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| 6) Remarque.

On peut trouver de la proposition 1 une démonstration géométrique
directe et trés rapide; indiquons-en les grandes lignes: la courbe
y* = x* — D a pour modéle de Weierstrass (qui lui est donc birationnel-
lement équivalent) la courbe y? = 4 x* 4+ Dx. Or, la « division par deux »
de cette derniére courbe montre qu’elle est isogéne a la courbe
y* = 4x* — 4Dx, laquelle enfin est birationnellement équivalente a la
courbe y* = x*® — Dx, comme on le voit tout de suite. Or, deux courbes
isogeénes ont le méme nombre de points rationnels (voir [1], p. 242); un
petit calcul laissé au lecteur conduit alors & la formule N = N’ + 1.

III. LE cas p = — 1 (mod 4)

C’est le cas «facile » du théoréme. 1l suffit de remarquer que I'on a
(sip=—1(mod 4)): (p—1,4) =(p—1,2) = 2. On en déduit que les
courbes affines y? = x* — D et y?> = x> — D ont le méme nombre de
points rationnels sur k (voir par exemple [6], hyp. (H,) ). Mais on a déja
vu dans la démonstration du lemme 3 que ce nombre est p — 1. On peut
donc énoncer, compte tenu des points a I'infini et de la proposition 1:

PROPOSITION 2: Lorsque p = — 1 (mod 4), on a N = p + 1.

IV. LE cas p = 1 (mod 4)

Nous supposerons dorénavant p = 1 (mod 4).

1) Formule donnant le nombre de points de la courbe affine y* = x* — D.

La courbe y* = x* — D a une équation diagonale. On sait, dans ce
cas, calculer le nombre de ses points rationnels sur k (voir [5], chap. 6, et
[8]). En particulier, on peut appliquer le théoréme 2 de [5], chap. 6, et
- écrire:

(5 No=p+ YD) n(¥, )+ n(¥ ¢) +¥(D)n(¥3, )

~en désignant par N, le nombre de points de la courbe affine (c’est-a-dire
sans les points & I'infini) y* = x* — D, et par = (¥, ¢) (par exemple) la
; somme de Jacobi > ¥ (u)¢ (v) associée aux deux caractéres ¥ et 10)

u,vek
ut+v=1

(voir [4], p. 460, ou [5], chap. 5, § 3). Remarquons que ¥2 = ¢, si bien
que m (P2, ¢) = n (¢, ¢). De plus:

i . L’Enseignement mathém., t. XVIII, fasc. 3-4. 19
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Lemme 4: On a n (¢, ) = — 1.

(Rappelons briévement la démonstration de ce résultat. On voit facilement,
compte tenu de la définition de = (¢, ¢) et de la relation ¢* = 1, que

n (. ) = 3 ¢(—x—~>= 2 =20 — o (=D;

xek 1—x yek yek
x#1 y#—1

Comme ¢ (0) = 0 et que > ¢ (y) = 0 (somme des valeurs d’un caractére
yek* lei

non trivial), on a bien n (¢, ) = — ¢ (—=1) = — (=1) * = — 1, puisque

p =1 (mod 4)). ’

Le lemme 4, la formule (5), et le fait que ¥> = i, donnent alors:
(6) N,=p—1+¢D)n(¥, ) +¥ (D), ).
2) Calcul des sommes de Jacobi n (¥, ¢) et n (Y, P).

PROPOSITION 3: On a les égalités n (W, ¢) = — et (Y, ) = — A

Il suffit d’établir la premicre de ces égalités. Commengons par prouver
ici:
Lemme 5 : On a la congruence ©n (¥, ¢) = 0 (mod 4).

Preuve : En effet, on a, par définition de ¢ et V':

p—1 p—-1

r(W, ) =Y (1—-x) * x > (mod A);
xek
rp—1 p-1

- 3
mais le polyndme P(X)=(1—-X) * X * et de degré i(p—l) <p,

et ou sait (voir [8], p. 12) que, dans ces conditions, Y P (x) = 0. Le

xek

lemme 5 est ainsi démontré.

Remarquons maintenant que, ainsi qu’il est bien connu (« module
d’une somme de Jacobi »: voir [4], p.-463, ou [5], chap. 5, prop. 9, cor. 1,
ou [9], p. 502):

(7) w9 % =

cette formule prouve que 7 (¥, ¢) est un diviseur de p dans Z [i]. Compte
tenu du lemme 5, il suffit, pour démontrer la proposition 3, de prouver le
résultat suivant:

Lemme 6 : On a la congruence n (¥, ¢) = — 1 mod (2+21i).




— 275 —

Preuve : Posons & priori n (¥, ¢) = a + ib. La formule (7) nous donne:
8) a* + b* = p.

>ar ailleurs, la courbe affine y*> + X* = 1 a sur k un nombre de points
-ationnels donné par:

9) M=p+mn(p¢)+n, ¢+ ¢
‘méme méthode que pour établir (6) ).

On a donc:
10) M=p—1+ 2a.

Comme k contient les racines carrées et quatriémes de 1'unité (puisque
p = 1 (mod 4) ) on voit facilement en faisant opérer ces racines de I'unité
sur les coordonnées des points de la courbe que ces derniers se répartissent
comme suit: six points sur les axes (quatre sur celui des x, deux sur celui
des y), les autres points se regroupant huit par huit. Ainsi, M est de la
forme 6 + 84, soit encore M = 6 (mod 8), ou p — 1 + 2a = 6 (mod 8);
finalement:

+1
1 —a= ’3_2— (mod 4).

Distinguons alors 2 cas:

ia) p =1 (mod 8); on a alors — a = 1 (mod 4), et, d’aprés (8), b = 0
(mod 4). Dans ce cas, — (a+ib) est donc de la forme 1 + 4 (s+i1t),
avec s et te Z.

b) p =5 (mod 4); on a alors — a = 3 (mod 4) et, d’aprés (8), b = 2
(mod 4). Dans ce cas — (a+ib) estdonc delaforme (3+21) + 4(s+i1),
avec s et t e Z.

Comme 4 = — 2(1+i)?i, on voit que, dans les deux cas, on a
— (a+ib) = 1 mod (2+2i), cest-a-dire n (¥, p) = — 1 mod (2+21).
Le lemme 6 est démontré. On a déja dit que cela achevait de prouver la
proposition 3.

3) Conclusion :
Compte tenu de la proposition 3, la formule (6) devient:

Ny=p—1+§(D)(=2) + ¥ (D) (~];
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avec 'identification signalée au début,

D _ D
Y (D) = <E>4 et ¥ (D) = (7>4.
N, = 1 — A D ) D
=om1=a(z) -1

Tenant compte du point a l'infini et de la proposition 1, on trouve
donc enfin:

Donc:

PRroPOSITION 4: Dans le cas p = 1 (mod 4), on a

D (D

La conjonction des propositions 2 et 4 démontre le théoréme 1.
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