des produits extérieurs de p formes C-linaires et g formes
antilinéaires.

C’est le sous-espace vectoriel de I’espace des (p+¢g) R-linéaires formes
alternées qui vérifient f(AXy, ..., AX,+,) = Ap Ag f (X, ... X))

Remarques: p =n, g =n (n = dim F).

2.2. Une forme différentielle de type (p, q), de classe €* (0 < k = )

. (p, r)
sur Q ouvert de E est une application de classe ¥* de Q dans ‘N E*,

On appellera % , (Q) espace vectoriel sur C de ces formes.

2.3. Représentation dans une base. D’aprés (1.2), si we(g’;,q(g),
xe{, ona

w(x) =) w,x)dx; A dXy,
7

ou  dx; = dxi;..dxi,, i <..<i,,

dx‘] == d.)_(:]l ...dj('—jq, jl < ... <jq,

w;y (x) est une application de classe ¥* de Q dans C.

3. DOUBLE FORME DIFFERENTIELLE EXTERIEURE.
(E, F sont des espaces vectoriels de dimension finie sur C).

3.1. Soit W un ouvert de E x F, une double forme différentielle de

type (p, q;r,s) de classe € (0 =k = o) sur W est une application de
(p, q)

classe ¥ de W dans A E* ® (r’/\s) F*.

L’Enseignement mathém., t. XVIII, fasc. 3. 21
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On appellera (g';,, q:r.s (W) I'espace vectoriel ainsi défini.

Si on note (x, y) les éléments de W, on définit pour w € (6)];, g:r,s(2)deg, o
=p+gq,deg, o =r+s. o

3.2.  Représentation dans une base

w(x,y) = Z Orrx(X, y)dxy A dXy . dyg A dyy
ITKL

avec des notations similaires a celles du § 0.2.3 et par définition

dx; ndx;.dyg Ndy, = (dx; AndX)) @ (dyg Adyy) .

3.3.  Produit extérieur de formes doubles.

Soient u € ¥~ W), vebs oo o (W)

p,q;r,s
On définit u A v comme un élément de €%, . ,4y: r4r. 545 (W) par
u A U(x, J’) [Xla '°'9Xp+q+p'+q’7 Y1: e sy Yr+s+r’+s’]
= Z eryexrtt (x, ) [ X1, Ye]v(x, ») [X,, Yi],

1,J,K,L

ou les notations ont le sens suivant:

I - {il < e < ip+q}
J = {jl << ... <jp’+q’}
IJ = {ig, cosiprgoji>--sjprq } €St une permutation de

{1,...,p+q+p +q'},

K ={k <..<k.}
L ={<..<ls}
KL = {ky,...keps 1y, ..., [,y } estune permutation de

{A,..,r+s+r +s"},

X; signifie (X;, ..., Xip+q), de méme Y, X, Y.

o7, r . + g .
Propriétés. u A v = (—1)Ldcext-dogav T degytidegytly 4

Ainsi dx; . dy; = dx; A dy;. Mais dx; A dy; = dy; A dx;. .
Le produit extérieur est évidemment distributif par rapport a ’addition et
associatif.
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4. DIFFERENTIELLE EXTERIEURE.

4.1. we%: o W), k=1

(psqsr,
0, w est un élément de F{, 11 ,. ) (W) défini par

[0, @0, 1] [Xts oo Xprgets Yo oo Yprsl

ptq+l

= Z (—1)k—1 5x{a)(x, y) [X19 "”Xk—l’Xk-i'l’ ...,Xp+1 ’
k=1
Y1> £2%3 Yp+s]} [Xk] .

Définitions similaires pour 0y, d,, 0,.

4.2. Propriétés 0,0, w =0, 0,0, 0w =0 0,0, 0 = — 0,0, ®.
Les mémes pour y et aussi

0,0, = 8,8,...0.(anB) = (3,0 AB + (=D 0 A 0,5 ...

5. NORME SUR B%E(, 4: r. 5 (W).

Pour chaque (x, y) € W on définit

1
o (X, = S , X .. X, ., Y ...Y.
| (x,y) | P+ (r+s)! IXREI | w(x J’)[ 1 p+g> 11 + ]l

[Y;1<1

Si sup |w(xy)| < o, o est dite bornée et on définit |w| =
(x,y)eW

= sup ] o (x,) | L’ensemble des formes bornées est noté @%’{M; r, ().
(x,y)eW

On obtient une norme sur %%, .., s (W). Cette norme munit
( D ) BECY,, 4 v sy (W) d’une structure d’Algebre normée car
D,q;r,s

le Al =lal |B].
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CHAPITRE PREMIER

FORMES DE CAUCHY-FANTAPPIE

§ 2. FORME DIFFERENTIELLE DE CAUCHY-FANTAPPIE

Sur un ouvert W de C" x C", soit f* un n-uplet de formes de

(5’221,0; 0,0) (W)a f1< = {f;k} 1<v<n-
Pour chaque v on définit £, (x, ¥) = f ¥ (x, y) [x—y] et on suppose que
chaque fonction f, (x, y) ainsi définie ne s’annulle pas sur W.

Définition 1.

p =Tina () nng(f)na (L) a . na2)

s’appelle la forme différentielle de Cauchy-Fantappi¢ (C.F. forme) d’ordre g
sur W, associée a f*.

THEOREME 1. D, (f*) est indépendant de f -

- Démonstration. D,(f*)e %(ln’,,_q; 0.q4-1) (W). On va donc faire
agir D, (f*) sur 2n—1 vecteurs et on mettra en évidence une simplification

par f7 [x—Jl.
Onpose X,eE pour 1=v=2n—gq,
X,eF pour 2n—q+1=v=2n-1,
avec les notations du § 1 (ict E=F=C").
Onnote £, =y pour 2=v =g,
E, =x pour g+ 1=v=n,
0,,—1 €st le groupe symétrique d’ordre 2n—1.
I = (iy+4, --» I,) Un arrangement & (n—g) €éléments de {1,..,2n—¢q},

J = (jay ..., j,) une permutation a (g—1) éléments de { 2n—q+1,...2n—1},

K ={ky ...k,}, ky <..<k, un ensemble tel que KnlI={1,..,
2n—q}, Knl = 0.

|
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On a alors une écriture intéressante de D, (f*).

Dq(f*) [X1> "'9X2n—1]

—_ Z Z f>1k [ch(l)] ﬁ 5 !:f:k[Xa(Zv+1)]
I,J o6eo9n_1 0'(2v)0’=jv ff [X’-y] v=1 & ff[x——y]

2<v<gq 6(2v)=i,

g+1<v<n

] (XG(ZV)) .

La sommation pour I, J fixés est une forme n-C-linéaire alternée de
Xips oor Xy,; €lle est donc parfaitement déterminée par sa valeur sur une
base de C" dans laquelle on va choisir X, = [x—y]. On peut le faire car ce
vecteur se comporte comme un vecteur constant vis-a-vis de 0, et d,. Si
01y # kq3vavec Xy3,+1y = X, = [x—y] pour ce v on a

s [XG(2v+1)]}
3 — 0.
é”[ Silx—y]

Les seuls termes restants sont des termes avec o (1) = k, et on a la
simplification

Silx=y] _
filx—y]

Le théoréme est démontré.

1.

§ 3. UNE FORMULE D’HOMOTOPIE

Nous allons utiliser le théoréme 1 pour rechercher la connexion entre
différentes C.F. formes. Nous entrevoyons ensuite les cas particuliers
importants pour la suite.

1. Soit toujours W un ouvert de C" x C”.

Définition 2. Pour 1 =v <r, soit f¥e %’{}’,v, avs rr sy (W) et ay, ..., o,
des entiers tels que a; + ... + «, = n.

Doproan (FFs oS5 = (A 5 Al A (K [,

Définition 3. Soit f* e (6(21,0; 0,0y (W) avec f(x,y) = f*(x,y) [x—y]
ne s’annulle pas sur W.

Dyii(f9) =D, ,, (f syff,a f)

f T f
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C’est exactement la définition 1 dans le cas ou toutes les formes
sont €gales.

Remarque. D, (f*) = Dy, (f yf ¥ 0Lf )

fof

_f*  _ /1 o,f*
0.— = 0. | — * R
car v 7 y(f>/\f + 7

et le premier terme disparait dans le produit extérieur avec f*.

Soit maintenant g* € €(;. o, o, oy (W) vérifiant de plus d, g* = 0.

On définit comme pour f*, g(x, y) = g*(x, y) [x—y] supposée non nulle
en tout point de Wet D, ; (g*); dés que ¢ > 0 on remarque que D, (g*)
== (.,

Lemme 3.1. Soitg+r=1,qg+r+ s+ 1 = n. Alors
ol )51 (0)
NS f f g
qg - g* f* ~(f\ < (f*\ = (9*
= Oy Dy 1 getws|—> =5 Ol =], O |— ), 0.|—
r4gq T (g f (f) (f> (9>>
— ’ ngllqr—ls<£:jj: 5)}(&), 5x<£)a 5x<g_*)>
r+q T \g S 1 b g
I f* B f* _ f* _ g*
D r—1,s+ ) ay — > ax P ax - .
T g et 1<f <f> (f> <9>>

Démonstration. Nous supposons tout d’abord ¢ =1 et r =1 et
abrégeons les notations par F* = f* [ fet G* = g*/ g.
D’aprés le théoréme 1

Q)

Ql

D, (F* 8, F* 8 _F* 3.G* = D,,,,(G* 8,F* 8,F* 3, G¥).
Au membre de droite de cette €galité ajoutons la forme
gyDl,l,q—l,r,s (G¢9 F*> gyF*a 5xF*a gx G*)

et soustrayons-la de nouveau aprés l'avoir différentiée conformément au
§1 (3.3 et 4.3)
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Dy yrs(F* 0,F* 0, F* 0,G*) = Dy, (F*, d,F*, 0, F*, 0, G*)
4 3, D11 go1s(G* F*, 3, F* 3_F*, 3, G¥

— { Dy 4rs(G*, 0,F*, 0, F*, 0, G¥)

+ (="' Dy y1.1.,-1,s(G*, F*, 0,F*, 0,0, F*, 0,F*, 0, G*)
+

+ (=D 'Dyyg1.,-11,s(G* F*, 0,F* 0, F* 0,0, F*, 0, G*).
D’apres le § 1.3.3 c’est aussi

Dy ,rs(F*,0,F* 0 ,F*, 0, G¥)

= 0,D1,-1.,s(G* F*, 0,F* 0,F*, 0, G¥)

+ (=1)'pDyy4-11,-1:(G* F* 0,F* 0,0, F* 0,F* 0,G*).

Au membre de droite de cette égalité ajoutons maintenant
ro. _ _ -
——‘axDl’l’q,r..l,s(G*,F*, 5J,F*, axF*,ax G*) I
q

et soustrayons cette forme apres avoir différentiée

ngl,l,q,r—l,s (G*, F*, gyF*, 0, F*, 0, G¥)
= Dl,l,q,r—l,s (gx G*, F*, gyF*, ng*, B_x G*)

- Dl,l,q,r—l,s (G*> 5xF*9 ayF*, axF*a ax G*)
+ Dl,l,l,q*l,r—l,s (G*SF*S 5x 5yF*9 gyF*a ng*s gx G*)

+ ...
+ (—' l)q—I Dl,l,q—l,l,r—-l,s(G*>F*> gyF*a gx 8_yF*: ng*a gx G*) .

En utilisant encore le § 1.3.3 il vient

| Dy (F*,8,F* 8, F*, 3, G*)

t = gyDl,l,q——l,r,s(G*aF*a yF*, ng*a gx G*)

r _ — - =
- —axDl,l,q,r—-l,s(G*aF*a ayF*: axF*, ax G*)
q

r - = -
- _Dl,q,r—l,s+1 (F*: 6y F*a ax F*a ax G*)
q

r = = =
- Zl—Dl,q,r,s(G*a ay F*a ax F*s ax G*) .
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En appliquant encore le théoréme 1 au dernier terme du second membre
et en le faisant passer au premier membre on obtient exactement le lemme 3.1
Sig =0etr=1Ile lemme devient

Dl,r,s(F*) ng*a éx G*) = - ngl,l,r-—l,s(G*:F*a 8x G*)
53 Dl,r—l,s+1 (F*a ng*a gx G*) .

Sig=0etr = 0le lemme devient
Dy, (F*,0,F* 0,G*) = 0,Dy 1, 1,(G* F* 0,F* 0, G*).

Dans les deux cas, la différentiation du premier terme du second membre
par le § 1.4.3 puis I'application du § 1.3.3 donnent immédiatement le résultat.

2. Nous appliquons maintenant le lemme dans le cas ¢ = 0 et r
=n—1:

Dy (f*) = Dy, (f*/f, 0 (f*/f)) (par définition).

D1 (f*) = - 5xD1,1,r—1<%, %’ 5x<zf“>>

el 2(5)22)

On recommence sur le deuxiéme terme du second membre:

- g* f* _[(f*
) = =0 Dl r—1\ 7 " T ax S
Dl(f ) x ,1,‘ <g f (f>>

- g* (f* N\ = (g%
—0,Dy 4, —, =) 0\ =), 0| —
b 2’1<(9 <f> <f) <g)>
C(fE (Y L [9F
D 22\ ", > ax N E ax — .
 Ser ’(f (f) <g>>

Aprés avoir répété r fois 'opération

Dl(f*) = — ng‘l,l,r—1<g_a ‘Jf’“a gx(zi— ) T e

— ng1,1,1,r—2<g'; ’Lf_ ’ a’c(fT), 5x<%>>
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B g* f* _ [g*
- axD1,1,r—1<"g_a 7—9 ax(—g_

® _ g*
+D1,,(ff_, ax?>.

Une nouvelle application du théoréme 1 au dernier terme de cette somme
donne immédiatement:
THEOREME 2. D; (f*) — Dy (g*) = 0. A(S*,9%),

ot A (f*, g*) est la double forme

r g* f* B f*) _ (g*>)
* ) = — —kk—1\V" 2 T, ax — ] a;yc — .
A(f*, g% k;1D1,1,r k.k (g i (f g

Par application du lemme 3.1 pour ¢ = 1 on obtient une relation simi-
laire si on remarque que D, ., (g*) = 0. Clest:

THEOREME 3.

Pour q=1 et q +r + 1 = n il existe des formes doubles A (f*, g*)
et C(f*,g*) sur W telles que :

D, (f*) = 0, A(f* g% + 0,C(f*,g9%) ou

. gty = 3 AN N AN N EAAYY NN
A(f » g ) —kzzlale,l,q,r-k,k—1<g ) f Day<f>9ax<f>9ax(g))

C(f*9% =

r+1 " N ] f* ] ) ] \ ,
kZ1 D1t g-1,r—k+14-1 (% , —];— , 0, <_f_> , D, (_{_f_) 3. (%))

avec ay et ¢, coefficients rationnels.

La démonstration est exactement calquée sur celle du théoréme 2 mais

on applique (r+1) fois le lemme 3.1 (la derniére application donne seu-
lement un terme en 0,).
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§4. LA FORMULE INTEGRALE DE BOCHNER-MARTINELLI GENERALISEE
On supposera désormais que C" est muni de sa structure d’espace
Hilbertien.

1. Soit W = {(x,y)e C" x C"|x # y}; alors sur W la C.F. forme
définie a partir de (X —y)* (voir (1))

q(g—1) sn—1
B, (x,y) = (—-1) ? ( )Dq-l((f—f)*)

q

est bien définie.
(1) Notons que, vu e C", u* désigne la forme C-linéaire

u*: h-><h.ou).

Définition 4. B,,(x,y) s’appelle le noyau de Bochner-Martinelli pour
une (0,q) forme (B.M. Kern)

Bnq 8 (52’3, n—q—1; 0,q) (W).

Nous prolongeons la définition paf B, _y=B8B,,=0.

Lemme 4.2. 0.B,, = (=1)?0,B,,-1, 0 =g =n.
Ce lemme résulte de (n—q) 0, D,4( (f*) = — q 0, D, (f*).

Démonstration. Remarquons que d’aprés le théoréme 1 (ou sa
démonstration)

Dq,,H(B'y(-f};), Ex(—’;)> =0 avec q+r+1=n.

0.D —, Oy —, O, —
g "q”(f f f)
f*

=q(—1)"Dy 411, <“f— ) 53;7—

*

= (1+r)(—-1)4—11)1,‘1_1,1,,(-7, éy-j-;—, Exéy-j;—, 5%,—)-
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On a utilisé les formules de dérivation et de commutation des § 1.3.3 et
1.4.3. En tenant compte des coefficients on obtient le lemme 4.2.

Lemme 4.3.

q(g+1)

B,, (x,y) =(=1) 2 (n-1! Z [(ik_yk) dx; A i\l (dy;y, Adx;,)

A (dXndx; )] [ x—y | =2,

ol la sommation est étendue aux indices vérifiant 1 =k =n, 1 =i,
<. <pp=nl=j <. <ji4-1=n

11 est clair que seuls les termes ou k, iy, ... iy, j1 ... Ju—4—1 €St UNE permu-
~ tation de (1, ..., #n) ne sont pas nuls.

Démonstration. On développe Iexpression de D, . (X—y)*)
donnée dans (§ 3.1 Remarque) en utilisant de plus les régles de commu-
tation.

2. Soit maintenant G un domaine borné dans C" avec une fronticre
0G de classe €'. On prend lorientation naturelle de C", c’est-a-dire
X1y X1 ooy Xy X, aVEC X, = X', 4+ ix”, est un systéme de coordonnées de
R?" orienté positivement et sur G on choisit I'orientation induite (celle du
théoréme de Stokes). Ainsi les signes sont déterminés pour l'intégration.

Lemme 4.4. Soit y € €5 ;.4 (G), y bornée sur G. Alors

o;(y) = | Gv(x) A B, (x,9) €%, (G)

X e

Démonstration. D’abord l'intégrale a un sens car

1
iBnq(xay)l =0< 21’2—-1)
| x -yl

d’apres le lemme 4.3.

Montrons la différentiabilité pour y, € G; soit f fonction de classe €~
de R dans R telle que 0 = f = 1 partout, f = 1 dans un voisinage compact
K, de y,, f est & support compact K, avec K; c = K, < = G.

a(y) = | 'G[l—f(x)]v(x)Bnq(x,y) +J Gf(x)v(C)Bnq(x,J’)-

X
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Le premier terme est de classe ¥ car l'intégration porte en réalité
(pour y voisin de y,) sur un domaine ou le dénominateur ne s’annulle pas.

Pour le deuxiéme terme o, (¥) on effectue le changement de variable
d’intégration x = y + z. Il vient pour y voisin de y,

Zy

(=) [ yO+2)f(y+2)

zeG =, |z |

dzy ...

Sous cette forme la différentiabilité en y ne pose plus de probleme car
v (y+z) est de classe ¥*. Le raisonnement vaut naturellement pour tout
y, dans G.

3. THEOREME 4.

Soit y € €y (G). Alors pour chaque y € G

y(y) = 7(c) A B (x,y) — | G[Exv (X) A B, (x, )]

1
(27Z l)n [jxeaG xe
- gyj Gy(x) A Bnq—l (xs y)] .

C’est la formule de Bochner-Martinelli généralisée, pourn = 1, g = 0,
on retrouve la formule de Cauchy.

a) Ona d.[y(x) A B,(x,y)] = 0:[y(*) A By (x,)]
= [0,7(®)] A By (x,) + (= Dy (x) A 0, B,,(x,)
= [ng(X)] A Bnq(x:' y) + V(x) A gan,(q—l)(xa y) )

en appliquant le lemme 4.2 pour la derniére égalité.

b) Soit tout d’abord g = 0; y est une fonction, et B, ,_; = B, _4
disparait. |
Nous choisissons y € G et posons

K, ={xeG| |x—y| =Ze}ccG e G, =G\K,
"Nousv appliquons le théoréme de Stokes sur G, a la forme trouvée en a).

§ . 0,7(c) A By (x,)
8 = j '}’(X) N Bno(xa y) - j '))(X) A Bno(xa y)

xedGg xedKg
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Dans cette égalité on fait ¢ — 0, l'intégrale de « volume » converge vers
I’intégrale étendue a tout G et la premicre intégrale de « surface » ne change

pas.
Pour la deuxiéme intégrale de « surface » on a

I v® AB,(x,») =] & —yW]B,&,») +7y» IaK B,,(x, ).

0K, 0K, ¢

La premiére intégrale du second membre tend vers O avec ¢ car

1
[y —yWIB,(x, 0| = 0( 2n—2>‘
|x — y|

Le deuxieme terme est y (y) & un facteur numérique pres, en effet on fait
le changement x — y = et dans ’expression de B,, (x, y) donnée par le
lemme 4.3.

j Bno(x,y)=(n—1)'j kadtk A (dii/\dt}v).
0K 1

£ ltl=1 k=1 A=
A#k

En utilisant les coordonnées réelles ¢, = ¢, + i ¢,

jé’ Bno (xn y)

K¢

n (21)" n
=m-1!] Y ——(=t" dt'y +t', dt") A dt', Adt",,
ltl=1 k=1 A=1
A¥k
ou on a remarqué que les termes
(' dt' +t" dt") = — Y t/,dt'; +t",dt", sur |t] =1

A¥k

ont disparu dans le produit extérieur.
Mais on reconnait

n n
Y (=t dt + 1 dt) A dt', A dt”,
itf=1 k=1 A=1
A#1
21"

, d’ou
I' (n)

= aire de la sphére de rayon 1 en dimension 2n =

J‘ Bno (xa y) =(2HL)n,

xe0Kg

En reportant cette valeur au début de b) on obtient le théoréme 4 pour
qg = 0.




— 318 —

c) Soit maintenant ¢ quelconque et y, € G; nous choisissons une fonc-
tion f de classe ¥ avec 0 = f = 1 dont le support est compact et contenu
dans G et qui vaut 1 dans un voisinage K de y,.

On décompose y (x) = (1—=1) y(x) + fy (x).
La formule de Stokes appliquée a la différentielle trouvée en a) avec (1 —f)
y donne le théoréme pour (1—f) y.

d) On peut donc sans restreindre la généralité supposer maintenant que
y est a support compact.
On écrit conformément aux notations du paragraphe 1 (2.3)

7(x) = ; 71 (x) dx;

et on cherche & démontrer

(3.1) (Y dyr =

(2Hl)n [— ijng’))I(x) dk_l A Bnq(xa y)

- gy j Gy(x)dxl A Bnq—'l (x9 y)] >

X e

Occupons-nous d’abord du deuxiéme terme (en B, ,_ ;). On remarque
au départ que

_ . ovr ,_
5yj. G’)’I(x) dx; A Bnq—l(x»y) = j Z——IdJ’k A deBnq—l(xa y),

we xeG h ax—k

en utilisant la technique de dérivation vue a la fin de la démonstration du
lemme 4.4. On remplace alors B,,_; (x, y) par sa valeur explicite donnée
au lemme 4.3.

gy 5 G?’I (x)dx; A Bnq—l (x, )

q(q—1) 4 Oy (x
=§ (=) 2 (n=D! ) YI_( )d?iv A dXp A (X, —Pi) dx,
xeG v=1 6xiv
q n—q
A 1/3\1 (dy;, A dx;) A ,,/=\1 dx;, A dx;,
VY

g Oy (%)

~o-ntlf ¥

— djc—iv A (fiv _'yiv) dxiv
xeG v=1 axiv

i=1
AFEY

q
A A dX, /\dx{l A dy; .
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On rappelle I = (iy, ... Iy, ooy Bp), 11 < oo < I

et on a pos€ J = (jy, oo s Jughr J1 < oo <Jn—g>

de telle sorte que I U J est une permutation de (1, ..., n).
Occupons-nous de la méme fagon du terme en B,, (x, y).

I gx ’))I(x) d)—CI A Bnq (xa y)

xeG
q(q+1) n—gq 5)) X 3 _
=m-D!I(-) 2 [ ¥ ’_()dfjﬂAdifA(x,-,,—y,-u)
xeG pu=1 axju
q n—q
dxj# AN A (dj}-iv A dxiv) AA (d)—Cj}. A dxfl)
v 2
ooy (%) - -
=m-1! [f Y S d%, A dx, (=)
xeG pu=1 Xiu

(dx, ndx;) | dy; .
A=1
a=jy,

On reconnait dans la somme des deux intégrales en B,, et B, _, inter-
venant dans (3.1)

f 5.\- Y1 (x) A By, (x,y)dy, = — QI y;(y)dy;,

xeG

d’apres le théoréme 4 démontré pour ¢ = 0. On reporte dans (3.1) et on
obtient exactement le résultat désiré.

CHAPITRE II

FORMES DE CAUCHY-FANTAPPIE
SUR DES DOMAINES STRICTEMENT PSEUDO-CONVEXES

Indiquons tout d’abord quelques notations: soit © un ouvert de C";
si @ est une fonction réelle de classe €2 sur Q, d ® d ¢ (x) est la forme bili-
néaire symétrique

d®de(x)[hk] =d{de(x)[h]}[k].
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D’aprés' le lemme 1.1 appliqué deux fois, on peut introduire la partie
2-C-linéaire, 1-C-linéaire — 1-antilinéaire, l-antilinéaire — 1-C-linéaire,
2-antilinéaire de d ® d ¢ (x). On notera

dRde(X) =0 ®00(X) +0®0p(x) +0®dp(x) +0 R (x).
On remarquera ¢ ® 0 ¢ (x) [h.k] = 0 ® d¢ (x) [k.A].

Hessien complexe. Définition. La forme quadratique réelle
d®0op(x)[hk] =0® 0o (x)[h.k]
est appelé le hessien complexe de ¢ au point x.
Domaine strictement pseudo-convexe. Un domaine G de C" est dit

strictement pseudo-convexe si pour tout y dans dG, il existe un voisinage U
de y et une fonction réelle de classe ¥ définie sur U pour laquelle on ait

(1) GnU ={xeUl|px) <0} et yxedGn U(p(x) =0)de(x)#0
(2) vxedG N U,yweC" avec |w| #0 et dp(x)[w] =0
O ®dp(x)[w,w] >0 (condition de Lévi).
Proposition. Soit G un domaine borné strictement pseudo-convexe avec

un bord de classe 7 (p = 2), il existe alors dans un voisinage de G une
fonction réelle ¢ de classe €7 pour laquelle on ait

p(x) <0}
(2) do (x) # 0 dans un voisinage de 0G.

() G={xeC"

(3) Dans un voisinage de 0G, ¢ est strictement plurisousharmonique
(c’est-a-dire le hessien complexe de ¢ est une forme quadratique définie
positive).

La démonstration est indiquée en [3]. La compacité de G et la classe ¢”
du bord 0G permettent de trouver une fonction i de classe ¢* avec diy (x)
# 0 sur G, G = {xe C" |y (x) < 0}, et vérifiant la condition de Lévi;
en prenant ensuite @ = i e*¥ ol A est un réel suffisamment grand, on
obtient la proposition.

De plus, choisissons une suite strictement monotone de nombres réels
positifs ¢, tendant vers O et posons

G, ={xeC'|p(x) < — ¢}
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Le domaine G, a, au cas ol ¢, est assez petit, les mémes propri€tés que G
etona

G,ccG,,ccG, v G, =¢G.
v>1
On a des propriétés similaires avec G, = { xe C" [ p(x) <e,}

~

Gc <G,y < cgG,.

§ 5. FORMES DIFFERENTIELLES DE RAMIREZ-CHENKIN

Nous désirons construire une fonction g satisfaisant aux hypotheéses
du § 3.1. Pour cela nous avons besoin du lemme:

1. Lemme 5.1. Soient G un domaine pseudo-convexe borné de C”,
Q un ouvert quelconque de C”, f.(y) une (0, 1) forme de classe €7 sur
Q x G, vérifiant 0, f, (y) = 0. Alors I’équation 0, C(x, y) = f,(») a une
solution de classe ¢? sur 2 x G.

Démonstration. On s’appuie sur le théoréme 2.2.3, page 107 de [5]
avec poids nul. On trouve alors que pour chaque x € Q, il existe une solution
u, (y) avec

gyux(y) ::fx(y)a
|| u. || = e [diamétre de GI* || £ || -

|| || désignent les normes dans les espaces L, ,) (G) ou L, ;, (G).

u,(y) e H(ZO 0 (G) ® E(?;, o (G), ou E(Zo, oy (G) est le sous-espace fermé des
fonctions holomorphes sur G de L2, (G) et EZ, (G) son supplémentaire
orthogonal.

Soit C (x, y) la projection de u, (y) sur E? ,(G); on vérifie facilement que
C (x, y) ne dépend que de f, (¥) et que la correspondance

£.0) £, ey
est une application linéaire continue (pour chaque x fixé) de H(ZO 1 (G)
dans L(20 1y (G).
Notons E* I'adjoint de E. Montrons alors que C est de classe €? sur
Q x G. Il suffit de le faire au voisinage de chaque point (x,, y,). On introduit
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a cet effet une fonction y de classe ¥, a support compact dans G telle que
Y (y) = 1 dans un voisinage de y, et 0 = ¢ = 1 partout.
La formule de Bochner-Martinelli appliquée a ¥ (y) x C (x, y) donne

C(x,y) = KnJGC(x,Z)gz!ﬁ(Z) + ¥ (2)0.C(x,2) A B, (2,9) .

L’intégrale se décompose en une somme dont I’'un des termes porte sur
0, C(x,y) = f.(2); ce terme est de classe %7 (voir lemme 4.2). Il reste &
¢tudier

n 6
J E£] (z)(; (2 Bu (z,y)) A Az A dz = d(xY),

ou B,,; est le coefficient du terme sans dz; dans le noyau B,,.

n

0
16.9) = § @B & @ Bun(an) 4 ndz; ndz,.

i=1 A

Sous cette derniére forme on peut dériver par rapport & x sous l'inté-
grale (on pouvait dériver par rapport a y sous la forme initiale). On vérifie
que les limites sont uniformes par rapport a y dans un voisinage convenable
de y,, ce qui permet d’affirmer que les dérivées sont continues par rapport
au couple (x, y) . C (x, y) est donc de classe ¢* sur Q x G.

2. Soit toujours G un domaine borné strictement pseudo-convexe de
bord de classe ¥*. On a le théoréme essentiel de ce chapitre.

THEOREME 5.

11 existe un voisinage W de 0G x G et une fonction g (x, y) de classe €*
sur W pour laquelle on ait

(1) gyg(xa y) =0,
(2) g(x,x) =0,
(3) x#y: gy >0.

Nous construisons cette fonction au moyen de la fonction ¢ de I'intro-
duction et du lemme 1.3 (cette construction est faite dans [7]).
On définit pour x voisin de 0G et y voisin de G

(4) P(x,y) =200 (x)[x—y] — 0 @ dp(x)[x—y,x—y].

i
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On remarque qu’on a pris les termes C-linéaires ou C-bilinéaire du déve-
loppement de Taylor a I’ordre 2 de ¢ (¥) — ¢ (x).

5 00 =0 = do)[y—x] + 34 ®dg () [x =y, ]
F0(lx—y ),
(5") e (y) — @ (x) = 0¢ (x) [y —x] + 0o (x) [y —x]
+1[0® () + 0 ® 0 (9] [x—r, )]

+0®dp () [x—y,x=y] +0(lx—y ).
On reconnait dans (5) Re P (x, y) plus le hessien complexe de ¢, d’ou
(6) ReP(x,y) = ¢(x) —@(») + 0 ® 0 (x) [x —y,x —y]
+0(lx—y |3) :
La stricte plurisousharmonicité de ¢ permet d’écrire
Jy > 0,yxedG, yyeG, @ dp(x)[x—y,x—y]=y|x—y 12 .

D’autre part 36 < 0 tel que 0 (| x—y |*) = 9/2|x—y |* pour | x—y|
=0 d’ou

(7) v (x,»)€0G x Gtelsque |x—y| =20, ReP(x,y) =72 | x—y|*.
Soit 1 :0 < h < y /8.
L’ouvert @ = { x,y| Re P(x,y) > h} contient donc 0G x Gn {(x, )]

——=|x—y| = :
2 Y J
Il existe donc des voisinages ouverts U de 0G, V de G et des réels «,

p tels que 0 < o < B pour lesquels on a
(8) UxVa{x,yle<|x—y| <p} <{(x,y)|ReP(x,y) > h}.

Définissons alors une fonction ¥ de classe ¥ de R dans R telle que
0 =y =1 partout, Y () = 0 pour t = h/2 Y (t) = 1 pour t = h.
Et sur U x V on définit

A(x,y) = logP(x,y) x y[ReP(x,y)] si ReP(x,y) >0,

: h
A(x,y) =0 st ReP(x,y) <§,
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Il est clair que A4 (x, y) est de classe 4 ainsi que 0,A(x,y)sur U x V
et méme sur U x V.
On introduit enfin

5yA(xay) pour Ix_yl <ﬁ>
() =

it s, s et e,

0 pour |x—y| > «a.

f« (») est de classe € par rapport a (x, y) sur U x V et de plus 0,/ ()

= 0. D’apres le lemme 5.1 dont toutes les hypothéses sont vérifiées il existe

une fonction C (x, y) de classe ? sur U x V telle que d, C (x, y) = f, ().
La fonction

g(x,y) = P(x,y) =40 o | x—y| <B,
g(x,y) = v si |x—y|>a,

est de classe € sur U x V = W et vérifie les hypothéses 1), 2), 3) du
théoréeme 3.

On pourra méme prendre V' = G, avec les notations de I'introduction

pour v assez petit et U = G,\G,.

3. Probléeme de division.
THEOREME 6.

Pour toute fonction g vérifiant les conditions du théoréme 5, il existe un
voisinage W' de 0G x G et g¥e %1, (W') telle que 0,8% =0 et g(x,y)
= g* (x, ) [x—y] sur W'

Démonstration. On introduit une suite finie d’ouverts
0GxGecclU,xV,cc..caclU xV, =UxYV

ol chaque V), est un voisinage strictement pseudo-convexe de G.
On pose w, = U, x Ve { x; =yi]k+ l=i=n}.
On cherche alors a démontrer par récurrence sur k

k
g(x,y) = Z gi(x, ) (x;—y;) sur o,
i=1

gie(ggo(wk) et gygi(x:y) = O

ey eI
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k = n fournira le résultat du théoréme 6.
k = 1 se raméne & un probléme (trivial) de division & une variable.

Il s’agit de passer de k — 1 a k. On suppose donc

k—1
g(x:y) = Z gi(xay)(xi—yi)aaygi(xay) =0
i=1
et g; de classe € sur w,_ ;.
On procede en deux temps.

a) On prolonge les g; (x, y) en des g, (x, y) sur w,, ce sera 'objet du

lemme 5.2.
k-1
b) h(x,») =g(x») — ) g (x ) (x;—y;) définie sur o, s’annulle
i=1
pour x, = ¥, donc % (x,y) = (x,—») & (x, y) (division a une variable)
et on a g, de classe 4° sur w; et J, g, (x,y) = 0.

Donc

k
gx,») = > 9:(x,»)(x;—y) sur w, avec 0J,g;(x,y) =0
i=1

et g; de classe €* sur w,.

Lemme 5.2. (x,y) — y(x,y) fonction de classe > sur w,_, avec
d, 7 (x,») = 0 se prolonge en I' de classe %* sur w, avec d,T (x,y) =0.

Démonstration. On introduit
Q= Uy xVi_p)n{x; = yilk +1=i=n},
w = {X, Y € Q[ (Xg5 ves Xps oo Xs Y1y oo Ve 15 Xp - X ) €Q Y
w, -, est fermé dans Q, o est ouvert dans Q.

Donc K; = w1 nw, et K, = (Cow) N @, sont deux compacts
disjoints de Q. 1l existe donc une fonction  (x, y) réelle

l//(xa y) =1 pour (X, y)EKl ’
Y (x,y) = 0 pour (x,y) ek, ,

0 = (x,y) =1 partout, y de classe ¥ et & support compact dans Q.

v se prolonge en y sur @ holomorphe en y par

L’Enseignement mathém., t. XVIII, fasc. 3-4. 22
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;(X, V) = Y (Xgs eees Xy o5 X Vs ooy V=15 Xpes -5 Xp) -
On recherche alors I' sous la forme
F(x,y) = y(x, ) x¥(x,9) + (X —y)v(x,¥).

La condition d, I" (x, y) = O entraine

7 (x,9) 0, ¥ (x,)

Xk — Vi

3,v(x,y) = =f:(.

On a trivialement 0, f; (») = 0 et f; (») est de classe € sur Q; le lemme
5.1 appliquée a f, (y) (mais avec y e C* et x, ..., x, comme paramétre)
donne une solution v de classe €* sur Q qui prolonge y en I' sur w,, avec
0, T (x,y) = 0 et I' de classe €.

4. Avec les notations précédentes, compte tenu des théorémes 5 et 6,
g*e s, (W) avec W’ voisinage de 0G x G, vérifie les hypothéses du
§3sur W= W\{(x,»)|x = y}.

Nous posons maintenant

q(q—1) /n—1
Q,,q(x,y) =(_1) 2 < )Dq+1(g*)a

q

ane(g(ln,n-q—l;o,q)(W)a gy an(xa y) = 0.

Il résulte du théoréme 2 (¢=0) et du théoréme 3 (g =1) que si B,,
désigne a nouveau le noyau de Bochner-Martinelli:

THEOREME 7.

1l existe des doubles formes A,, et C,, dans ‘g(l,,,,,_ a-2;:0,q) (W)
et ‘5(1,,,,,_,1_1; 0.q—1y (W) telles que

By (%, ¥) = Qg (X,9) + 0x Ay (%, ) + 0, Cpy (%, )

Les formes du second membre sont appelées formes de Ramirez-Chenkin.
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§ 6. UNE REPRESENTATION INTEGRALE
SUR UN DOMAINE STRICTEMENT PSEUDO-CONVEXE

Nous conservons les notations utilisées jusqu’ici. Soit y une (0, g)-forme
indéfiniment différentiable sur G. D’aprés le théoréme 7 on a
[ 9 AB(y) =1 70D A Q)+ () A O Ay (x, )

xepG xeglG xepG

+ [ 9 AJ,Cpulx,y).

xeoG

Toutes les formes intervenant sont de classe €' sur W (B, @, Ang> Cag)
et de classe ¥ en y. Dans la derniére intégrale échangeons la différen-
tiation et I'intégration.

[ 7&®) A0, Cpux,y) =0, yx ACpux,y) = 0,B()

xepG xeoG
~ o0
ou Be %y, 4-1y (G).
Pour transformer la deuxiéme intégrale du second membre, nous avons - i
besoin de

gx Anq (x’ y) = dx Anq (xa y) .
Nous construisons pour y € G l'intégrale

Iade (X)) A Ay (x, ).

Pour chaque y fixé, c’est I'intégrale d’une forme d, exacte qui est donc
nulle.
D’autre part

de[y(x) A Ay (x,1)] = dy(x) A 4,,(x, )
+ (=D (x) A d[A4, (9]
= 0:7(X) A Ay (%,3) + (=177 (x) A 3, A4,,(x, ),
d’ou

0 =0 0,700 A A,y +(=D1f  9(x) AT, A, (x, ).

xeoG xedG

Et par conséquent

JG}’(X) A B, (x,y) = JGv(x) A Q. (x,y)

5

+ ("‘1)q+1jaG ng(x) A Anq(x’y) + gyB(y)"
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On porte cette relation dans le théoréme 4 ainsi on en tire:

THEOREME 8.

Pour chaque domaine strictement pseudo-convexe G de C", avec un bord
de classe €*, il existe des doubles formes Q,,(x,y) et A4,,(x,y) €
(gi,n—q—lg 0, (W) et C,f,n_q_z; 0,q (W) sur un ouvert W contenant 0G x G,
de telle sorte que ce qui suit est valable :

Si ye b, (G), alors yye G

y(y) = [f () A Q%) + (=D Oy (x) A A, (X,

xeoG xeoG

(2mi)"
- ngxY(X) A Bnq (x9 y):l + gy F(y) .
Avec T'e€%(; ,—1y(G). On rappelle 0,2,, =0 pour ¢ =0, ,, =0
pour g > 0, Q, et 4., sont de classe ¥* en y.

Il est clair que pour les domaines G, introduits au début de ce chapitre,
la méme représentation est valable avec les mémes noyaux.

CuAPITRE 111

UNE FORMULE DE RESOLUTION
POUR L’EQUATION DE CAUCHY-RIEMANN

Si G est un domaine borné dans le plan avec un bord suffisamment
régulier et g une fonction bornée ¥ sur G, alors la fonction

1
f0) == 2 4y aax, yea,
2ni g X — Yy
satisfait ’équation différentielle — = g .
y

Dans ce chapitre nous construisons au moyen du théoreme 8 une solu-
tion de du = f§ sur un domaine strictement pseudo-convexe au moyen d’une
intégrale de la méme forme.
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§ 7. SOLUTION DE L’EQUATION

1. G,G,, 0, W,Q,, A, sont définis comme dans le chapitre précédent.
Soit f € €5 ,+1 (G) bornée sur G pour la norme définie au § 1.5.
Nous posons

1O) = o] PO A B (),
_ q+1
(o) =T B A A ),

(2mi)*  xeoq,
veN,0 =g =n-—1.
Notons qu’on ne peut a priori remplacer G, par G car ff n’est pas définie

sur 0G.

2. Lemme 7.1. La suite y,(y) converge localement uniformément
sur G ainsi que toutes ses dérivées vers

Gyl ) A B )

et YEBq 4 (G).

y(y) =

Ceci résulte du fait que f est bornée et du lemme 4.4.

3. Nous nous occupons des propriétés correspondantes pour (..
Puisqu’on peut différentier sous le signe intégrale a un ordre quelconque,
il vient aussitdt:

Lemme 7.2. Les formes {, sont indéfiniment différentiables sur G,.
Le lemme 7.3 n’est pas tout aussi trivial.

Lemme 7.3. La suite {, converge avec toutes ses dérivées localement
uniformément sur G.

Démonstration. Soit ¢ c < G, et u> v > v,
Cu(y) - Cv(y) = (_1)q+1 j ﬁ(X) A Anq
9G ,—9Gy

(=D B A4,

0(Gy\ Gy)
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= (_1)q+1 5 dx(ﬁ (x) A Anq)

Gu\Gv

= (__1)2[q+1]5 ﬁ(X) A gx Anq (x> y) >

Gu\ Gv

a cause de df = 0.
Maintenant d’aprés la construction de g (x, y), la forme d, 4,, (x, »)
pour x € G\G,, et y € G’ est bornée, donc avec une constante convenable

n

1) =L =K A (dxy A dxj).

Gu~Gy A=1

Cela montre la convergence uniforme sur G’ de la suite {,. Par diffé-
rentiation de 0, 4, (x, y) sous le signe intégral par rapport a y, on constate
la convergence uniforme locale de toutes les dérivées de (, ().

4. Nous posons maintenant

C(y) = llm Zv(y)a Ce(gz)),q) (G)'

V=00

Nous formulons alors le résultat de ce chapitre.

THEOREME 9.

Soit pe by ,+1(G), telle que B est bornée sur G et 0f = 0. Alors la
(0, g)-forme o = y + { satisfait a oo = B, ot I’on rappelle

J B AB,(x,y),

Qni)' *xea

__1 g+1
(o) =1im 2 ) A Ay ().

Vo0 (277:1)" xeoGy

y(y) =

Démonstration. A cause de la pseudo-convexité de G, il existe
ne¥sy,(G) telle que on = f; n n’a pas besoin d’étre borné mais posséde
d’aprés le théoréme 8 la représentation

ny) =4LW» +70) + [S . n(x) Q,,(x,y) + 0, F(y)]

(2mi)"

pour ye G,, et v > v,.
De 14 il s’ensuit

B(y) = on(y) = d,(y) + 0y, (y).
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Faisons dans cette équation v — o0; ainsi, pour y € G,,,
3L, (y) + 0y, (») = 3L (y) + 9y (),

d’aprés les lemmes 7.3 et 7.1. Le raisonnement vaut pour tout v,, donc

vyeG, 0a = f.

CHAPITRE IV

EVALUATION POUR LA NORME UNIFORME

§ 38

1. Rappelons que la norme uniforme a été définie au § 1.5 pour des

éléments de #%,, (G); on obtient
Sup a(y)[xla“'ax>QJa

]x1|51...|xq]sl
o] = sup |a(y)].
ye G

VyEGs la(Y)‘ =

Le but de ce chapitre est de prouver, avec les notations du chapitre
précédent: si df = 0, Jo, K > O tels que do = fet |a| =K|B]|.

2. Majoration de vy

) 1
On avait 7y (y) = Gy | . B(x) A B, (x,¥).

X €

: | B | K, "
O t = dx .
nentire |y(y)]| ny j'st e A/=\1( X, Adx,)

Soit S la sphére de rayon R = (diamétre G) et centrée en 0.

KB j (dz, dz;)

Y| = QY s o WéKlﬁl’

n
A

ol K est indépendant de y, d’out |y | =K | B|.
La majoration de { est beaucoup plus difficile & obtenir; nous aurons

d’abord besoin de certaines évaluations sur la fonction g du théoréme 5.




oo e

On a remarqué que (x,y)€dG, X G, = @ (x) — @ (y) =0 et ce terme
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§ 9. EVALUATIONS POUR LA FONCTION g (X, y) DU THEOREME 5

1. D’aprés sa « construction », g ainsi que ses dérivées premiéres sont
majorées sur un voisinage compact de 0G x G, donc sur dG, x G, indé-
pendamment de v pour v supérieur a un v, convenable. Pour majorer le
noyau 4,, (x, y) le seul probléme est donc de minorer le dénominateur ol
intervient g a une certaine puissance.

Lemme 9.1. 11 existe un voisinage compact de G x G, des constantes
K; > 0 et b > 0 de telle sorte que 1’on ait

v, »)eK avec |w—y|=b, g, »)|=K|P(x,p)].

Ceci résulte immédiatement de la « construction » de g; avec les notations
de la démonstration du théoréme 5, on avait

x=y| =b, g(x,3) = P(x,)) £ 4G

d’ou le résultat.
Nous sommes ramené a minorer [ P(x,y) |

2. Minoration de Re P (x, y).

On rappelle qu’on a obtenu en (6) § 5.2.

ReP(x,y) =@(x) —@(y) + 0 ®dp(x)[x—y,x—y] + O(Ix—yl3)-

La plurisousharmonicité de ¢ entraine que, pour x dans un voisinage
compact de 0G, il existe C > 0 tel que

0@ Ip(X)[x—y,x—=y]=Clx—y|*.
On a aussi 39, |x—-y|é5=>0(|x—y|3)é—2c—|x——y|2.
Donc yy v = v, (v, choisi assez grand)
[ (x,y)€dG, x G,
(2) 3 =>ReP(x,y)éT2C—[x—y|2.

| [x—y| =09

disparait.
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3. Minoration de | Im P (x, y) [
Utilisons ici la définition de P (x, »), § 5.2 (4),

P(x,y) =20p(x)[x—y] — 0 ® dp (x)[x—y,x—y],

dot P(x,y) =200 (»)[x—yl +0(|x—y|?. Mais do () [x—y] = %
{dp (y) [x—y] —idep(y)[i(x—y)]} daprés le §1.1, lemme 1.1, d’ou
ImP(x,y) = —idp () [i(x=»]+0(x—y[?.

Pour chaque y utilisons maintenant un systéme de coordonnées d’ori-
gine y, tel que I’hyperplan tangent H a la « surface » { x | px) =0}

est x'y =0,etiH = {x | x"y =0}, x—=y = (X1, X"1, o0y X'y X7
d
Dans ces conditions (p/ M| = |de ()|,
dx,
do ; | 2
[ Im P (x,y)| = Idx,(y)l X [xy | +0(x=yl*).
1

] do (y) l est une fonction continue dans un voisinage compact de G, donc
minorée par une constante strictement positive. Il existe donc 4 > 0,
B> 0etv,tel que si v=v,

(3 v »eiG, xG,,[ImP(x,y)|=A[x",| =B|x—y|*.

4. Minoration de | P (x, y) | et | g (x, ) |.

Pour tirer le meilleur parti de (2) et (3) nous avons besoin du lemme

Lemme 9.2. [2] Vo B,y dans R, 0<a, 0<pfB, 0<y,

o
icax (o, f—y)> +p).
@ f =)= 5 @+h)
Démonstration. Sia=f — vy,
o + (o +
max (¢, f—y) = o = « ( y)> (x+p).

20 +79 20 47y

Sta<fB—y, a+y<pf Alors (x+7y)> =B (x+7y), ou 0? = — 92
— 200y + Po+y, o +af =2af — 2ay — % + By, a(e+f) =(B—1y)
(20+7), |
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o

d’ou max (o, f—y) = —y > . ‘
=) = B =y=5 = @+p)

A partir de (2) et (3) il est clair que pour (x, y) convenables

c
| P(x,y)|= max (—2-|x—-y[2, Alx"y | -—le—ylz)

|

(SIRY

dol |P(x,y)|=

¢
—|x—y]* + A]|x" d’aprés le lemme 9.2.
c + B (2 | V| x5 l) P

Concluons:

[ 3k, >0, v,eN,5 >0,
4 | ,
V&, »)edG, x G, Yyv=v, |x—y|=6}=|P(x,y)]

=k (lx—y > +1x"])

En tenant compte du lemme 9.1 on a:
3k >0, 3v,eN, 371 >0,

(41 { {v(x,»)€dG, x G, yv=v,,|x—y| =1}
=g, I =k(x=y*> +[x"1]).

§ 10. SOLUTION BORNEE DE 0o =f

1. Majoration des (..

On rappelle
(-1
LO) =~  BX) A A4,(x,y) §7.1)

(zni)n xedGy

et d’aprés les théorémes 7 (§ 5), 2 et 3,

q(g+1) n—1
Anq = (_1) 2 (T>A(f*ag*)9

r g* f* _ f* fx g*
A(f*,g%) = Diyorre | =, 2=, 8,2, 5.2, 5.9).
(f*,9% kZIaqk 1,1,q,r—k,k 1(g I y I 7 g)
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Nous devons donc majorer
g* f* f* g
Dl,l,q,r—k,k—l <— e ayT’ axT: ax

g f°
5 G*ﬁ‘%ﬁEJ*@ﬁ>
- 1,1,q,r—kk—1 g b} f ’ f ’ f s g ’

car 5,5(‘—);—*) = 6,;{* + _x(l?) Af*E;

le second terme disparait dans le produit extérieur avec f*, de méme pour
les termes en 3, (f*/f) et 0, (g*/g). D’ou, en tenant compte du §9, 1 et 4 (4'),

Q)

Jhy >0, Jv,eN,gn >0:v=v,, y(x,9)€dG, x G, et [x—y|[=n

on a

)] = 2 ” h1 1+2(n—-2)°
(lx=y[*+1x" DIx—y|

d’ou: 34 > 0, 3v,eN, 3n > 0,

[ (x9y)e(anXGv)s VEVO, lx——y] é}’]

l Dl,l,q,r—k,k—l (

h
(Ix=y P +Ix" DIx—y

(5)
[ = | A, (x5, ) | =

et de fagon presque évidente
3 K29 ’x”‘)’lé’i, Vév0> V(x,y)Ean X szlAnq(xsy)l éKZ’

Notons bien que toutes les constantes intervenant ne dépendent pas
de y.
On décompose alors I'intégrale

(2mi)" xedGy xedGy
[*—y|<n |x=y|2n

____1 q+1
Loy =" )[I B() A Ay (x, ) + | B@A%Wﬁ}

le deuxiéme terme est majoré par K | p I x sup {Aire dG,}.
V=V,

Pour le premier terme on utilise (5).

—\81h | do

]v;—g]GSn I x =y 3(x—y ]+ x4

J B(x) A Ay (x, )

xE@Gv
|x=y|<n

ou do est I’élément différentiel d’aire sur 9G,.
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Il se peut que 0G, N lx—— yl =y = @ tout est alors terminé, sinon
on peut paramétrer oG, n {|x—y | =n} par x";, x'5, x",, ..., x", avec

les notations du § 9.3.

1
On pose r = (x"{2+x"54+x",2+...+x" 2%

Avec une nouvelle constante / (toujours indépendante de y) on a

dx",dx', dx", ... dx",
BxX) A Ay(x,y) | =1 - ;
{zfg&v" ! Ln P23 (2 X" ])

On passe en coordonnées sphériques dans R*"~!; il vient avec une autre
constante M

T

2 r2"=2 dr
A, (x, =M do .
| PO A Ao | S MIBLT § o
|x=y|=<n 2
| " dr
On a | = Log(n+|cosfO|) — Log(]cos@|)

o r+ |cos@|

T
2
et Vintégrale | Log|cos @|d0 est convergente, ce qui permet de conclure:

T

2

THEOREME 10.

a) Soit G un domaine strictement pseudo-convexe avec un bord de classe
&*. Il existe une application linéaire L continue du sous-espace vectoriel des
formes E{ermées de BEC, 4+1) (G) dans BEG, , (G) telle que si
« =L, da = p.

La continuité se traduit par 3K > 0, l o ] éK] B |

b) 1/ existe une base de voisinage strictement pseudo-convexe G, de G

tels que a) soit valable avec la méme constante K.

Pour p = 0 la démonstration a été faite.

Pour p > 0 il suffit d’écrire

ﬁ = Zﬁl/\de, Ol‘lI ={i1<...<ip}C{1,...n},

T
Bre BE G, 441y (G) et 0 = 0= 0f; = 0;

le probléme est ramené a p = 0.
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Le b) résulte de ce que tout ce qui a été fait sur les G, aurait pu €étre fait

sur G, = {xl ¢ (x) <e,}, &0, pour v suffisamment grand, car la condi-
tion G, € = G n’a joué aucun role; on a seulement utilisé J0G, voisin
de 0G.

REMARQUE.

On a prouvé lexistence d’un noyau dans le chapitre III; ce noyau
dépend de la fonction g et de la forme g* dont on affirme seulement I’exis-
tence dans le chapitre II. Dans le cas particulier ou G est strictement convexe
de bord de classe 42, la fonction g (x,y) = 2 d¢ (x) [x—] et g*(x,¥)
= 2 0¢ (x) conviennent (& cause de la convexité stricte de g), on a alors une
formule constructive pour 'équation du = f lorsque 0f =0, (fe B, ,+1 (G))
et le § 5 (ch. IT) serait a supprimer.
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