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DEMONSTRATION ELEMENTAIRE
D’UN THEOREME DE DAVENPORT ET HASSE

Par B. MORLAYE

I. INTRODUCTION

i Soient p un nombre premier impair et D un entier rationnel. Pour
- p =1 (mod 4), soient en outre 4 et 1 les facteurs irréductibles primaires
" de p dans Z [i], caractérisés par la double condition:

p =11, A=1=1 (mod 2+21i),

, et désignons par (. /A), et (. /), les symboles de restes biquadratiques
g - modulo 4 et 1. Rappelons que si x € Z [i], (x/A)4 vaut 0 si 4 ] x, et est égal,
' si A 4 x, & P'unique puissance i* de i telle que x(?~1/* = i* (mod 7). Ce
. symbole est multiplicatif vis & vis de x, et est égal a 1 si et seulement si
x est congru modulo A & une puissance quatriéme. Dans [3], p. 178,
. Davenport et Hasse démontrent:

THEOREME 1: Soit N le nombre de solutions (y compris la solution
r’ « infinie ») de la congruence y* = x> — Dx (mod p). On a:

!

N=p+1sip= —1 (mod4)

D\ (D) |
N=p+1—-A—=] — A=) sip=1 (mod4)
g AJ4 AJa

Citant ce résultat dans [2], p. 284, Swinnerton-Dyer ajoute: « There
is no easy proof of the full theorem ». Effectivement, la démonstration

- donnée dans [3] repose sur I'application de la théorie du corps de classes

g au corps des fonctions rationnelles sur certaines courbes de genre 1 définies
 sur F), et ne peut donc guére étre considérée comme « élémentaire ». Plus
recemment Rajwade [7] a publié une autre demonstratlon qui utilise

certains résultats de Deuring appliqués a la courbe y? — Dx. Cette

démonstration est également trés « technique ».
~ Lebut de cet article est de donner les grandes lignes d’une démonstration
« élémentaire » du théoréme 1. Le principe est le suivant:
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Soient C’ la courbe y*> = x* — D définie sur le corps F, et C la courbe
y? = x> — Dx, également définie sur F,. Notons N’ et N le nombre de
points de C’ et C, rationnels sur F,, y compris les points & I'infini. On
montre (prop. 1) que N = N’ + 1. Pour p = — 1 (mod 4), N’ se calcule
aisément, et on obtient N = p + 1, d’oli la premiére partie du théoréme 1.
Pour p = 1 (mod 4), on identifie ¥, a Z [i]/ (1) et on note ¢ et ¥ les
caracteres multiplicatifs d’ordre 2 et 4 de F, auxquels s’identifient respec-
tivement les symboles (. /1), et (./A),. On introduit alors les sommes
de Jacobi =n (¥, ¢), n(p, ¢) et n (Y, ¢), et on montre que: N = p
+ Y (D)n (¥, ¢) + ¥ (D) n(J, ¢). Pour achever la démonstration de la
deuxieme partie du théoréme 1, il ne reste plus qu’a prouver (prop. 3)

que (Y, ) = —detn (Y, ) = — A

II. LA FORMULE FONDAMENTALE
Notons désormais k le corps F,,.

ProroOSITION 1: Avec les notations précédemment introduites, on a
N = N+ 1.

1) La premic¢re étape de la démonstration est constituée par le résultat
suivant:

Lemme 1 : Le nombre de points rationnels sur k de la courbe y* = P (x),
ou P (x) est un polynome, est donné par :

N=N,+p+ ) ¢(Px)

xek

(N, désigne le nombre de points a l’infini de la courbe).

Preuve : Pour x, ek fixé, I'équation y*> = P (x,) a, comme on le
vérifie sans peine, 1 + ¢ (P (x,) ) solutions dans k. Il ne reste plus qu’a
faire parcourir a x, le corps k et & sommer pour trouver le nombre de
points de la courbe (affine) rationnels sur k. Le lemme 1 en résulte tout
de suite.

2) Le lemme 1, appliqué aux courbes C et C’, donne tout de suite:

(1) N=N,+p+ ) ¢(x*-Dx).
2) N =Ng+p+ Y ¢(@x*—D).

xek
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