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TABLE DES 2-RANG, 4-RANG ET 8-RANG DU 2-GROUPE

DES CLASSES D'IDEAUX AU SENS RESTREINT DE Q (\/;Q
m ETANT UN ENTIER RELATIF SANS FACTEUR CARRE
TEL QUE 1 < |m| < 10000

par Lyliane BOUVIER

Cette table a été établie en utilisant les méthodes de détermination du 4-

~ rang et du 8-rang du 2-groupe des classes au sens restreint d’une extension
quadratique de Q exposées par L. Redei et H. Reichardt dans [3], [4],
[5] et [6], méthodes dont je résume ci-dessous les étapes essentielles. Les
calculs numériques ont été effectués par I’'ordinateur IBM 40-65 de Grenoble.

Soit m un entier relatif sans facteur carré, on note k I’extension Q (\/—n;)
de Q et D son discriminant. Soit J# le sous-groupe du groupe des classes
d’idéaux au sens restreint engendré par les éléments dont I'ordre est une
puissance de 2, # est encore appelé le 2-groupe des classes d’idéaux au
sens restreint. On appelle 2"-rang de # — on le désigne par R, — la dimen-
sion du Z/2Z-espace vectoriel # 2"~ 1/ *" — cf. [1]—, c’est aussi le nombre
de composantes d’ordre supérieur ou égal a 2" qui interviennent dans une
décomposition de # en produit direct de sous-groupes cycliques. On
' remarque alors que le nombre de sous-groupes d’ordre 2 de ## qui sont

contenus dans un sous-groupe cyclique d’ordre > 2" de S, est égal a
2R» — 1. Par suite, # étant isomorphe & son groupe dual, on montre que
le nombre d’extensions quadratiques non ramifiées de k£ qui sont contenues
- dans une extension non ramifiée cyclique de degré 2" de k est égal a 2Rn 1.
- Clest en déterminant ce nombre pour n = 2 et n = 3 que 'on déterminera
le 4-rang et le 8-rang de 7.
~ L’ensemble des extensions quadratiques non ramifiées de k est ’ensemble

- des extensions Q (\/ Dy, \/E) ou D, et D, sont des nombres discriminants
- d’extensions quadratiques de Q (i.e.: D; =1 (mod 4) ou D; = 8 (mod 16)

ou D; = 12 (mod 16) pour i = 1, 2) tels que D;D, = D et que D; # 1
‘pour i =1, 2.

4 Définition 1: On appelle D- décompos‘ition un couple (D,, D,) d’entiers
- relatifs tels que D; et D, soient des nombres discriminants d’extensions
; quadrathues de Q et que D, D, = D,
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En identifiant les couples (D,, D,) et (D,, D,), on voit que le nombre
de D-décompositions est égal a 28!, La D-décomposition (1, D) est appelée
D-décomposition triviale.

Définition 2 : Une D-décomposition (D, D,) non triviale est appelée
D-décomposition de n-ieme espéce (n entier > 1) si et seulement si

Q (\/D—l, \/ D,) est contenue dans une extension non ramifiée cyclique de
degré 2" de k.

Par convention, la D-décomposition (1, D) est considérée comme une
D-décomposition de n-ieéme espéce, quel que soit » > 1. On voit alors que
le nombre de D-décomposition de n-iéme espéce est égal a 2%,

Pour déterminer R, (resp. R;) il suffit donc de dénombrer les D-dé-
compositions de 2¢-espéce (resp. 3¢-espéce). Pour cela nous allons utiliser
la propriété caractéristique suivante démontrée par H. Reichardt dans [6].

Définition 2': Soit n un entier naturel > 1, une D-décomposition non
triviale (D, D,) est une D-décomposition de n-iéme espece si et seulement si

Q /Dy, \/ D—Z) est contenue dans une extension non ramifiée cyclique de
degré 2"~ ! de k, dans laquelle tout idéal premier de k divisant D est totalement
décomposé.

Dans le cas n = 2, nous obtenons en corollaire la proposition suivante:

Proposition 1: Une D-décomposition non triviale (D;, D,) est une

D
D-décomposition de 2e-espéce si et seulement si <—£> = + 1 quel que soit g
q

D
premier divisant D, et (—3> = + 1 quel que soit g premier divisant D,
q

(Ie symbole (—) désignant le symbole de Legendre-Jacobi-Kronecker).

Or si (D4, D,) est une D-décomposition de 2¢-espéce non triviale, il
existe des entiers relatifs non nuls x, y et z tels que x, yD, et zD, soient
premiers entre eux deux & deux, que y soit pair et que x* = y?D, + Z*D,
(si D est pair, y étant pair, D, est I’élément pair du couple (D, D,)). En
choisissant les signes de x et de y tels que

x + y = 1 (mod 4) si D est impair
et
x = 1 (mod 4) si D est pair,
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on peut alors montrer la proposition suivante, démontrée par L. Redei
dans [4]:

(N.B.: les conditions ci-dessus vérifiées par x, y et z seront désignees
| par la suite par conditions (1)).

: Proposition 2 : Une D-décomposition de 2¢-espéce (D4, D,) non triviale
g st une D-décomposition de 3e-espéce si et seulement si il existe une D-
B décomposition & = (E,, E,) telle que

si D =1 (mod4) ouD =8 (mod 16)

2x & x&
= +1 et — )= +1
q> q1

si D = 12 (mod 16)
‘ 2x & &
i (x >=+1,(x——>=+1 pour g #2
8 q2 d1

+2y)&
2
a kb

3 a&
ol g; parcourt les diviseurs premiers de Di (i=1, 2) avec (~—~> = (—>

% q
‘ aE
ii <resp. <____2>> Si q diViSe E2 (resp' El)'

q

: Une méthode pour évaluer R, et R; consiste donc a déterminer I’en-
semble des D-décompositions, puis parmi celles-ci I’ensemble des D-
;g décompositions de 2¢-espece et enfin, parmi ces derniéres celles qui sont de
% 3e-espece.
*/  Mais on peut aussi procéder de fagon plus « mécanique » — cf. [3]
iet [4] —:

¥ Soit ¢ le nombre de diviseurs premiers de D que 'on désigne par
# P, (1=1,2,..,¢) avec, si D est pair, P, = 2. On sait que R; =t — 1.

P;—-1

Notons P; = (—1) * P; pour tout ie{1,2,..,1} tel que P; # 2.

a. Considérons la matrice M, suivante
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C’est une matrice a ¢t — 1 colonnes et ¢ lignes dont les éléments sont
égaux a + 1 ou — 1. On dit que la i-€éme colonne (i=1, ..., t—1) « ap:
tient & P, », avecd = P1°' P3%% ... Pif Y oules e, (i=1, ..., t—1) soni - .
tous nuls et appartiennent a Z/2Z, on appelle « produit des colonnes aipar-
tenanta d» la colonne de ¢ lignes dont I’élément de la j-éme ligne (j=1, 2, ..., ¢)
est égal au produit des éléments de la j-¢me ligne des colonnes appartenant
aux P; (i=1, 2, ..., t—1) qui divisent d. On appelle aussi « colonne unité »,
la colonne de ¢ lignes dont tous les éléments sont égaux a + 1.

On voit alors que la D-décomposition non triviale (D;, D,) est une
D-décomposition de 2¢-espéce si et seulement si le produit des colonnes
appartenant a D; (ou a D, si P, divise D,) est la colonne unité. En consé-
quence:

Proposition 1' : 2% est égal au nombre d’éléments (e, €5, ..., &,_,) de
(Z/2Z) ! tels que le produit des colonnes appartenant @ d = P{"' P5°% ...

* - . r \ . 14 » .

P72 soit égal a la colonne unité, en associant, par convention, la colonne
o * * *

unité a d = P°P° ... P;°,.

b. Soient (D,, D,) une D-décomposition de 2¢-espéce non triviale et
x, y et z des entiers relatifs vérifiant les conditions (1). Considérons la
matrice M, (x) suivante:
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D/P} P,
( P, ) (E)

(7)) (&)
M = |

7)) ()

ey

29 ()

[ /2x\
<——> si P, divise D,
P

i

a X : s .
— ] =1 siP;divise Dyeti # ¢
P, P;

- 2 i
(l - y) si D = 12 (mod 16), (ic—> sinon.
[\ P d:

- En utilisant les mémes conventions que précédemment et en désignant la
“ derniére colonne de M, (x) par «la colonne appartenant a P, », on obtient
. la proposition suivante:

Proposition 2' : La D-décomposition de 2¢-espéce non triviale (D4, D,) est

r ., \ . . . * *
. une D-décomposition de 3¢-espéce si et seulement si il existe d = P° Lplez...

P2 avec (e, €4, ..., &) appartenant a (Z2Z) ™1 tel que le produit des
| colonnes appartenant a d.p, soit la colonne unité.

SR L e

: Le programme employé pour déterminer R, et R; a été établi en uti-
lisant les propositions 1’ et 2’ et écrit en Algol 60.

L’entier m > 0 étant sans facteur carré, on détermine successivement
le 4-rang fiz et le 8-rang ]~{3 correspondant a k = Q (\/——m), puis le
4-rang R, et le 8-rang R, correspondanta k = Q (\/ %). Ceci non seulement
pour utiliser le fait que les éléments des tableaux M3 et M, sont presque tous

identiques mais aussi pour tenir compte de I'inégalité R, > R, démontrée
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par P. Domey et J. J. Payan — cf. [2] —, et qui permet de simplifier le
programme.

Schéma du programme :

1. Introduction de m > 0 dans la machine.
2. Test pour savoir si m est sans facteur carré.
3. Détermination des facteurs premiers de m.
4. a. Remplissage du tableau M7.
b. Recherche des quantités D, qui correspondent & des produits de

colonnes égaux a la colonne unité et détermination de R, (si R, = 0,

~

alors R; = R, = R; = 0).
c. Avec chacune des quantités D,:
1. Recherche d’une solution dX? = Y*D, + Z?D, vérifiant les
conditions (1).
Remplissage de M7 (x).
3. Test pour savoir si (Dy, D,) est une D-décomposition de 3e-espéce
et détermination de 1~{3.
5. a. Modification de M3 pour obtenir M,.
b. Cf. 4.b.
Cf. 4.c.

Pour déterminer une solution de Iéquation X2 = Y?D, + Z*D,,
on se raméne d’abord & résoudre I’équation équivalente du type aa? = bB>
+ c¢y? ou a, b et ¢ sont des entiers strictement positifs. On fait ensuite
calculer une solution en entiers a, f et y de I’équation aa? = bp? + cy?
en programmant des essais méthodiques, dans l'ordre croissant, pour
Ientier «, puis, « étant fixé, pour 'entier f: on prend pour valeur initiale

) _ b+ c .
de « la partie entiére de et, pour une valeur de « fixée, on fait balayer
a
an* — ¢
par f les valeurs comprises entre 1 et \/ —b———; on itére le procédé jusqu’a

ce que I’on obtienne une solution.
Bien que les calculs aient été faits & la machine pour 1 < | m [ < 10 000,
nous ne donnons ici qu'un extrait des tables ainsi obtenues !). Cet extrait

1) Un exemplaire roneotypé complet de ces tables peut étre obtenu a I'Institut de
mathématiques pures, Boite postale 116, 38 — Saint-Martin d’Heres, France.
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correspond a 4600 < lm | < 5200, cette tranche de nombres est telle que

’on trouve la plupart des valeurs obtenues pour (R, R,, R3)et(R,, R,, ﬁ3)

“lorsque | m | varie de 1 & 10 000.

On peut noter cependant que, pour les valeurs de Iml inférieures a

10 000, deux extensions seulement ont un 8-rang du 2-groupe des classes

‘d’idéaux au sens restreint strictement supérieur a 1; il s’agit de Q (\/ -6497)
et Q (1 /-7966), pour lesquelles 723 est égal a 2.

| [ m R1 Re Rj m Ri Rs R3 m Ry Rs R3 m Ri Ro Rj3
|
l 4607 2 1 1 | 4767 3 1 0 | 4899 3 1 1 | 5066 2 1 0
4614 2 1 O | 4777 1 1 O | 492 3 1 0 | 5069 1 1 0
4633 1 1 0 | 4786 1 1 0 | 4930 3 1 0 | 5105 1 1 1
L4645 1 1 0 | 487 3 1 1 | 4939 2 1 O | 5109 2 1 0
4658 2 2 0 | 4810 3 2 0 | 4946 1 1 O | 5134 2 1 0
4669 2 1 1 | 4827 2 1 0 | 4953 2 1 O | 5135 3 1 0
| 4674 3 1 0 | 4830 4 1 0 | 4971 2 1 1 | 5138 2 1 0
4705 1 1 1 | 4834 1 1 0 | 4981 1 1 1 | 5141 1 1 0
4711 2 1 0 | 4838 2 1 0 | 5002 2 1 1 | 5181 2 1 0
| 4715 3 1 0 | 4849 1 1 0 | 5017 1 1 O | 5183 2 1 1
4717 1 1 0 | 4882 1 1 0 | 5026 2 1 0 | 518 1 1 1
4718 2 1 0 | 4890 3 1 0 | 5037 2 1 O | 5190 3 1 0
4738 2 1 1 | 4891 2 1 0 | 5042 1 1 O
4754 1 1 0 | 4895 3 1 O | 5045 1 1 0

4763 2 1 0 | 488 2 1 0 | 5057 1 1 0

On peut aussi remarquer que, alors que la différence R, — R, est

toujours positive ou nulle — cf. [2] —, il n’en est pas de méme pour R 3 — Rj
par exemple pour Q (\/ -4705) et Q (/4705), Ry — Ry = — 1.

TaBLEAU I: R, R,, R, pour Q (\/;n_).
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TABLEAU I1: ﬁl, 1;2, 133 pour Q (n/—m).

m ‘El Eg 53 m E1 ;?,2 E;; m El EQ 1?3 m 51 §2 E3
4602 3 1 1 4754 1 1 0 4899 2 1 1 | 5069 2 1 O
4605 3 1 1 4763 1 1 0 4902 3 1 1 5073 3 1 O
4607 1 1 1 4766 1 1 1 4907 1 1 0 504 2 1 O
4613 2 1 0 4767 2 1 1 4917 3 1 O 509 1 1 1
4614 2 1 O 4771 1 1 0 4921 3 1 O 5081 1 1 O
4619 1 1 0 4777 2 2 1 4930 3 1 1 5083 2 1 O
4622 1 1 O 4781 2 1 1 4935 3 1 O 5086 1 1 1
4631 1 1 O 4786 1 1 1 4937 1 1 O 5089 2 1 1
4633 2 2 1 4790 2 1 1 4939 1 1 1 5095 1 1 1
4634 2 1 O 4791 1 1 O 4942 2 1 O 5102 1 1 1
4641 4 1 1 4793 1 1 1 4946 1 1 1 5105 2 1 O
4642 2 1 O 4794 3 1 1 4953 3 1 1 5106 3 1 O
4645 2 1 1 4798 1 1 1 4955 1 1 O 5109 3 1 1
4646 2 1 O 4801 1 1 1 4962 2 1 1 5113 1 1 0
4647 1 1 1 4807 2 1 0 493 1 1 O 5115 3 1 0
4649 1 1 1 4810 3 2 0 4965 3 1 0 5117 3 1 1
4657 1 1 1 4817 1 1 1 4966 2 1 0 5129 2 1 O
4658 2 2 1 4818 3 1 1 4969 1 1 1 5134 2 2 1
4665 3 1 O 4821 2 1 0 4971 1 1 1 5135 2 1 O
4669 3 1 1 4823 2 1 1 4978 2 1 O 51384 2 1 1
4673 1 1 O 4826 2 1 O 4981 2 1 1 5141 2 1 O
4674 3 1 O 4827 1 1 O 4982 2 1 O 5143 1 1 1
4677 2 1 O 4829 2 1 O 4985 2 1 O 5153 ' 1 1 0
4681 2 1 1 4830 4 1 O 4993 1 1 1 5154 2 1 O
4683 2 1 1 4834 1 1 O 4994 2 1 1 515 1 1 O
4687 1 1 1 4838 2 1 O 5002 2 1 1 5159 2 1 O
46900 3 1 1 4841 2 1 1 5006 4 1 0 5161 2 1 O
4699 1 1 O 4843 1 1 1 5006 1 1 O 5173 2 1 0
4702 1 1 1 4845 4 1 O 5007 1 1 0 5174 2 1 0
4705 2 1 O 4846 1 1 O 5009 1 1 0 5177 2 1 0
4710 3 1 1 48349 2 1 1 5010 3 1 O 5178 2 1 1
4711 1 1 0 4853 2 1 1 5015 2 1 O 5181 3 1 O
4715 2 1 0 4855 1 1 O 5017 2 1 1 5182 1 1 1
4717 2 1 O 4858 2 1 O 50266 2 1 O 5183 1 1 1
4718 2 2 1 483 1 1 O 5033 2 1 O 5185 3 1 1
4721 1 1 1 4866 2 1 0 5034 2 1 O 5186 1 1 1
4722 2 1 O 4867 1 1 1 5037 3 2 O 5187 3 1 0
4729 1 1 1 4882 1 1 1 5042 1 1 O 5190 3 2 1
4730 3 1 O 4889 1 1 1 5045 2 1 O 5191 1 1 1
4738 2 1 1 4890 3 1 1 5053 2 1 O 5195 1 1 1
4741 2 1 O 4891 1 1 O 5057 2 1 1 5198 2 1 O
4745 3 1 O 4894 1 1 1 5063 1 1 O
4747 1 1 1 4895 2 2 1 5065 2 1 O
4749 2 1 1 4898 2 1 O 5066 2 1 O
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| N.B.: Dans le tableau I ne sont pas mentionnées les valeurs de m telles que, pour Q (\/ m—),

R, = 0. De méme, les valeurs de m telles que, pour Q (y/ -m), f(z = (0 ne sont pas
mentionnées dans le tableau II.
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