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DEMONSTRATION ELEMENTAIRE
D’UN THEOREME DE DAVENPORT ET HASSE

Par B. MORLAYE

I. INTRODUCTION

i Soient p un nombre premier impair et D un entier rationnel. Pour
- p =1 (mod 4), soient en outre 4 et 1 les facteurs irréductibles primaires
" de p dans Z [i], caractérisés par la double condition:

p =11, A=1=1 (mod 2+21i),

, et désignons par (. /A), et (. /), les symboles de restes biquadratiques
g - modulo 4 et 1. Rappelons que si x € Z [i], (x/A)4 vaut 0 si 4 ] x, et est égal,
' si A 4 x, & P'unique puissance i* de i telle que x(?~1/* = i* (mod 7). Ce
. symbole est multiplicatif vis & vis de x, et est égal a 1 si et seulement si
x est congru modulo A & une puissance quatriéme. Dans [3], p. 178,
. Davenport et Hasse démontrent:

THEOREME 1: Soit N le nombre de solutions (y compris la solution
r’ « infinie ») de la congruence y* = x> — Dx (mod p). On a:

!

N=p+1sip= —1 (mod4)

D\ (D) |
N=p+1—-A—=] — A=) sip=1 (mod4)
g AJ4 AJa

Citant ce résultat dans [2], p. 284, Swinnerton-Dyer ajoute: « There
is no easy proof of the full theorem ». Effectivement, la démonstration

- donnée dans [3] repose sur I'application de la théorie du corps de classes

g au corps des fonctions rationnelles sur certaines courbes de genre 1 définies
 sur F), et ne peut donc guére étre considérée comme « élémentaire ». Plus
recemment Rajwade [7] a publié une autre demonstratlon qui utilise

certains résultats de Deuring appliqués a la courbe y? — Dx. Cette

démonstration est également trés « technique ».
~ Lebut de cet article est de donner les grandes lignes d’une démonstration
« élémentaire » du théoréme 1. Le principe est le suivant:
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Soient C’ la courbe y*> = x* — D définie sur le corps F, et C la courbe
y? = x> — Dx, également définie sur F,. Notons N’ et N le nombre de
points de C’ et C, rationnels sur F,, y compris les points & I'infini. On
montre (prop. 1) que N = N’ + 1. Pour p = — 1 (mod 4), N’ se calcule
aisément, et on obtient N = p + 1, d’oli la premiére partie du théoréme 1.
Pour p = 1 (mod 4), on identifie ¥, a Z [i]/ (1) et on note ¢ et ¥ les
caracteres multiplicatifs d’ordre 2 et 4 de F, auxquels s’identifient respec-
tivement les symboles (. /1), et (./A),. On introduit alors les sommes
de Jacobi =n (¥, ¢), n(p, ¢) et n (Y, ¢), et on montre que: N = p
+ Y (D)n (¥, ¢) + ¥ (D) n(J, ¢). Pour achever la démonstration de la
deuxieme partie du théoréme 1, il ne reste plus qu’a prouver (prop. 3)

que (Y, ) = —detn (Y, ) = — A

II. LA FORMULE FONDAMENTALE
Notons désormais k le corps F,,.

ProroOSITION 1: Avec les notations précédemment introduites, on a
N = N+ 1.

1) La premic¢re étape de la démonstration est constituée par le résultat
suivant:

Lemme 1 : Le nombre de points rationnels sur k de la courbe y* = P (x),
ou P (x) est un polynome, est donné par :

N=N,+p+ ) ¢(Px)

xek

(N, désigne le nombre de points a l’infini de la courbe).

Preuve : Pour x, ek fixé, I'équation y*> = P (x,) a, comme on le
vérifie sans peine, 1 + ¢ (P (x,) ) solutions dans k. Il ne reste plus qu’a
faire parcourir a x, le corps k et & sommer pour trouver le nombre de
points de la courbe (affine) rationnels sur k. Le lemme 1 en résulte tout
de suite.

2) Le lemme 1, appliqué aux courbes C et C’, donne tout de suite:

(1) N=N,+p+ ) ¢(x*-Dx).
2) N =Ng+p+ Y ¢(@x*—D).

xek
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- Or, on peut écrire:

i

) T HE-D9 =Y (+¢®)(@E-D) ~ T ¢ =D

xek xek
D’autre part:

Lemme 2: On a I'égalité Y (1+¢ (x)) ¢ (x*~D) = Y. ¢ (x*—D).

xek xek

Preuve : Remarquons que ¢ (0) = 0; il en résulte que la contribution
de 0 & chacune des deux sommes étudiées est la méme: ¢ (— D). On peut
donc se borner a prouver que S = S’, en posant

S=>Y (1+¢d(x))p(x*>~D) et S =) ¢ (x*— D).
xek* xek*
Désignons par ¥ Iimage de k* par I'application x — x* — D. Cette
application se « factorise » a travers k*2, ce qui nous conduit a envisager
2 cas:

a) p = 1 (mod 4) — Dans ce cas on a (k* : k*?) = (k*?* : k**) = 2. 1
en résulte que S' =4 ¢(») =2 Y ¢ (x*— D), puisquun élément

yeV xek*2
yeV fixé est alors I'image de quatre éléments distincts de k*, ou de
deux éléments distincts de k*2.

b) p = 3 (mod 4) — Dans ce cas k*? = k**, et lapplication k** — V
qui factorise k* — V' est une bijection. On en déduit, ici encore, que
S’ =2 Y ¢ (x*—D), puisque tout élément de ¥ provient d’un élément

xek*2

de k*? unique, lequel est 'image de deux éléments distincts de k*.

Donc, dans tous les cas, S’ =2 ) ¢ (x*—D). Or, il est évident

xek*2

que S =2 Y ¢(x*~D) puisque ¢ (x) = 1 si xek*? et ¢ (x) = — 1

xek*2

si x¢ k*2 On a donc bien S = §’, ce qui achéve la démonstration.

Compte tenu du lemme 2 et de la formule (3), la formule (1) devient
alors:

N=N,+p+ Y ¢$*=D)— ¥ ¢ (x*—D)

xek xek
Or, de fagon claire, N, = N_ = 1; d’aprés (2) on obtient donc
4) N=N -5 ¢ (x*-D).

xek
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Il ne reste plus qu’a calculer ) ¢ (x*— D). Cela peut se faire de deux

xek

facons.

3) Calcul « géométrique » de la somme Y, ¢ (x*— D).

xek

L’hyperbole y? = x*— D est birationnellement équivalente sur k 2 la

droite projective définie sur k; elle a donc p + 1 points rationnels sur k.
Comme elle a deux points a I'infini, le lemme 1 nous donne:

Y ¢(*-D)=p+1-2-—p=—1

xek

4)  Calcul « arithmétique » de la somme ) ¢ (x*— D).

xek

Distinguons deux cas:

a) D n’est pas résidu quadratique modulo p; alors x* — D n’est jamais
nul, et si 'on désigne par A4 (resp. par B) I’ensemble des x € k tels que
x* — Dek*? (resp. ¢ k*?) on a: ) ¢ (x*—D) = card (4) — card (B).

. xek
Mais c’est un exercice élémentaire de vérifier que:

— 1 | + 1
card (4) = {)—, card (B) = 1’_5__;
~1 + 1
dou ¥ p(x2—D)=2_~ P _ 4
xek 2 2

\

b) D est résidu quadratique modulo p ; la méthode est la méme qu’en a),
mais ici x> — D s’annule pour deux valeurs de x, si bien que 'on a:
p—1

, card (B) = —

-3
card (4) = £

d’ol encore Y ¢ (x*—D) = — 1.

xek

5) D’une maniére ou d’une autre, on a établi le résultat suivant:

Lemme 3: On a ’égalité » ¢ (x*—D) = — 1.

xek

On peut alors conclure, en reportant cette valeur dans (4), que
N = N' + 1, ce qui achéve la démonstration de la proposition 1.

S e T
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| 6) Remarque.

On peut trouver de la proposition 1 une démonstration géométrique
directe et trés rapide; indiquons-en les grandes lignes: la courbe
y* = x* — D a pour modéle de Weierstrass (qui lui est donc birationnel-
lement équivalent) la courbe y? = 4 x* 4+ Dx. Or, la « division par deux »
de cette derniére courbe montre qu’elle est isogéne a la courbe
y* = 4x* — 4Dx, laquelle enfin est birationnellement équivalente a la
courbe y* = x*® — Dx, comme on le voit tout de suite. Or, deux courbes
isogeénes ont le méme nombre de points rationnels (voir [1], p. 242); un
petit calcul laissé au lecteur conduit alors & la formule N = N’ + 1.

III. LE cas p = — 1 (mod 4)

C’est le cas «facile » du théoréme. 1l suffit de remarquer que I'on a
(sip=—1(mod 4)): (p—1,4) =(p—1,2) = 2. On en déduit que les
courbes affines y? = x* — D et y?> = x> — D ont le méme nombre de
points rationnels sur k (voir par exemple [6], hyp. (H,) ). Mais on a déja
vu dans la démonstration du lemme 3 que ce nombre est p — 1. On peut
donc énoncer, compte tenu des points a I'infini et de la proposition 1:

PROPOSITION 2: Lorsque p = — 1 (mod 4), on a N = p + 1.

IV. LE cas p = 1 (mod 4)

Nous supposerons dorénavant p = 1 (mod 4).

1) Formule donnant le nombre de points de la courbe affine y* = x* — D.

La courbe y* = x* — D a une équation diagonale. On sait, dans ce
cas, calculer le nombre de ses points rationnels sur k (voir [5], chap. 6, et
[8]). En particulier, on peut appliquer le théoréme 2 de [5], chap. 6, et
- écrire:

(5 No=p+ YD) n(¥, )+ n(¥ ¢) +¥(D)n(¥3, )

~en désignant par N, le nombre de points de la courbe affine (c’est-a-dire
sans les points & I'infini) y* = x* — D, et par = (¥, ¢) (par exemple) la
; somme de Jacobi > ¥ (u)¢ (v) associée aux deux caractéres ¥ et 10)

u,vek
ut+v=1

(voir [4], p. 460, ou [5], chap. 5, § 3). Remarquons que ¥2 = ¢, si bien
que m (P2, ¢) = n (¢, ¢). De plus:

i . L’Enseignement mathém., t. XVIII, fasc. 3-4. 19
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Lemme 4: On a n (¢, ) = — 1.

(Rappelons briévement la démonstration de ce résultat. On voit facilement,
compte tenu de la définition de = (¢, ¢) et de la relation ¢* = 1, que

n (. ) = 3 ¢(—x—~>= 2 =20 — o (=D;

xek 1—x yek yek
x#1 y#—1

Comme ¢ (0) = 0 et que > ¢ (y) = 0 (somme des valeurs d’un caractére
yek* lei

non trivial), on a bien n (¢, ) = — ¢ (—=1) = — (=1) * = — 1, puisque

p =1 (mod 4)). ’

Le lemme 4, la formule (5), et le fait que ¥> = i, donnent alors:
(6) N,=p—1+¢D)n(¥, ) +¥ (D), ).
2) Calcul des sommes de Jacobi n (¥, ¢) et n (Y, P).

PROPOSITION 3: On a les égalités n (W, ¢) = — et (Y, ) = — A

Il suffit d’établir la premicre de ces égalités. Commengons par prouver
ici:
Lemme 5 : On a la congruence ©n (¥, ¢) = 0 (mod 4).

Preuve : En effet, on a, par définition de ¢ et V':

p—1 p—-1

r(W, ) =Y (1—-x) * x > (mod A);
xek
rp—1 p-1

- 3
mais le polyndme P(X)=(1—-X) * X * et de degré i(p—l) <p,

et ou sait (voir [8], p. 12) que, dans ces conditions, Y P (x) = 0. Le

xek

lemme 5 est ainsi démontré.

Remarquons maintenant que, ainsi qu’il est bien connu (« module
d’une somme de Jacobi »: voir [4], p.-463, ou [5], chap. 5, prop. 9, cor. 1,
ou [9], p. 502):

(7) w9 % =

cette formule prouve que 7 (¥, ¢) est un diviseur de p dans Z [i]. Compte
tenu du lemme 5, il suffit, pour démontrer la proposition 3, de prouver le
résultat suivant:

Lemme 6 : On a la congruence n (¥, ¢) = — 1 mod (2+21i).
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Preuve : Posons & priori n (¥, ¢) = a + ib. La formule (7) nous donne:
8) a* + b* = p.

>ar ailleurs, la courbe affine y*> + X* = 1 a sur k un nombre de points
-ationnels donné par:

9) M=p+mn(p¢)+n, ¢+ ¢
‘méme méthode que pour établir (6) ).

On a donc:
10) M=p—1+ 2a.

Comme k contient les racines carrées et quatriémes de 1'unité (puisque
p = 1 (mod 4) ) on voit facilement en faisant opérer ces racines de I'unité
sur les coordonnées des points de la courbe que ces derniers se répartissent
comme suit: six points sur les axes (quatre sur celui des x, deux sur celui
des y), les autres points se regroupant huit par huit. Ainsi, M est de la
forme 6 + 84, soit encore M = 6 (mod 8), ou p — 1 + 2a = 6 (mod 8);
finalement:

+1
1 —a= ’3_2— (mod 4).

Distinguons alors 2 cas:

ia) p =1 (mod 8); on a alors — a = 1 (mod 4), et, d’aprés (8), b = 0
(mod 4). Dans ce cas, — (a+ib) est donc de la forme 1 + 4 (s+i1t),
avec s et te Z.

b) p =5 (mod 4); on a alors — a = 3 (mod 4) et, d’aprés (8), b = 2
(mod 4). Dans ce cas — (a+ib) estdonc delaforme (3+21) + 4(s+i1),
avec s et t e Z.

Comme 4 = — 2(1+i)?i, on voit que, dans les deux cas, on a
— (a+ib) = 1 mod (2+2i), cest-a-dire n (¥, p) = — 1 mod (2+21).
Le lemme 6 est démontré. On a déja dit que cela achevait de prouver la
proposition 3.

3) Conclusion :
Compte tenu de la proposition 3, la formule (6) devient:

Ny=p—1+§(D)(=2) + ¥ (D) (~];
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avec 'identification signalée au début,

D _ D
Y (D) = <E>4 et ¥ (D) = (7>4.
N, = 1 — A D ) D
=om1=a(z) -1

Tenant compte du point a l'infini et de la proposition 1, on trouve
donc enfin:

Donc:

PRroPOSITION 4: Dans le cas p = 1 (mod 4), on a

D (D

La conjonction des propositions 2 et 4 démontre le théoréme 1.
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