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DÉMONSTRATION ÉLÉMENTAIRE

D'UN THÉORÈME DE DAVENPORT ET HASSE

P

P Par B. Morlaye

f: I. Introduction
h

Soient p un nombre premier impair et D un entier rationnel. Pour

p I (mod 4), soient en outre X et 1 les facteurs irréductibles primaires
I de p dans Z [/], caractérisés par la double condition:

p Al, A 3 I 1 (mod 2 + 2/),

i et désignons par /A)4 et /1)4 les symboles de restes biquadratiques
jf| modulo X et 1. Rappelons que si x e Z [/], (x/A)4 vaut 0 si X | x, et est égal,
[ si X X x, à l'unique puissance F de i telle que x(p-1)/4 F (mod A). Ce

II symbole est multiplicatif vis à vis de x, et est égal à 1 si et seulement si

p x est congru modulo X à une puissance quatrième. Dans [3], p. 178,

p Davenport et Hasse démontrent :

fi
p Théorème 1 : Soit N le nombre de solutions (y compris la solution

P «infinie») de la congruence y2 x3 — Dx (mod p). On a:

i N p + 1 si p - 1 (mod 4)

| N p+ I - A - 1^ si p 1 (mod 4)

i! Citant ce résultat dans [2], p. 284, Swinnerton-Dyer ajoute: «There
j ; is no easy proof of the full theorem». Effectivement, la démonstration
Sp donnée dans [3] repose sur l'application de la théorie du corps de classes

pi au corps des fonctions rationnelles sur certaines courbes de genre 1 définies
pi sur Fp, et ne peut donc guère être considérée comme « élémentaire ». Plus
11 récemment, Rajwade [7] a publié une autre démonstration, qui utilise
Lj certains résultats de Deuring appliqués à la courbe y2 x3 — Dx. Cette
ï : démonstration est également très « technique ».

|.| Le but de cet article est de donner les grandes lignes d'une démonstration

|; « élémentaire » du théorème 1. Le principe est le suivant :
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Soient C" la courbe j2 x4 — D définie sur le corps Fp et C la courbe
y2 x3 — Dx, également définie sur Fp. Notons N' et N le nombre de

points de C' et C, rationnels sur Fp, y compris les points à l'infini. On
montre (prop. 1) que N Nf + 1. Pour p — 1 (mod 4), N' se calcule
aisément, et on obtient N p + 1, d'où la première partie du théorème 1.

Pour p m 1 (mod 4), on identifie Fp à Z [/] / (A) et on note ^ et ^ les

caractères multiplicatifs d'ordre 2 et 4 de Fp auxquels s'identifient
respectivement les symboles /X)2 et /X)4. On introduit alors les sommes
de Jacobi nQF, </>), n (<j), <fi) et n (i/q </>), et on montre que: N' p
+ \j/ (D) n (W, (f)) + W (D) 7i (i/q 0). Pour achever la démonstration de la
deuxième partie du théorème 1, il ne reste plus qu'à prouver (prop. 3)

que n (*F, (j)) — 2 et 7i(\j/9 <j>) — I.

II. La formule fondamentale

Notons désormais k le corps Fp.

Proposition 1 : Avec les notations précédemment introduites, 0/2 a

iV N' + 1.

1) La première étape de la démonstration est constituée par le résultat
suivant :

Lemme 1 : Le nombre de points rationnels sur k de la courbe y2 P (x),
où P (x) est un polynôme, est donné par :

N= Nœ+p+L 4>(P(x))
xek

(Nœ désigne le nombre de points à l'infini de la courbé).

Preuve : Pour x0 e k fixé, l'équation y2 P (x0) a, comme on le

vérifie sans peine, 1 + 4> (P (x0) solutions dans k. Il ne reste plus qu'à
faire parcourir à x0 le corps k et à sommer pour trouver le nombre de

points de la courbe (affine) rationnels sur k. Le lemme 1 en résulte tout
de suite.

2) Le lemme 1, appliqué aux courbes C et C', donne tout de suite:

(1) N= Nœ +p +L <Mx3-Dx).
xek

(2) N' K +P +I <t>{xA-D).
xek
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Or, on peut écrire :

(3) Y^(^~Dx) S (1 + <HX))(<MX2-Z>)) - Ixek xek xek

D'autre part:

Lemme 2: On a l'égalité Y (1 + 4> (x) (j) (x2 — D) — Y <^(x4 — D).
xek xek

Preuve : Remarquons que 4> (0) 0; il en résulte que la contribution
de 0 à chacune des deux sommes étudiées est la même: (j) — D). On peut
donc se borner à prouver que S S', en posant

S £ (l + $(x))$(x2-D) et
xek* xek*

Désignons par V l'image de k* par l'application x -» x4 — D. Cette

application se «factorise» à travers k*2, ce qui nous conduit à envisager
2 cas:

a) p 1 (mod 4) — Dans ce cas on a (k* : k*2) {k*2 : &*4) 2. Il
en résulte que S' 4 £ <j> (p) 2 £ (j) (x2 — D), puisqu'un élément

)-eF xek*%

y eV fixé est alors l'image de quatre éléments distincts de /t*, ou de

deux éléments distincts de k*2.

b) p m 3 (mod 4) — Dans ce cas k*2 /c*4, et l'application k*2 -> K

qui factorise -> F est une bijection. On en déduit, ici encore, que
S' 2 Y (x2 — D), puisque tout élément de V provient d'un élément

xek*%

de k*2 unique, lequel est l'image de deux éléments distincts de k*.

Donc, dans tous les cas, S' 2 Y (x2 — D). Or, il est évident
JC6fc*2

que S 2 Y </>(*2 —7)) puisque </> (x) 1 si xek*2 et (j) (x) — — 1

x ek*%

si x$k*2. On a donc bien S — S\ ce qui achève la démonstration.
Compte tenu du lemme 2 et de la formule (3), la formule (1) devient

alors :

N=Nœ+p+Y$ (*4-£) -Y<t> (*2-£)
xek xek

Or, de façon claire, Nœ 1 ;d'après (2) on obtient donc

(4) NN'-Y
xek
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Il ne reste plus qu'à calculer £ (f> (x2 — D). Cela peut se faire de deux
xek

façons.

3) Calcul « géométrique » de la somme <fi (x2 — D).
xek

L'hyperbole y2 x2 — D est birationnellement équivalente sur k à la
droite projective définie sur k; elle a donc p + 1 points rationnels sur k.
Comme elle a deux points à l'infini, le lemme 1 nous donne:

Y, 4> (x2 — D) p + \ — 2 — p — 1.

xek

4) Calcul « arithmétique » de la somme cj)(x2 — D).
xek

Distinguons deux cas :

a) D n'est pas résidu quadratique modulo p ; alors x2 — D n'est jamais
nul, et si l'on désigne par A (resp. par B) l'ensemble des xek tels que
x2 — Dek*2 (resp. $ k*2) on a: £ 0 (x2 —D) card (A) — card (B).

xek
Mais c'est un exercice élémentaire de vérifier que:

p — 1 p + 1

card (A) —-—, card (B) —-—;

d'où Y <t> x2-D)- P~A—- - 1

xek £ £

b) D est résidu quadratique modulo p ; la méthode est la même qu'en a),

mais ici x2 — D s'annule pour deux valeurs de x, si bien que l'on a:

p — 3 p — 1

card (A) ,card(B)

d'où encore y 4>{x2 — D) — 1.

xek

5) D'une manière ou d'une autre, on a établi le résultat suivant :

Lemme 3 : On a l'égalité £ (j) (x2 — D) — 1.

xek

On peut alors conclure, en reportant cette valeur dans (4), que

N N' + 1, ce qui achève la démonstration de la proposition 1.
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6) Remarque.

On peut trouver de la proposition 1 une démonstration géométrique
directe et très rapide; indiquons-en les grandes lignes: la courbe
y2 x4' — D a pour modèle de Weierstrass (qui lui est donc birationnel-
lement équivalent) la courbe y2 — 4 x3 + Dx. Or, la « division par deux »

de cette dernière courbe montre qu'elle est isogène à la courbe
y2 4x3 — 4Dx, laquelle enfin est birationnellement équivalente à la
courbe y2 x3 — Dx, comme on le voit tout de suite. Or, deux courbes

isogènes ont le même nombre de points rationnels (voir [1], p. 242); un
petit calcul laissé au lecteur conduit alors à la formule N N' + 1.

III. Le cas p — 1 (mod 4)

C'est le cas « facile » du théorème. Il suffit de remarquer que l'on a

(si p m — 1 (mod 4)): (p— 1, 4) (p— 1, 2) 2. On en déduit que les

courbes affines y2 x4 — D et y2 x2 — D ont le même nombre de

points rationnels sur k (voir par exemple [6], hyp. (H0) Mais on a déjà
vu dans la démonstration du lemme 3 que ce nombre est p — 1. On peut
donc énoncer, compte tenu des points à l'infini et de la proposition 1 :

Proposition 2: Lorsque p m — 1 (mod 4), on a N p + 1.

IV. Le cas p 1 (mod 4)

Nous supposerons dorénavant p 1 (mod 4).

1) Formule donnant le nombre de points de la courbe affine y2 x4 — D.
La courbe y2 x4 — D a une équation diagonale. On sait, dans ce

cas, calculer le nombre de ses points rationnels sur k (voir [5], chap. 6, et
[8]). En particulier, on peut appliquer le théorème 2 de [5], chap. 6, et
écrire :

(5) K p + # (D) n (F, (fi) + n (W2, (fi) + V (D) n (W3, </>),

en désignant par N'a le nombre de points de la courbe affine (c'est-à-dire
sans les points à l'infini) p2 x4 - D, et par n (W, 0) (par exemple) la
somme de Jacobi £ W (u) $ (v) associée aux deux caractères Y et cj>

u,vek
u + v= 1

(voir [4], p. 460, ou [5], chap. 5, § 3). Remarquons que V2 <f>, si bien
que n (F2, (fi) 7i (05 (fi). De plus:

L'Enseignement mathém., t. XVIIT, fasc. 3-4. 19
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Lemme 4 : On a n (0, (j>) — 1.

(Rappelons brièvement la démonstration de ce résultat. On voit facilement,
compte tenu de la définition de n (</>, 4>) et de la relation 4>2 1, que

n(</>• 4) X $ (T~T)£ 0 00 X 0 00 -
xefc \t +/ yefc yefc

JCTt 1 y*-l
Comme 0 (0) 0 et que £ 0 (j) 0 (somme des valeurs d'un caractère

yek*
1

non trivial), on a bien 7r (0, 0) — cj) (— 1) — (— 1) 2
— 1, puisque

p m 1 (mod 4)

Le lemme 4, la formule (5), et le fait que P3 \j/, donnent alors:

(6) TV,' p - 1 + $ (D) n (P, 0) + P (D) n 0Ä, 0).

2) Calcul des sommes de Jacobi % (P, 0) p/ tl (ij/, 4>).

Proposition 3 : On a les égalités n (P, </>) — 2 e/ (i//, </>) — I.
Il suffit d'établir la première de ces égalités. Commençons par prouver

ici :

Lemme 5 : On a la congruence tz (P, <fi) 0 (mod 2).

Preuve : En effet, on a, par définition de 0 et P :

p-i p-i
7i (P, <£)=£( 1 — x) 4 x 2 (mod 2);

xek
P~1 P-1 3

mais le polynôme P(X) (1 —2Q 4 JL 2 et de degré -(/? —1) < p,

et ou sait (voir [8], p. 12) que, dans ces conditions, £ P (x) 0. Le
xek

lemme 5 est ainsi démontré.

Remarquons maintenant que, ainsi qu'il est bien connu (« module
d'une somme de Jacobi »: voir [4], p. 463, ou [5], chap. 5, prop. 9, cor. 1,

ou [9], p. 502):

(7) |sCM)|2 =p;
cette formule prouve que n (P, </>) est un diviseur de p dans Z [/]. Compte
tenu du lemme 5, il suffit, pour démontrer la proposition 3, de prouver le

résultat suivant:

Lemme 6 : On a la congruence tl (P, </>) — 1 mod (2 + 2/).
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Preuve : Posons à priori n (W, $) a + ib. La formule (7) nous donne :

8) a2 + b2 p.

Dar ailleurs, la courbe affine y2 + X4 1 a sur k un nombre de points
•ationnels donné par:

9) M p + n (0, (j)) + 71 (ÎP, 0) + n (t/q 4>)

même méthode que pour établir (6)
On a donc:

;i0) M p - 1 + 2 a.

Comme k contient les racines carrées et quatrièmes de l'unité (puisque
v m 1 (mod 4) on voit facilement en faisant opérer ces racines de l'unité
sur les coordonnées des points de la courbe que ces derniers se répartissent
:omme suit: six points sur les axes (quatre sur celui des x, deux sur celui
les y), les autres points se regroupant huit par huit. Ainsi, M est de la
forme 6 + 8 h, soit encore M 6 (mod 8), ou p — 1 + 2 a 6 (mod 8);
finalement:

p + 1

[11) — a —-— (mod 4).

Distinguons alors 2 cas:

à) p 1 (mod 8); on a alors - a m 1 (mod 4), et, d'après (8), b 0

(mod 4). Dans ce cas, — (a + ib) est donc de la forme 1 + 4 (s-bit),
avec s et t e Z.

b) p 5 (mod 4); on a alors -am 3 (mod 4) et, d'après (8), b m 2

(mod 4). Dans ce cas - (a+ i b) est donc de la forme (3 + 2 i) + 4(s-hi t),
avec s et t e Z.

Comme 4 — — 2 (1 + z)2 f, on voit que, dans les deux cas, on a

- (a + ib) 1 mod (2 + 2z), c'est-à-dire n (P, <f>) - 1 mod (2 + 2/).
Le lemme 6 est démontré. On a déjà dit que cela achevait de prouver la
proposition 3.

3) Conclusion :

Compte tenu de la proposition 3, la formule (6) devient:

N'a p - 1 + ^ (D) (-2) + P (D) (-2);
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avec l'identification signalée au début,

"Mi)«et f<ß)=(iV
Donc:

Tenant compte du point à l'infini et de la proposition 1, on trouve
donc enfin:

Proposition 4: Dans le cas p 1 (mod 4), on a

*_,+ 1-a(£)4- ;(£),
La conjonction des propositions 2 et 4 démontre le théorème 1.
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