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| 6) Remarque.

On peut trouver de la proposition 1 une démonstration géométrique
directe et trés rapide; indiquons-en les grandes lignes: la courbe
y* = x* — D a pour modéle de Weierstrass (qui lui est donc birationnel-
lement équivalent) la courbe y? = 4 x* 4+ Dx. Or, la « division par deux »
de cette derniére courbe montre qu’elle est isogéne a la courbe
y* = 4x* — 4Dx, laquelle enfin est birationnellement équivalente a la
courbe y* = x*® — Dx, comme on le voit tout de suite. Or, deux courbes
isogeénes ont le méme nombre de points rationnels (voir [1], p. 242); un
petit calcul laissé au lecteur conduit alors & la formule N = N’ + 1.

III. LE cas p = — 1 (mod 4)

C’est le cas «facile » du théoréme. 1l suffit de remarquer que I'on a
(sip=—1(mod 4)): (p—1,4) =(p—1,2) = 2. On en déduit que les
courbes affines y? = x* — D et y?> = x> — D ont le méme nombre de
points rationnels sur k (voir par exemple [6], hyp. (H,) ). Mais on a déja
vu dans la démonstration du lemme 3 que ce nombre est p — 1. On peut
donc énoncer, compte tenu des points a I'infini et de la proposition 1:

PROPOSITION 2: Lorsque p = — 1 (mod 4), on a N = p + 1.

IV. LE cas p = 1 (mod 4)

Nous supposerons dorénavant p = 1 (mod 4).

1) Formule donnant le nombre de points de la courbe affine y* = x* — D.

La courbe y* = x* — D a une équation diagonale. On sait, dans ce
cas, calculer le nombre de ses points rationnels sur k (voir [5], chap. 6, et
[8]). En particulier, on peut appliquer le théoréme 2 de [5], chap. 6, et
- écrire:

(5 No=p+ YD) n(¥, )+ n(¥ ¢) +¥(D)n(¥3, )

~en désignant par N, le nombre de points de la courbe affine (c’est-a-dire
sans les points & I'infini) y* = x* — D, et par = (¥, ¢) (par exemple) la
; somme de Jacobi > ¥ (u)¢ (v) associée aux deux caractéres ¥ et 10)

u,vek
ut+v=1

(voir [4], p. 460, ou [5], chap. 5, § 3). Remarquons que ¥2 = ¢, si bien
que m (P2, ¢) = n (¢, ¢). De plus:
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