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L'ÉQUATION DIFFÉRENTIELLE DE CAUCHY RIEMANN
SUR UN DOMAINE STRICTEMENT PSEUDO-CONVEXE

SOLUTIONS BORNÉES

par M. Jambon

TABLE DES MATIÈRES

§ 1. Préliminaires sur les formes différentielles extérieures 304

Chapitre I. — Formes de cauchy fantappiè 308

§ 2. Forme différentielle de Cauchy Fantappiè 308

§ 3. Une formule d'Homotopie 309

§ 4. La formule intégrale de Bochner Martinelli généralisée 314

Chapitre II. — Formes de cauchy fantappiè sur des domaines stric¬
TEMENT PSEUDO-CONVEXES 319

§ 5. Forme différentielle de Ramirez Chenkin 321

§ 6. Une représentation intégrale sur un domaine strictement pseudo¬

convexe 327

Chapitre III. — Une formule de résolution pour l'équation de cauchy
RIEMANN 328

§ 7. Solution de l'équation 5a ß 329

Chapitre IV. — Evaluation pour la norme uniforme 331

§ 8. 331

§ 9. Evaluations pour la fonction g (x, y) du théorème 5 332

§ 10. Solution bornée de l'équation 5a ß sur un domaine strictement
pseudo-convexe 334

INTRODUCTION

Nous recherchons dans ce travail des solutions bornées de doc ß

sur un domaine strictement pseudo-convexe de Cn. On sait que pour n — 1

de telles solutions sont données par une formule intégrale de Cauchy.
Aussi essayons-nous de mettre en évidence une intégrale généralisant la
formule de Cauchy; c'est l'objet du chapitre premier, formule de Bochner-
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Martineiii généralisée, mais le noyau n'est pas holomorphe (contrairement
au noyau de Cauchy pour n 1). Un théorème d'homotopie (§ 3) permet
de nous ramener à un noyau dont certains termes sont holomorphes ; pour
obtenir ce dernier, nous devons prouver l'existence d'une fonction g convenable

(th. 5, ch. II). Après quoi, on obtient assez facilement les résultats
cherchés.

Je me suis inspiré pour ce travail de l'article de Ingo-Lieb [1], mais j'ai
été amené à remanier profondément certaines notations et démonstrations

(notamment aux § 2 et 5) dans un but de simplification.

§ 1. Préliminaires sur les formes différentielles extérieures

E est un espace vectoriel de dimension n sur C.

1. Formes différentielles de degré 1.

1.1. Définition. Une forme différentielle de degré 1 sur un ouvert
Q de E, est une application de Q dans l'espace vectoriel F* des formes

complexes R-linéaires sur E. \/x e Q, co (x) est une forme R-linéaire sur E
à valeur dans C.

Lemme 1.1. Toute forme complexe R-linéaire sur E est somme d'une
forme antilinéaire et d'une forme C-linéaire et cela de façon unique:

Hz) ^[/(z) - i l (iz)] + ^ [/ (z) + (l'z)]

Exemple. Si f (Q), f : Q -» C,

Y x e Q df(x) ôf(x) + df(x) ou df df + df.

df(x) désigne la partie C-linéaire de df (x).

df(x) désigne la partie antilinéaire de df (x).

1.2. Ecriture dans une base. Si E est muni d'une base, E ~ Cn,

x e Cn : x (x1?..., x„).

Définition. Jxv, respectivement dxx, désigne la forme C-linéaire,
respectivement antilinéaire, qui à x fait correspondre xv, respectivement xv.
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Toute forme différentielle de degré 1 sur Q s'écrit

Par exemple.

w (x) y dxß + X co'ß(x) dxß
m=i

- v Sf df
— Z ^—dxv » ^/ £ — dxv •

dxv dxv

2. Formes différentielles de type (p q).

2.1. Définition. (*a?) is* est l'espace vectoriel sur C engendré par
l'ensemble des produits extérieurs de p formes C-linéaires et q formes
antilinéaires.

C'est le sous-espace vectoriel de l'espace des (p + q) R-linéaires formes
alternées qui vérifient f(ÀXtw..., 2Xp+q) Àp lqf{X1 Xp+q).

Remarques: p ^ n, q ^ n (n — dim F1).

2.2. Une forme différentielle de type (p, q), de classe %>k (0 £= k ^ oo)
(p,r)

sur Q ouvert de E est une application de classe ^ de Q dans a E*.
On appellera ^ q (Q) l'espace vectoriel sur C de ces formes.

2.3. Représentation dans une base. D'après (1.2), si co g ^kp>q (Q),
x g fi, on a

œ(x) E cojj(x) dxj a dxj
IJ

où dxj — dxix dxip il < < ip

dxj dxj! ji<
cou (x) est une application de classe de ß dans C.

3. Double forme différentielle extérieure.

(.E, F sont des espaces vectoriels de dimension finie sur C).

3.1. Soit W un ouvert de £ x F, une double forme différentielle de

type (/?, q;r,s) de classe %k (0 k ^ oo) sur W est une application de

classe XA de W dans (//Z E* (g) aS) F*.

L'Enseignement mathém., t. XVUf, fasc. 3. 21
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On appellera r,s(W) l'espace vectoriel ainsi défini.
Si on note (x,y) les éléments de W, on définit pour œ e ^kp q. r s (ß) degx co

p + q, deg^ œ r + s

3.2. Représentation dans une base

w(x,y) £ G>uKL(x>y)dxI a dxj dyK a dyL
IJKL

avec des notations similaires à celles du § 0.2.3 et par définition

dxj a dxj dyK a dyL (dxf a dxj) (x) (dyK a dyL).

3.3. Produit extérieur de formes doubles.

Soient u g VkPtq; r,s(W),ve tf*,. r%s, (W).
On définit u a v comme un élément de cdkp+p,q+q,. r+r'>s+s> (W) par

u a v (x, y) [X!, Xp+q+p>+q', Yu Yr+s+r,+s,~j

Z SU SKL u (x,y) [X,, yj v (x, y) [Xj, yj,
I,J,K,L

où les notations ont le sens suivant:

I {ii<...< ip+q}

J {Ji < <./>+«'}
IJ{ ij,..., ip+q,Ji,...Jp'+q'}est une permutation de

{ 1,

K {ki < < kr+s}
L {li < <lr,+s.}KL { kx, „M, kr+M lx, lr> + s>} est une permutation de

{ y4, r + s + r' +s' }

Xj signifie (Xiv Xip+q), de même YK, Xj, YL.

Propriétés, u a v (-1)1****«'*°**° + ***?«• A Um

Ainsi dxx. dyj dxx a dyj. Mais dxx a dyj dyj a dxx.

Le produit extérieur est évidemment distributif par rapport à l'addition et

associatif.
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4. Différentielle extérieure.

4.1. CO G ^\Pt q; r, s) ^ — 1-

co est un élément de ^(J+i,s; rjS) (W7) défini par

\dx m(x,y)][Xls Yp+8+1, Yi,... Yp+S]

p + g+1

^ — i)k 1 ôx{œ(x>y)•••'^/c+i? •••>»
Y^.., Y,+s]} M.

Définitions similaires pour 5^, 5y> ôy.

4.2. Propriétés dxdxœ =0, ôx dx co =0 5* ôxœ — dx co.

Les mêmes pour j et aussi

djy dyôx dx(a a ß) (dxx)a a

5. Norme sur r<s)(W).

Pour chaque (x, y) e W on définit

I 0} (x,y)I sup I Yp+S, Y, + J |

(P+<Ù!(r + s) [XfiÄi
\YilSl

Si sup | co (x, y) | < oo, co est dite bornée et on définit | co [

(x,}>)eJF

sup | co (x, j>) |. L'ensemble des formes bornées est noté äS^\Pt q;r,s)(W).
(x,y)eW
On obtient une norme sur ^^k(p>q; r s) (W). Cette norme munit
© ^^\p>q. r>s) {W) d'une structure d'Algèbre normée car

(p,q ; r, s)

I a A ß \ — I a I \ß\.
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Chapitre Premier

FORMES DE CAUCHY-FANTAPPIÈ

§ 2. Forme différentielle de Cauchy-Fantappiè

Sur un ouvert W de Cn x CM, soit /* un /2-uplet de formes de

«0.0; 0,0) OU, /* {/v}lSvS„-
Pour chaque v on définit /v (x, y) f* (x, j) [x—y] et on suppose que

chaque fonction /v (x, y) ainsi définie ne s'annulle pas sur W.

Définition 1.

s'appelle la forme différentielle de Cauchy-Fantappiè (C.F. forme) d'ordre q
sur W, associée à/*.

Théorème 1. Dq(f*) est indépendant de f*.
Démonstration. Dq(f*)ecê\n>n_q.0q_1)(W). On va donc faire

agir Dq{f*) sur 2n — \ vecteurs et on mettra en évidence une simplification

par /î [x-yl
On pose Xv e E pour 1 ^ v ^ 2 n — q,

XveF pour 2/z — q+l Xv X: 2n — 1,

avec les notations du § 1 (ici E=F=Cn).

On note £v y pour 2 v ^ q,

£v x pour q + 1 v ^ n,

°2n-î est Ie groupe symétrique d'ordre 2/2—1.

/ (iq+1, in) un arrangement à (;n — q) éléments de { 1, 2n — q },

j (/2,jq) une permutation à (q— 1) éléments de { 2n — q+ 1,... 2/2—1},

K {ku ...,kn}9 k1 < < kn un ensemble tel que K n / { 1,...,

2n-q},KnI 0.
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On a alors une écriture intéressante de Dq (/*).

./ v <r(2v + 1 )]f i U^cr(i )] A x
ß. H dçvZ Z ^ * iiI, J <J e ex 2n — l tf(2v) jv /iIN"}7] V=1

2<v<q <r(2v) iv
g + 1 < v < n

(U(2v))

La sommation pour /, / fixés est une forme n-C-linéaire alternée de

Xkv elle est donc parfaitement déterminée par sa valeur sur une
base de Cn dans laquelle on va choisir Xkl [x—y]. On peut le faire car ce

vecteur se comporte comme un vecteur constant vis-à-vis de ôx et dy. Si

?d) # k! gv avec X(t(2v+1) Xkl [x—y] pour ce v on a

/ v [^(t(2v+ 1)]
0.

Les seuls termes restants sont des termes avec ff (1) fej et on a la
simplification

1.

Le théorème est démontré.

§ 3. Une formule d'homotopie

Nous allons utiliser le théorème 1 pour rechercher la connexion entre
différentes C.F. formes. Nous entrevoyons ensuite les cas particuliers
importants pour la suite.

1. Soit toujours W un ouvert de Cn x Cn.

Définition 2. Pour 1 ^ v ^ r,soit4%^. rv, Sv) et au ar
des entiers tels que a1 + + ar — n.

Û, ,r(/î,..,/î)«(A/N...A(W:).
Définition 3. Soit /* g <#fuo. 0> 0) (W) avec f(x, y) y) [x-y]

ne s'annulle pas sur W.

Dq + i(/*) =DUq,r[X,dyjr, 0,^-)./*
/
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C'est exactement la définition 1 dans le cas où toutes les formes /*
sont égales.

ff* $ f* $ f*\
Remarque. Dq+1 (/*) Dl q r (L-, ->L-,

f* /1 \ S f*
~e>T d\j)Af*+f

et le premier terme disparaît dans le produit extérieur avec /*.
Soit maintenant g* e o,o) (^0 vérifiant de plus dyg* 0.

On définit comme pour /*, g(x, y) g*(x, j) [x—j] supposée non nulle
en tout point de W et Dq+1 (g*); dès que q > 0 on remarque que Dq+1 (g*)

0.

Lemme 3.1. Soit # + r^l,# + r + .y+l n. Alors

Démonstration. Nous supposons tout d'abord q fe 1 et r ^ 1 et

abrégeons les notations par F* /* jf et G* g* / g.
D'après le théorème 1

DlAr.s(F*>3,F*>ZxF*,8xG*)

Au membre de droite de cette égalité ajoutons la forme

G*, F*, G*)

et soustrayons-la de nouveau après l'avoir différentiée conformément au
§ 1 (3.3 et 4.3)
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Di«.rAF*> ByF*>3*F*> 3* G*)Di«.rAF*> S*F*> B* G*>

+ dyDUUq„UrtS(G*,F*, 3yF*,3XF*,3C

~ {Dli9,rtl(G*,d,F*,5xF*,BxG*)
+ (-1)«-1 G*,F*,*,*,+

+ (-1)4"1 Duuq-Ur-i,i, s (G*, F*, dyF*, dxF*> By dxF*> Bx G*).

D'après le § 1.3.3 c'est aussi

D1^s(F*,dyF*,8xF*,dxG*)
àyDi,i,q-i,r<s(.G*, F*,3yF*, *, 3X G*)

+ — I)9p(G*,F*,dydxF*,3x G*)

Au membre de droite de cette égalité ajoutons maintenant

-r-dxDUUq^Us{G*,F*, SyF\ Sx G*)

et soustrayons cette forme après l'avoir différentiée

SxDUUq,r.Us(G*,F*, dyF*,3XF*, 3X G*)

G*, F*, 3yF*, dx G*)

- DUUq^l>s(G*,3XF*,3yF*,3XF*, 3X G*)

+ DUUUq-Ur-Us(G*,F*, 3X 3yF*, 5X G*)

+

+ (-I)«-1 !>!,!,4-i,i.r_lt,(G*,F*, E,F*, ôx G*)

En utilisant encore le § 1.3.3 il vient

D1>q>r>s(F*,3yF*,3xF*,3xG*)

3yDi,i,q-i,rAG*,F*,3XF*, 3X G*)

-r~3xDuu<,,r-xAG*,F*,3yF*,3X G*)

~ -qDUq,r-Us+l (F*,33XG*)

--qDUq>rAG*,dyF*,5xF*,dxG*).
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En appliquant encore le théorème 1 au dernier terme du second membre
et en le faisant passer au premier membre on obtient exactement le lemme 3.1

Si q — 0 et r ^ 1 le lemme devient

DUrta(F*,dxF*,dxG*) -3xDltUr_ltg(G*9F*,3xG*)
+ D1,r-lta+1(F*,SxF*tdxG*).

Si q ^ 0 et r 0 le lemme devient

Di,q,s (F*, dy F*, dx G*) 5yDl9lA-l98(G*9F*,dyF*,dxG*).

Dans les deux cas, la différentiation du premier terme du second membre

par le § 1.4.3 puis l'application du § 1.3.3 donnent immédiatement le résultat.

2. Nous appliquons maintenant le lemme dans le cas q 0 et r
— n — 1 :

£>1 (/*) Dlr(/*//,dx(/*//))(par définition).

Dtuv=-s,Dt,,,Js-,Ç,SJL

(r-k
On recommence sur le deuxième terme du second membre:

(d* /* - (f*Dt(f*)-sxDUUr^rj,

+ (Ç. «.(£). J.(Ç

Après avoir répété r fois l'opération

/u* f* _
£>l(/*) y, aU y

/ö* /* - /7*\ - (g*
-3xDuul^2rj, J-j,«UV)' V



Une nouvelle application du théorème 1 au dernier terme de cette somme

donne immédiatement:

Théorème 2. D1 (/*) — D±(g*) dxA(f*,g*),

où A (/*, g*) est la double forme

s»
Par application du lemme 3.1 pour ^ 1 on obtient une relation similaire

si on remarque que Dq+1 (g*) 0. C'est:

Théorème 3.

Pour q=±l et q + r + l n il existe des formes doubles A (/*, g*)
et C (/*, g*) sur W telles que :

Dq-i (/*) SxA(f*,g*) + 3yC(f*,g*) où

—
avec e/ cfe coefficients rationnels.

La démonstration est exactement calquée sur celle du théorème 2 mais

on applique (r+1) fois le lemme 3.1 (la dernière application donne
seulement un terme en dy).
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§ 4. La formule intégrale de Bochner-Martinelli généralisée

On supposera désormais que Cn est muni de sa structure d'espace
Hilbertien.

1. Soit W { (x, y) g Crt x Cn | x ^ y } ; alors sur W la C.F. forme
définie à partir de (x — y)* (voir (1))

g(g-i) /n_1\
B„q(x,y)=(-1) 2

J A,-i((x-j>)*)

est bien définie.

(1) Notons que, \/u e C", m* désigne la forme C-linéaire

w* : h -* (h il)

Définition 4. Bnq (x, y) s'appelle le noyau de Bochner-Martinelli pour
une (0,q) forme (B.M. Kern)

Bnq£W.
Nous prolongeons la définition par 2?„ _ x Zi„ „ 0.

4.2. Bnq -1)« 0 ni g ^ n

Ce lemme résulte de (« —#) D+ (/*) — qdy Dq (/*).

Démonstration. Remarquons que d'après le théorème 1 (ou sa

démonstration)

^.(â,(Ç).^(y))-o avec + r + i-„.
(f* f* f*
— Bv—, Bx—f'f f

(f* f* f*
S,j-,

r - r»ry
f ' yf'x f

f* f* f*
7- s'7' l'7

^l,q—l,r+l\ /.
'"v

(1+>")(-Wy-T'
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On a utilisé les formules de dérivation et de commutation des § 1.3.3 et

1.4.3. En tenant compte des coefficients on obtient le lemme 4.2.

Lemme 4.3.

q(q + 1 <1

Bnq(.x?y) — (— 1) 2 (n — 1) ^ yk) dXfc a a (dyivAdxiv)
v 1

n — q— 1

A (dxjflAdXjJ]Ix-pr2",
*1=1

où la sommation est étendue aux indices vérifiant 1 ^k^n, 1 ^ /
< < iq ^ n, 1 < < jn-q-! ^ w.

Il est clair que seuls les termes où k, iu ...jn-q^1 est une permutation

de (1, ...,«) ne sont pas nuls.

Démonstration. On développe l'expression de Dq+ x ((3c — y)*)
donnée dans (§3.1 Remarque) en utilisant de plus les règles de commutation.

2. Soit maintenant G un domaine borné dans Cn avec une frontière
ôG de classe c1. On prend l'orientation naturelle de C", c'est-à-dire

x[, x"u xm x"n avec xv x'v + ix\ est un système de coordonnées de
R2" orienté positivement et sur dG on choisit l'orientation induite (celle du
théorème de Stokes). Ainsi les signes sont déterminés pour l'intégration.

Lemme 4.4. Soit y e ^o,q + i (G), y bornée sur G. Alors

"W f 7(x)ABnq(x,y)eré(0 q) (G)
xeG

Démonstration. D'abord l'intégrale a un sens car

\Bnq(x,y)\o(—i—2n-i)
\U-fl /

d'après le lemme 4.3.

Montrons la différentiabilité pour y0 e G; soit / fonction de classe #°°
de R dans R telle que 0 1 partout,/ 1 dans un voisinage compact

de y0, f est à support compact K2 avec K1 c a K2 <= c= G.

a 00 J
'

[1 - /(*)] y (*) Bnq (x, y) + j f(x) y (c) Bnq (x, y)
xeG xeG
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Le premier terme est de classe #°° car l'intégration porte en réalité
(pour y voisin de y0) sur un domaine où le dénominateur ne s'annulle pas.

Pour le deuxième terme a2 (y) on effectue le changement de variable
d'intégration x y + z. Il vient pour y voisin de y0

«2(y) Z J y(y + z)f(y + z)j^w-ndzk...
zeG-y0 I Z |

Sous cette forme la différentiabilité en y ne pose plus de problème car
y (y-h z) est de classe ^°°. Le raisonnement vaut naturellement pour tout
y0 dans G.

3. Théorème 4.

Soit y e (G). Alors pour chaque y e G

7 (y) [ J 7(c) a Bnq (x- j (x) a Bnq (x, y)]
{Z71 l) xedG xe G

a (x, y)].
xe G

C'est la formule de Bochner-Martinelli généralisée, pour n — 1, f 0,

on retrouve la formule de Cauchy.

a) On a dx [y (x) a Bnq (x, y)] ôx [y (x) a Bnq (x, y)]

[5* y 00] a Bnq (x, y) +(-l)îy(x) a

[3*y(*)] a Bnq(x,y)+ y (x) a ByBaAq.t) (x, y)

en appliquant le lemme 4.2 pour la dernière égalité.

b) Soit tout d'abord q 0; y est une fonction, et Bn Bn _1
disparaît.

Nous choisissons y e G et posons

Ke {x e G | \x — y \ ^£}ccG et Gs G\KS

Nous appliquons le théorème de Stokes sur Ge à la forme trouvée en a).

J ôxy(c) a Bn0(x, y)
xeG g

j 700a -ß„„ (x, y) - J y (x) a Bno (x, y)
xeôGe xedKe
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Dans cette égalité on fait s - 0, l'intégrale de « volume » converge vers

l'intégrale étendue à tout G et la première intégrale de « surface » ne change

pas.
Pour la deuxième intégrale de « surface » on a

J r 00 A Bno (x,y) j [y (x) - y (y)] Bno + (y) j Bno (x,y).
ÔKS ÔKe ÔK8

La première intégrale du second membre tend vers 0 avec s car

| [y (x) - y(y)] Bno(x,y)| 0 '

\x - y I2"'

Le deuxième terme est y (y) à un facteur numérique près, en effet on fait
le changement x — y — et dans l'expression de Bno (x, y) donnée par le

lemme 4.3.

n n

I Bno(x, y)0-1) J a (dtxAdtx).
dKs Uï t k= 1 2=1

En utihsant les coordonnées réelles tx t'x + i tx

J Bno (X, }>)

dKe
" (2/)""(n ~1) J Ü — - + a A À,

Ul 1 k=l 2, 2=1
29±k

où on a remarqué que les termes

(t'kdt'k + t"kdt"k)- Y t'x dt' x+ sur |t| 1

ont disparu dans le produit extérieur.
Mais on reconnaît

n n

j Yj — t"kdt'k + t'kdt"^) a dt'x a dt"x
Ul 1 k= 1 2=1

2^1

2nn- aire de la sphère de rayon 1 en dimension 2 — d'où
r(n)

J B„0(x,y) (277/)",
xedKe

En reportant cette valeur au début de b) on obtient le théorème 4 pour
q 0.



c) Soit maintenant q quelconque et y0e G; nous choisissons une fonction

/ de classe ^°° avec 0 =f= 1 dont le support est compact et contenu
dans G et qui vaut 1 dans un voisinage K de yQ.

On décompose y (x) (1 —f) y (x) + fy (x).
La formule de Stokes appliquée à la différentielle trouvée en a) avec (1 —/)
y donne le théorème pour (1 —/) y.

d) On peut donc sans restreindre la généralité supposer maintenant que
y est à support compact.
On écrit conformément aux notations du paragraphe 1 (2.3)

y (X) Zy

Occupons-nous d'abord du deuxième terme (en Bnq^1). On remarque
au départ que

en utilisant la technique de dérivation vue à la fin de la démonstration du
lemme 4.4. On remplace alors Bnq„t (x,y) par sa valeur explicite donnée

au lemme 4.3.

Syj yi(x)dx, a Bnq^l (x,y)

I

et on cherche à démontrer

(3.1) y I(y)dyt
—2— [ - J (x) dxt a Bnq (x,
{Zill) xeG

- S, j y (x) dx, a _ y)]

x e G

n-q
A a (dyix a dxi;) a a dxjß a dxj

v

(n — 1) U i|_ xe G v
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On rappelle I0\,... i„...,iq), < <
et on a posé J(j\, -,jn-q),ji<-
de telle sorte que Iu/ est une permutation de (1,..., n).

Occupons-nous de la même façon du terme en Bnq y).

J oxy,(x)dx, a Bnq (x, y)
x e G

g(g+1> n-q dy (x)
(n — 1) — 1) 2 J £ ^— A A ~yji)

x e G n 1 jß

q n-q
dxjß a a (dyiv a dxiv) a a (dxjx a dxJÀ)

v =1 X— 1

X^ p

(n -1)
' " « dy, (x) _
1 L —— dxy„ A dxjß(Xjll-yjß)
xeG p 1 VXjfi

A A (dx} A dx,)
J

A — Jß

On reconnaît dans la somme des deux intégrales en Bnq et Bnq_ ±

intervenant dans (3.1)

J Sx y,(x) a Bno (x, y) dy, - (277i)"}', (y) dy,,
xe G

d'après le théorème 4 démontré pour q — 0. On reporte dans (3.1) et on
obtient exactement le résultat désiré.

Chapitre II

FORMES DE CAUCHY-FANTAPPIÈ
SUR DES DOMAINES STRICTEMENT PSEUDO-CONVEXES

Indiquons tout d'abord quelques notations: soit Q un ouvert de C";
si cp est une fonction réelle de classe sur Q, d (x) d cp (x) est la forme bili-
néaire symétrique

d ® d cp (x) [fo./c] — d {dcp (x) \h] } [fc]
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D'après le lemme 1.1 appliqué deux fois, on peut introduire la partie
2-C-linéaire, 1-C-linéaire — 1-antilinéaire, 1-antilinéaire — 1-C-linéaire,
2-antilinéaire dt d ® d cp (x). On notera

d 0 à cp(x) d 0 d cp (x) + d (x) d cp (x) + d ® d cp (x) + d ® d cp (x)

On remarquera d (x) ô cp (x) [h.k] ô ® dcp (x) [k.h\.

Hessien complexe. Définition. La forme quadratique réelle

d 0 d cp (x) [/z./c] B 0 Ô cp (x) [h.k~\

est appelé le hessien complexe de cp au point x.

Domaine strictement pseudo-convexe. Un domaine G de C" est dit
strictement pseudo-convexe si pour tout y dans ôG, il existe un voisinage U
de y et une fonction réelle de classe définie sur U pour laquelle on ait

(1) G n U { x g U | cp (x) < 0 } et \/x e dG n U (cp (x) 0) dcp (x) ^ 0

(2) \/x g dG n U, \/w eCn avec | w | ^0 et dcp (x) [w ] 0

d ® dcp (x) [vv w ] >0 (condition de Lévi).

Proposition. Soit G un domaine borné strictement pseudo-convexe avec

un bord de classe ^p (p ^ 2), il existe alors dans un voisinage de G une
fonction réelle (p de classe ^p pour laquelle on ait

(1) G { x g C" | (p (x) < 0 }

(2) dcp (x) ^ 0 dans un voisinage de dG.

(3) Dans un voisinage de dG, cp est strictement plurisousharmonique
(c'est-à-dire le hessien complexe de cp est une forme quadratique définie

positive).

La démonstration est indiquée en [3]. La compacité de G et la classe ^p
du bord dG permettent de trouver une fonction xj/ de classe avec dij/ (x)

^ 0 sur dG, G { x g C" | \j/ (x) < 0 }, et vérifiant la condition de Lévi ;

en prenant ensuite cp ij/ eA* où A est un réel suffisamment grand, on
obtient la proposition.

De plus, choisissons une suite strictement monotone de nombres réels

positifs ev tendant vers 0 et posons

Gv { X G C" I cp (x) < - 8V}
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Le domaine Gv a, au cas où sx est assez petit, les mêmes propriétés que G

et on a

Gv c= ci Gv+1 c c G, u Gv G
v> 1

On a des propriétés similaires avec Gv { x g Cn | cp (x) < sv }

G a a Gv+1 c= a Gv

§ 5. Formes différentielles de Ramirez-Chenkin

Nous désirons construire une fonction g satisfaisant aux hypothèses
du § 3.1. Pour cela nous avons besoin du lemme:

1. Lemme 5.1. Soient G un domaine pseudo-convexe borné de C",
Q un ouvert quelconque de C", fx (y) une (0, 1) forme de classe cßp sur
Q x G, vérifiant dyfx (y) 0. Alors l'équation dy C(x,y) fx(y) a une
solution de classe #p sur Q x G.

Démonstration. On s'appuie sur le théorème 2.2.3, page 107 de [5]

avec poids nul. On trouve alors que pour chaque x e Q, il existe une solution
ux (y) avec

».x- (y)•

Il ux\\~e[diamètrede G]2 ||

H y désignent les normes dans les espaces L2^0 0) (G) ou L^0 l) (G).

ux (y) e H(0 0) (G) ® Ef0 o) (G), où 0) (G) est le sous-espace fermé des

fonctions holomorphes sur G de L2 0(G)et G2
„ (G) son supplémentaire

orthogonal.

Soit C(x, y)laprojection de wY (y) sur £2
0 (G); on vérifie facilement que

C (x, y) ne dépend que de fx (y) et que la correspondance

fx (y) —L C(x, y)

est une application linéaire continue (pour chaque x fixé) de //(20 ; (G)
dans L\0i> (G)-

Notons E*l'adjointde E. Montrons alors que C est de classe sur
Q x G. Il suffit de le faire au voisinage de chaque point (x0, On introduit
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à cet effet une fonction \j/ de classe à support compact dans G telle que
^ (y) 1 dans un voisinage de y0 et 0 ^ ç ^ 1 partout.

La formule de Bochner-Martinelli appliquée à \j/ (y) x C (x, y) donne

C(x, y)K„J C(x, z)dz i//(z) + ij/(z) (x, z) a Bn0 (z, y)
G

L'intégrale se décompose en une somme dont l'un des termes porte sur
dz C (x, y) fx (z); ce terme est de classe %>p (voir lemme 4.2). Il reste à

étudier

J Iefx](z)£ pr (z) Bnoi (z, y)) A a dz, a - à (x, y)
G \ i=i OZi J

où Bnoi est le coefficient du terme sans dzt dans le noyau Bno.

d(x,y)J fx(z)E*(y ^r(z)B„oi(z,y) \ a a a dzA
G \i=l ÖZj / A

Sous cette dernière forme on peut dériver par rapport à x sous l'intégrale

(on pouvait dériver par rapport à y sous la forme initiale). On vérifie

que les limites sont uniformes par rapport à y dans un voisinage convenable
de yQ, ce qui permet d'affirmer que les dérivées sont continues par rapport
au couple (x, y). C (x, y) est donc de classe sur Q x G.

2. Soit toujours G un domaine borné strictement pseudo-convexe de

bord de classe cAr. On a le théorème essentiel de ce chapitre.

Théorème 5.

Il existe un voisinage W de ÔG x G et une fonction g (x, y) de classe r2
sur W pour laquelle on ait

(1) dyg(x,y)=0,
(2) g(x,x) 0

(3) x # y:| g(x,y)|> 0.

Nous construisons cette fonction au moyen de la fonction cp de

l'introduction et du lemme 1.3 (cette construction est faite dans [7]).

On définit pour x voisin de dG et y voisin de G

(4) P (x, y) 2 d(p (x) [x —y] — d ® d(p (x) [x — y, x — y]



On remarque qu'on a pris les termes C-linéaires ou C-bilinéaire du

développement de Taylor à l'ordre 2 de cp (y) — cp (x).

(5) (p (y) - <P (x) dcp (x) \_y-x] + — d ® dcp (x) [x-y, x -y]
+ 0(| x — y |3),

(5') cp(y) - cp (x) dcp (x) [y -x] + dcp (x) [y -x]

+ ^ \ß ® dcp (x) + d (x) dcp (x)] [x-y, x - y]

+ d ® dcp (x) [x - y, x - y] + 0(|x—y |3)

On reconnaît dans (5') Re P (x, y) plus le hessien complexe de cp, d'où

(6) Re P (x, y) cp (x) — cp (y) + ô (x) dcp (x) [x — y, x — y]

+ 0 (| x — y |3).

La stricte plurisousharmonicité de cp permet d'écrire

37 > 0 \/x e dG yy e G d ® dcp (x) [x — y, x — y] ^ y | x — y |2

D'autre part 3Ô < 0 tel que 0 (| x—y |3) ^ y/2 | x—y \2 pour | x—y |

^ ô d'où

(7) y (x, y) e dG x G tels que | x—y | ^ ô, Re P (x, y) ^ y/2 | x—y |2

Soit h : 0 < h < y <52/8.

L'ouvert Q { x, y | Re P (x, y) > h } contient donc dG x Gn {(x, y) |

<5

^ x—y ^ <5 }
2 J

Il existe donc des voisinages ouverts U de dG, F de G et des réels a,
ß tels que 0 < a < ß pour lesquels on a

(8) Ux Fn {(x,jO \a < \x-y\ < ß} <={(x,y) | > h}

Définissons alors une fonction i// de classe V de R dans R telle que
0 ^ ip^1 partout, \p (t)0 pour t ^ hß, pour ^ h.

Et sur Ux Vondéfinit

A (x, y) log P (x, y) x ip [Re (x, y)] si Re

h
A{x,y) =0 si ReP(x, y) < -
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Il est clair que A (x, y) est de classe ainsi que dy A (x, y) sur U x V

et même sur Ü x F.

On introduit enfin

lôyA(x,y) pour \x-y\<ß,
fx (y) ]

[ 0 pour | x — y | > a

fx(y) est de classe par rapport à (x, y) sur U x V et de plus dyfx(y)
0. D'après le lemme 5.1 dont toutes les hypothèses sont vérifiées il existe

une fonction C (x, y) de classe të2 sur U x V telle que dy C (x, y) fx (y).
La fonction

g(x,y) P(x, y) ec(x>y)~A(x'y) si |x-y| <ß,
g (x, y) cC(A%-v) si | x - y | > a

est de classe ^2 sur U x V W et vérifie les hypothèses 1), 2), 3) du
théorème 5.

On pourra même prendre V Gv avec les notations de l'introduction

pour v assez petit et Um GV\GV.

3. Problème de division.

Théorème 6.

Pour toute fonction g vérifiant les conditions du théorème 5, il existe un

voisinage W' de ÔG x G et g* e 0 (JV) telle que dyg* — 0 et g (x, y)
g* (x, y) [x—y] sur W'.

Démonstration. On introduit une suite finie d'ouverts

dG x G C C Un x Vn c c= CZ C x V1 U x V

où chaque Vk est un voisinage strictement pseudo-convexe de G.

On pose ojk Uk x Vk n { xA y t
\ k + l ^ i ^ n}.

On cherche alors à démontrer par récurrence sur k

k

g(x,y)y gi(x,.y)(xi-yi) sur eu

i= 1

0{mk) et 8ygi(x,y)=0.
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k n fournira le résultat du théorème 6.

k 1 se ramène à un problème (trivial) de division à une variable.

Il s'agit de passer de k — 1 à k. On suppose donc

k- 1

g(x,y) Y9i(x,y)(xi-yi),3ygi(x,}>) 0
i= 1

et gt de classe sur
On procède en deux temps.

a) On prolonge les gt (x, y) en des gt (x, y) sur œk, ce sera l'objet du
lemme 5.2.

k- 1

b) h(x, y) g (x, y) - YSi O, y) Of-Jh) définie sur s'annulle
i= 1

pour xk yk, donc h (x, y) (xk—yk)gk(x,y) (division à une variable)
et on a gk de classe &2 sur œk et ôy gk (x, y) 0.

Donc

k

d(x,y)Y 9i(x,y)(xi-yi)surcak avec Bygi(x,y) 0
i= 1

et gi de classe ^2 sur œk.

Lemme 5.2. (x, y) y (x, y) fonction de classe ^2 sur œk^1 avec
Oy y (x, y) 0 se prolonge en r de classe ^2 sur œk avec ôy r (x, y) 0.

Démonstration. On introduit

Q =s (Uk_ 1 x Ffc_ i) n { X| | /c + 1 — i ^ n }

cofc_ x est fermé dans Q, œ est ouvert dans Q.

Donc K1 mk-x n œk et K2 (C#œ) n cok sont deux compacts
disjoints de Q. Il existe donc une fonction ij/ (x, y) réelle

•A (x, y) 1 pour (x, y)eK1,
•A (x, y)0 pour (x,

0 i// fx, y) 1 partout, f de classe #°° et à support compact dans Ü.

y se prolonge en y sur co holomorphe en y par

L'Enseignement mathém., t. XVIII, fasc. 3-4. 22
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y <X y) y(xt, ...,xk, ...,xn,

On recherche alors r sous la forme

r(x,y) y(x,y) x\j/(x,y) + (xk-yk) v(x, y).

La condition ôy r (x, y) 0 entraîne

x y(x,y)dy\l/(x,y)
ôyv(x9y) =fx(y)'

xk - yk

On a trivialement ôyfx (y) 0 et fx (y) est de classe ^2 sur Q; le lemme
5.1 appliquée à fx(y) (mais avec y e Ck et xl9 xn comme paramètre)
donne une solution v de classe W2 sur Q qui prolonge y en r sur cok, avec

dy r (x, y) 0 et r de classe ^2.

4. Avec les notations précédentes, compte tenu des théorèmes 5 et 6,

g*ec&li(W) avec W voisinage de dG x G, vérifie les hypothèses du
§ 3 sur W IT\{(x, y) | x y}.

Nous posons maintenant

g(g-1) /n~1\
J7) (-1) 2

jDq+1(g*),

Q«qe<#l»,n-q-i;0 ,q) (w) > 0.

Il résulte du théorème 2 (g=0) et du théorème 3 (q ^ 1) que si

désigne à nouveau le noyau de Bochner-Martinelli :

Théorème 7.

Il existe des doubles formes Anq et Cnq dans %>\n,n-q-2;o,q) (B7)
e? (W)tellesque

B„q (x,y) Qnq (x, y)+ <!x (x, y) +

Les formes du second membre sont appelées formes de Ramirez-Chenkin.



§ 6. Une représentation intégrale
SUR UN DOMAINE STRICTEMENT PSEUDO-CONVEXE

Nous conservons les notations utilisées jusqu'ici. Soit y une (0, #)-forme
indéfiniment differentiate sur G. D'après le théorème 7 on a

S y(x)a B„q (x, y) Sy<X>A Qni 1 (*) A Anq (x,y)
xedG xedG xedG

J a Cnq (x, y)
xedG

Toutes les formes intervenant sont de classe &1 sur W (Bnq, Qnq, Anq, Cnq)

et de classe ^°° en y. Dans la dernière intégrale échangeons la differentiation

et l'intégration.

J y(x) a ôyC„g(x,y)Sy J y(x)a C„q(x,y) 3yB(y)
xedG xeôG

0Ù56Ï(;rl)(G).
Pour transformer la deuxième intégrale du second membre, nous avons

besoin de

3xA„q(x,y)

Nous construisons pour y e G l'intégrale

j" dx (y (x) a Anq (x, y)).
ôG

Pour chaque y fixé, c'est l'intégrale d'une forme dx exacte qui est donc
nulle.

D'autre part

dx[_y(x)aA„q(x,y)~\ dxy(x) a Anq(x,y)

+ -1)« (x) a dx (x, y)]
ôx y(x) a Anq (x, y)+ -1)« y(x) a Anq (x, y)

d'où

-0 J Sxy(x) a A„q(x,y) + (-1)" j
xeôG xedG

Et par conséquent

J y(x) a Bnq(x,y) J" y(x) a Q„q(x,y)
dG QG

+ (-l)"+1J Sxy(x) a (x, + dyB(y).
dG
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On porte cette relation dans le théorème 4 ainsi on en tire:

Théorème 8.

Pour chaque domaine strictement pseudo-convexe G de Cn, avec un bord
de classe il existe des doubles formes Qnq (x, y) et Anq (x, y) e

o q (W) et C^n-q-2; 0>q (W) sur un ouvert W contenant dG x G,
de telle sorte que ce qui suit est valable :
Si y e y>fq (G), alors \/y e G

y00 V5 7^— I I ïW Aß„,(x,y)+(-l)5+1j
{Z7ZI) |_xedG xeôG

~ y 00 A Bnq (x, y)l + r (y)

Avec r (G). On rappelle dyQnq 0 pour q — 0, Qnq 0

pour q > 0, Qnq et Aqn sont de classe ^°° en y.
Il est clair que pour les domaines Gv introduits au début de ce chapitre,

la même représentation est valable avec les mêmes noyaux.

Chapitre III

ONE FORMULE DE RÉSOLUTION
POUR L'ÉQUATION DE CAUCHY-RIEMANN

Si G est un domaine borné dans le plan avec un bord suffisamment

régulier et g une fonction bornée ^°° sur G, alors la fonction

1 g (x)
f(y)-r-H dx A 6 >

2ni g x — y

df
satisfait l'équation différentielle —z=g.ôy

Dans ce chapitre nous construisons au moyen du théorème 8 une solution

de da ß sur un domaine strictement pseudo-convexe au moyen d'une

intégrale de la même forme.
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§ 7. Solution de l'équation

1. G, Gv, (p, W, Qm, Anqsont définis comme dans le chapitre précédent.

Soit ße^o,q+i (G)bornée sur Gpour la norme définie au § 1.5.

Nous posons

Tv(30=7^4;1 ß(x) a
(2711) xsGv

CvOO J
(2TZI) xedGv

v e N, 0 — 1.

Notons qu'on ne peut a priori remplacer Gv par G car ß n'est pas définie

sur dG.

2. Lemme 7.1. La suite yv (j) converge localement uniformément

sur G ainsi que toutes ses dérivées vers

y 0) tt-L j ß(x)a Bnq (x, y)
(2711) xeG

et yeK,q(G).
Ceci résulte du fait que ß est bornée et du lemme 4.4.

3. Nous nous occupons des propriétés correspondantes pour Çv.

Puisqu'on peut différentier sous le signe intégrale à un ordre quelconque,
il vient aussitôt:

Lemme 7.2. Les formes Çv sont indéfiniment differentiates sur Gv.

Le lemme 7.3 n'est pas tout aussi trivial.

Lemme 7.3. La suite Cv converge avec toutes ses dérivées localement
uniformément sur G.

Démonstration. Soit G' c c= Gxo et > v > v0.

ç„0) - Cv(y) (-i)ï+1 J
öGß—dGy

(-l)î+1J
d(Gu\Gv)



(-l)'+1| dJIHx) A A„q)
Gß\Gv

(_1)2[«+1]| ß(x) a cxAnq(x,y),

à cause de dß 0.

Maintenant d'après la construction de g (x, y), la forme Anq (x, y)
pour x g G\GV0 et y e G' est bornée, donc avec une constante convenable

IC„(y) -Cv(y)I^ k j a (dx'x a dx"x).
Gß\Gv A=1

Cela montre la convergence uniforme sur G' de la suite £v. Par diffé-
rentiation de ôx Anq (x, y) sous le signe intégral par rapport à y, on constate
la convergence uniforme locale de toutes les dérivées de Cv (y)-

4. Nous posons maintenant

C(y) lim Cv 00 > Cs
V->00

Nous formulons alors le résultat de ce chapitre.

Théorème 9.

Soit ße(£fq + 1 (G), telle que ß est bornée sur G et dß — 0. Alors la

(0, q)-forme oc y + Ç satisfait à doc ß, où l'on rappelle

yOO fx, 1 ß(x) A Bnq (x, y),ylui)xeG
C (y) lim J (x) a Anq (x, y).

v-+oo \Z7ll) xedGv

Démonstration. A cause de la pseudo-convexité de G, il existe

rj g q (G) telle que drj ß; r\ n'a pas besoin d'être borné mais possède

d'après le théorème 8 la représentation

-1- r j
(2 myln (y) Cv (y) + 7v (y) + Il (*) 0, + (y)

X E QGy

pour y e Gmetv > v0.

De là il s'ensuit

ß (y) dn (y) dÇv (y) + (y)
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Faisons dans cette équation v -»• oo ; ainsi, pour y e

BÇV00 + Byv00 ->• fiÇ (y) + By (y),

d'après les lemmes 7.3 et 7.1. Le raisonnement vaut pour tout v0, donc

VJ e G, B a. ß.

Chapitre IV

ÉVALUATION POUR LA NORME UNIFORME

§8

1. Rappelons que la norme uniforme a été définie au § 1.5 pour des

éléments de (G); on obtient

\/yeG, |<*O0l s"P «OOI>i>

| a | sup | a 00 I •

ye G

Le but de ce chapitre est de prouver, avec les notations du chapitre
précédent: si dß 0, g a, K > 0 tels que doc ß et | a | | ß |.

2. Majoration de y

On avait y y)J ß(x)a B„q (x, y).
{2711) xeG

I ß I & n

On en tire
(2tz)" xeG i x-a=i

Soit S la sphère de rayon R (diamètre G) et centrée en 0.

^Kt\ß\ • (dztdzd
A T7F^-K|'" •

où K est indépendant de y, d'où | y | ^ K | ß |.

La majoration de £ est beaucoup plus difficile à obtenir; nous aurons
d'abord besoin de certaines évaluations sur la fonction g du théorème 5.



§ 9. Evaluations pour la fonction g (x, y) du théorème 5

1. D'après sa « construction », g ainsi que ses dérivées premières sont
majorées sur un voisinage compact de dG x G, donc sur ôGv x Gv

indépendamment de v pour v supérieur à un v0 convenable. Pour majorer le

noyau Anq (x, y) le seul problème est donc de minorer le dénominateur où
intervient g à une certaine puissance.

Lemme 9.1. Il existe un voisinage compact de dG x G, des constantes

Kt > 0 et b > 0 de telle sorte que l'on ait

\/(x,y)eKavec \ w-y \ \ g (x,

Ceci résulte immédiatement de la « construction » de g; avec les notations
de la démonstration du théorème 5, on avait

\x—y\^b, g(x,y) P (x, y) ec(x,y)~Aix,y)

d'où le résultat.
Nous sommes ramené à minorer | P (x, y) |.

2. Minoration de ReP(x,y).

On rappelle qu'on a obtenu en (6) § 5.2.

ReP(x,y) cp{x) - <p(y) + d ® d<p (x)[x — y, x — y] + 0(|x-j; |3).

La plurisousharmonicité de cp entraîne que, pour x dans un voisinage

compact de dG, il existe C > 0 tel que

d (x) d(p (x) [x — y, x — y] ^ C | x — y \2

C
On a aussi 3 5, | x — y | ^ ô => 0( [ x —y |3) | x — y \2

Donc (v0 choisi assez grand)

On a remarqué que (x, y) e dGv x Gv => (p (x) — (p (y) ^ 0 et ce terme

disparaît.

(2)

Ix —y I ^ Ô
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3. Minoration de | Im P (x, y) |.

Utilisons ici la définition de P (.x, y), § 5.2 (4),

P (x, y) =2 dcp (x) [x - j;] - d ® ôcp (x) [x -y, x - y]

d'où P (x, y) 2 ôcp (y) [x—y] + 0 (| x—y |2). Mais ôcp (y) [x—y] \
{ dcp (y) [x—y] — i dcp (y) [i (x—y)] } d'après le § 1.1, lemme 1.1, d'où
Im P (x, y) - i dcp (y) [i (x-y)] + 0 (| x-y |2).

Pour chaque y utilisons maintenant un système de coordonnées d'origine

y, tel que l'hyperplan tangent H h la « surface » { x | cp (x) cp (y) }
est x\ 0, et i H — { x | x'\ 0 }, x—y (x'l5 x"t, x'n, x"„).

Dans ces conditions
uX±

M<pOOI

| /m P (x, y) | x I + °(IX_.H2)-

| dcp y)| est une fonction continue dans un voisinage compact de 5G, donc
minorée par une constante strictement positive. Il existe donc >0,
B > 0 et v0, tel que si v =ï v„

(3) \/(x,y)edGvx Gv, \ Im P (x, y) \ A \ x" ^-B\x-y\2

4. Minoration de | P (v, y) | et | g (x, |.

Pour tirer le meilleur parti de (2) et (3) nous avons besoin du lemme

Lemme 9.2.[2] y a, ß, ydans R, 0 < a, 0 < ß, 0 < y

max (a, ß—y)^2a + ß

Démonstration. Si a ^ ß — y,

s na + (a+f) «
max (a,ß-y)a a— (a + ß).

2a + 2a + y

Si a < ß-y,a+ y <ß.Alors(a+y)2 ou a2 ^ -- 2a y + ßa+ y, a2+ aß^2 aß - lay- y2+ ßy, a (a + j8) (j8— y)
(2a+ 7),
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a
d'où max (a, ß — y) ß — y ^ (a +ß)

2a + ß

A partir de (2) et (3) il est clair que pour (x, y) convenables

P (x, y)I ~ max (^\x-y\2 \

c_

d'où | P(x,y)| ^ —-—(-| x— y|2| x", \ ] d'après le lemme 9.2.
c + B\2

Concluons :

3 fej > 0, v0eN, ô>0
(4)

V (x,y) dGvxGv, V v — v<-' I x I — } =* I ^ I

+ \x\ I)

En tenant compte du lemme 9.1 on a:

jk>0,3 v„ e N, 317 >0,

(4')
f {v (*> y)eôGv x Gv,yv ^ v0, i x-y | }

| => \g+ I).

§ 10. Solution bornée de da=ß

1. Majoration des £v.

On rappelle

Cv 00 W- J ß (X) A À (x, y) (§7.1)
(2ni)n XeêGv

et d'après les théorèmes 7 (§ 5), 2 et 3,

q(q + 1)(n — 1

Anq=(-1) 2 (—

)A(f*,g*),'<y_

/ - •/-
/fl* /"* _ /"* f* q*

A(f*,g*) E L, V* y

k= 1
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Nous devons donc majorer

fq* f* f*_ /* _Di,i,q,r-k,k-i(— » -y>dy-jr,> dx —

g* f* Sxf* 8J*
— D l,l,q,r- \g ' / ' / ' / '

le second terme disparaît dans le produit extérieur avec /*, de même pour
les termes en (/*//) et (g*/g). D'où, en tenant compte du § 9, 1 et 4 (4'),

g h1 > 0, g v0eN, grç > 0 : v^v0, \/(x> Gv x Gv e* I x-)71 — V

on a

I DUAr-W-l( )l -(|x_j,|2 + I) |JC—y |i + 2<«-2) »

d'où: g/z > 0, g v0 e N, gj/ > 0,

(5)

(x,j)e(dGy xG,), v^v0,
h

I Aq(x, I ^ -

(Ix-yl2 + |x"x I) I x |2"-3 '

et de façon presque évidente

g K2, \x-y\^rj,v~v0, y(x,y)edGvxG,:| Anq(x,y) |^
Notons bien que toutes les constantes intervenant ne dépendent pas

de y.
On décompose alors l'intégrale

(_l)<z+1
CvOO ^ [" J ß(x) A A,tq(x, y) + J ß (x) a | ;

yZHl) I xedGy xeôGy I

L \x-y\ J
le deuxième terme est majoré par K | ß | x sup {Aire dGv}.

v^v0
Pour le premier terme on utilise (5).

d aI ß(x) a Anq(x,y)
xedGv

|*-y|
\x-y\<tj \x — y \2n 3(|x — y |2 + \x" 11)

X £ dGy

où do est l'élément différentiel d'aire sur ôGv.
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Il se peut que dGv n | x—y | ^ rj 0 tout est alors terminé, sinon

on peut paramétrer ôGv n {| x—y \—r\) par x"1? x'2, x"2,x"n avec
les notations du § 9.3.

On pose r (x,,12 + x/|+x,,22 +...-f
Avec une nouvelle constante / (toujours indépendante de j) on a

J /?(x) A ^„9(x,y)
xedGv

\x-y\<r]

dx'\ dix'2 dx"2 dx"n

s, +

On passe en coordonnées sphériques dans R2" 1
; il vient avec une autre

constante M

J ß(x)ayln8(x,y)
xeôGv

|*-y|

M \ß\ \ j"
r2" 2 dr

n o r(r +r\ cos 0 |)
2

dO.

On a j
dr

Log(rj + | cos 9 I) - Logfl cos 9 |)
o r + | cos 9 |

71

2

et l'intégrale J Log | cos 9 | d9 est convergente, ce qui permet de conclure:

Théorème 10.

a) Soit G un domaine strictement pseudo-convexe avec un bord de classe
(ßAr. Il existe une application linéaire L continue du sous-espace vectoriel des

formes ô-fermées de q+\) (G) dans ^(^()p,q)(G) telle que si

a Lß, da ß.

La continuité se traduit par jK > 0, | a | \ ß \.

b) Il existe une base de voisinage strictement pseudo-convexe Gv de G

tels que a) soit valable avec la même constante K.

Pour p 0 la démonstration a été faite.

Pour p > 0 il suffit d'écrire

ß I ßtA dxi>où 1{ <i 1, ...n}
I

ß1e (G) et Sß 0 => 8ßt 0;

le problème est ramené à p0.
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Le b) résulte de ce que tout ce qui a été fait sur les Gv aurait pu être fait

sur Gv { x | cp (x) < ev}, sv \ 0, pour v suffisamment grand, car la condition

Gv a c G n'a joué aucun rôle; on a seulement utilisé dGv voisin
de ÔG.

Remarque.

On a prouvé l'existence d'un noyau dans le chapitre III; ce noyau
dépend de la fonction g et de la forme g* dont on affirme seulement l'existence

dans le chapitre II. Dans le cas particulier où G est strictement convexe
de bord de classe ^3, la fonction g(x, y) 2 ôcp (x) [x—y] et g* (x, y)

2 ôcp (x) conviennent (à cause de la convexité stricte de g), on a alors une
formule constructive pour l'équation dot — ß lorsque dß 0, (ß e ^ r+1 (G))
et le § 5 (ch. II) serait à supprimer.
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