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DÉMONSTRATION ÉLÉMENTAIRE

D'UN THÉORÈME DE DAVENPORT ET HASSE

P

P Par B. Morlaye

f: I. Introduction
h

Soient p un nombre premier impair et D un entier rationnel. Pour

p I (mod 4), soient en outre X et 1 les facteurs irréductibles primaires
I de p dans Z [/], caractérisés par la double condition:

p Al, A 3 I 1 (mod 2 + 2/),

i et désignons par /A)4 et /1)4 les symboles de restes biquadratiques
jf| modulo X et 1. Rappelons que si x e Z [/], (x/A)4 vaut 0 si X | x, et est égal,
[ si X X x, à l'unique puissance F de i telle que x(p-1)/4 F (mod A). Ce

II symbole est multiplicatif vis à vis de x, et est égal à 1 si et seulement si

p x est congru modulo X à une puissance quatrième. Dans [3], p. 178,

p Davenport et Hasse démontrent :

fi
p Théorème 1 : Soit N le nombre de solutions (y compris la solution

P «infinie») de la congruence y2 x3 — Dx (mod p). On a:

i N p + 1 si p - 1 (mod 4)

| N p+ I - A - 1^ si p 1 (mod 4)

i! Citant ce résultat dans [2], p. 284, Swinnerton-Dyer ajoute: «There
j ; is no easy proof of the full theorem». Effectivement, la démonstration
Sp donnée dans [3] repose sur l'application de la théorie du corps de classes

pi au corps des fonctions rationnelles sur certaines courbes de genre 1 définies
pi sur Fp, et ne peut donc guère être considérée comme « élémentaire ». Plus
11 récemment, Rajwade [7] a publié une autre démonstration, qui utilise
Lj certains résultats de Deuring appliqués à la courbe y2 x3 — Dx. Cette
ï : démonstration est également très « technique ».

|.| Le but de cet article est de donner les grandes lignes d'une démonstration

|; « élémentaire » du théorème 1. Le principe est le suivant :
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Soient C" la courbe j2 x4 — D définie sur le corps Fp et C la courbe
y2 x3 — Dx, également définie sur Fp. Notons N' et N le nombre de

points de C' et C, rationnels sur Fp, y compris les points à l'infini. On
montre (prop. 1) que N Nf + 1. Pour p — 1 (mod 4), N' se calcule
aisément, et on obtient N p + 1, d'où la première partie du théorème 1.

Pour p m 1 (mod 4), on identifie Fp à Z [/] / (A) et on note ^ et ^ les

caractères multiplicatifs d'ordre 2 et 4 de Fp auxquels s'identifient
respectivement les symboles /X)2 et /X)4. On introduit alors les sommes
de Jacobi nQF, </>), n (<j), <fi) et n (i/q </>), et on montre que: N' p
+ \j/ (D) n (W, (f)) + W (D) 7i (i/q 0). Pour achever la démonstration de la
deuxième partie du théorème 1, il ne reste plus qu'à prouver (prop. 3)

que n (*F, (j)) — 2 et 7i(\j/9 <j>) — I.

II. La formule fondamentale

Notons désormais k le corps Fp.

Proposition 1 : Avec les notations précédemment introduites, 0/2 a

iV N' + 1.

1) La première étape de la démonstration est constituée par le résultat
suivant :

Lemme 1 : Le nombre de points rationnels sur k de la courbe y2 P (x),
où P (x) est un polynôme, est donné par :

N= Nœ+p+L 4>(P(x))
xek

(Nœ désigne le nombre de points à l'infini de la courbé).

Preuve : Pour x0 e k fixé, l'équation y2 P (x0) a, comme on le

vérifie sans peine, 1 + 4> (P (x0) solutions dans k. Il ne reste plus qu'à
faire parcourir à x0 le corps k et à sommer pour trouver le nombre de

points de la courbe (affine) rationnels sur k. Le lemme 1 en résulte tout
de suite.

2) Le lemme 1, appliqué aux courbes C et C', donne tout de suite:

(1) N= Nœ +p +L <Mx3-Dx).
xek

(2) N' K +P +I <t>{xA-D).
xek
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