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TABLE DES 2-RANG, 4-RANG ET 8-RANG DU 2-GROUPE

;
DES CLASSES D'IDÉAUX AU SENS RESTREINT DE Q (y/m)

m ÉTANT UN ENTIER RELATIF SANS FACTEUR CARRÉ

TEL QUE 1 < | m | < 10 000

par Lyliane Bouvier

Cette table a été établie en utilisant les méthodes de détermination du 4-

rang et du 8-rang du 2-groupe des classes au sens restreint d'une extension

l quadratique de Q exposées par L. Redei et H. Reichardt dans [3], [4],

[5] et [6], méthodes dont je résume ci-dessous les étapes essentielles. Les

calculs numériques ont été effectués par l'ordinateur IBM 40-65 de Grenoble.

Soit m un entier relatif sans facteur carré, on note k l'extension Q (*Jm)
de Q et D son discriminant. Soit le sous-groupe du groupe des classes

d'idéaux au sens restreint engendré par les éléments dont l'ordre est une

puissance de 2, est encore appelé le 2-groupe des classes d'idéaux au

sens restreint. On appelle 2"-rang de Jéd — on le désigne par Rn — la dimension

du Z/2Z-espace vectoriel Jf2"" 1\ffl2n — cf. [1] —, c'est aussi le nombre
de composantes d'ordre supérieur ou égal à 2" qui interviennent dans une
décomposition de en produit direct de sous-groupes cycliques. On

remarque alors que le nombre de sous-groupes d'ordre 2 de qui sont
contenus dans un sous-groupe cyclique d'ordre > 2" de est égal à

2Rn — 1. Par suite, étant isomorphe à son groupe dual, on montre que
le nombre d'extensions quadratiques non ramifiées de k qui sont contenues
dans une extension non ramifiée cyclique de degré T de k est égal à 2Rn — L
C'est en déterminant ce nombre pour n 2 et n 3 que l'on déterminera
le 4-rang et le 8-rang de

L'ensemble des extensions quadratiques non ramifiées de k est l'ensemble
des extensions Q (^/Du ^/d^) où D1 et D2 sont des nombres discriminants
d'extensions quadratiques de Q (i.e.: Dt 1 (mod 4) ou Dt ta 8 (mod 16)
ou Dt ~ 12 (mod 16) pour i 1, 2) tels que D1D1 D et que Dt ^ 1

pour z 1,2.

Définition 1 : On appelle D-décomposition un couple (£>L, D2) d'entiers
.;j relatifs tels que et D2 soient des nombres discriminants d'extensions
: quadratiques de Q et que DXD2 D,
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En identifiant les couples (D1? D2) et (D2, Dx), on voit que le nombre
de D-décompositions est égal à 2R1. La D-décomposition (1, D) est appelée

D-décomposition triviale.

Définition 2: Une D-décomposition (D1? D2) non triviale est appelée

D-décomposition de n-ième espèce (n entier >1) si et seulement si

Q (\/^ï> \/Di) est contenue dans une extension non ramifiée cyclique de

degré 2n de k.
Par convention, la D-décomposition (1, D) est considérée comme une

D-décomposition de n-ième espèce, quel que soit n > 1. On voit alors que
le nombre de D-décomposition de n-ième espèce est égal à 2Rn.

Pour déterminer R2 (resp. R3) il suffit donc de dénombrer les

Decompositions de 2e-espèce (resp. 3e-espèce). Pour cela nous allons utiliser
la propriété caractéristique suivante démontrée par H. Reichardt dans [6].

Définition 2' : Soit n un entier naturel > 1, une D-décomposition non
triviale (D1? D2) est une D-décomposition de n-ième espèce si et seulement si

2) est contenue dans une extension non ramifiée cyclique de

degré 2n~ 1 de k, dans laquelle tout idéalpremier de k divisant D est totalement

décomposé.

Dans le cas n 2, nous obtenons en corollaire la proposition suivante :

Proposition 1 : Une D-décomposition non triviale (Dl9 D2) est une

fD i\D-décomposition de 2e-espèce si et seulement si — + 1 quel que soit q\<l/
(D2\

premier divisant D2 et — -|- 1 quel que soit q premier divisant D1
V 4 J

(le symbole (—) désignant le symbole de Legendre-Jacobi-Kronecker).
Or si (Dl5 D2) est une D-décomposition de 2e-espèce non triviale, il

existe des entiers relatifs non nuls x, y et z tels que x, jD1 et zD2 soient

premiers entre eux deux à deux, que y soit pair et que x2 — y2D1 + Z2D2
(si D est pair, y étant pair, Dx est l'élément pair du couple (D1? D2)). En
choisissant les signes de x et de y tels que

x + y 1 (mod 4) si D est impair

et

x 1 (mod 4) si D est pair,
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on peut alors montrer la proposition suivante, démontrée par L. Redei

dans [4]:

(N.B.: les conditions ci-dessus vérifiées par x, et z seront désignées

par la suite par conditions (1)).

Proposition 2 : Une D-décomposition de 2e-espèce (Du D2) non triviale

est une Z>-décomposition de 3e-espèce si et seulement si il existe une

décomposition S (Et, E2) telle que

si D1 (mod 4) ou D8 (mod 16)

2x(xê\— + 1 et — + 1

<?2 J

si Ds 12 (mod 16)

2x tg\ X
<û\

+ 1 — +1 pour x # 2
«2 / i

et + 1

(aê\ faEl
où qt parcourt les diviseurs premiers de Di (/ 1, 2) avec —\qj \q

resp. ^si q divise E2 (resp. E^).

Une méthode pour évaluer R2 et R3 consiste donc à déterminer l'en-
i semble des ^-décompositions, puis parmi celles-ci l'ensemble des D-

J décompositions de 2e-espèce et enfin, parmi ces dernières celles qui sont de
*tj 3e-espèce.

«j Mais on peut aussi procéder de façon plus « mécanique » — cf. [3]
1

et [4] —:

Soit t le nombre de diviseurs premiers de D que l'on désigne par
Pi(i= 1, 2, t) avec, si D est pair, Pt — 2. On sait que R1 t — l.

Pi-1
Notons P* (— 1)

2 Pt pour tout ie{ 1, 2, t} tel que Pt ^ 2.

a. Considérons la matrice Mk suivante
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C'est une matrice ht — 1 colonnes et t lignes dont les éléments sont
égaux à -f 1 ou — 1. On dit que la i-ème colonne (z= 1, t— 1) « ap;
tient à Pt », avec d P*£l P*2s2 P*-1"1 où les (/= 1, t— 1) sont • .i
tous nuls et appartiennent à Z/2Z, on appelle « produit des colonnes appartenant

à d» la colonne de t lignes dont l'élément de la j-ème ligne (j 1,2,..t)
est égal au produit des éléments de la j-ème ligne des colonnes appartenant
aux Pt (i= 1, 2, t— 1) qui divisent d. On appelle aussi « colonne unité »,
la colonne de t lignes dont tous les éléments sont égaux à + 1.

On voit alors que la Z>-décomposition non triviale (Du D2) est une
Z)-décomposition de 2e-espèce si et seulement si le produit des colonnes

appartenant à D1 (ou à D2 si Pt divise Dx) est la colonne unité. En
conséquence :

Proposition 1' : 2R2 est égal au nombre d'éléments (el5 e2, £t~i) de

(.Z/2Z)t-1 tels que le produit des colonnes appartenant à d P\El P*2s2

P*1 \~1 soit égal à la colonne unité, en associant, par convention, la colonne
unité à d P]°P*2° P*-t>

b. Soient (Z>l5 D2) une D-décomposition de 2e-espèce non triviale et

x, y et z des entiers relatifs vérifiant les conditions (1). Considérons la
matrice Mk (x) suivante :



— 41 —

Mk(x)

DIP]t

Pi

Pi
Pi

Pi
Pi

D/P"2

PU i\ f a
s

Pl VL
pU\ (a,pj \P2.

Pi
P,

PU.

] C'est une matrice à tlignes et t colonnes telle que, si D est impair, Pt divise

f\ Dx et où

Pi

x 4- 2y
~Pt

si Pi divise D2

si Pt divise D1 et i ^ t

si D 12 (mod 16), — sinon.

En utilisant les mêmes conventions que précédemment et en désignant la

dernière colonne de Mk (x) par « la colonne appartenant à Pt », on obtient
la proposition suivante:

Proposition 2' : La D-décomposition de 2e-espèce non triviale (D1? D2) est

une D-décomposition de 3e-espèce si et seulement si il existe d P\e P*2 2

Pï-i1 avec (s1? £2? •••? ^t-i) appartenant à (Z/2Z/-1 tel que le produit des

colonnes appartenant à d.pt soit la colonne unité.

Le programme employé pour déterminer R2 et i?3 a été établi en
utilisant les propositions 1' et T et écrit en Algol 60.

L'entier m > 0 étant sans facteur carré, on détermine successivement

le 4-rang R2 et le 8-rang R3 correspondant à k Q (->/ — m), puis le

I 4-rang R2 et le 8-rang R3 correspondant à k Q (sjm). Ceci non seulement

pour utiliser le fait que les éléments des tableaux Ml et Mk sont presque tous

identiques mais aussi pour tenir compte de l'inégalité R2 > R2 démontrée
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par P. Domey et J. J. Payan — cf. [2] —, et qui permet de simplifier le

programme.

Schéma du programme :

1. Introduction de m > 0 dans la machine.

2. Test pour savoir si m est sans facteur carré.

3. Détermination des facteurs premiers de m.

4. a. Remplissage du tableau M%.

b. Recherche des quantités D2 qui correspondent à des produits de

colonnes égaux à la colonne unité et détermination de R2 (si R2 — 0,

alors R3 R2 R3 0).

c. Avec chacune des quantités D2 :

1. Recherche d'une solution dX2 Y2D1 + Z2D2 vérifiant les

conditions (1).

2. Remplissage de Ml (x).

3. Test pour savoir si (Z)1? D2) est une D-décomposition de 3e-espèce

et détermination de R3.

5. a. Modification de Ml pour obtenir Mk.

b. Cf. 4.b.

c. Cf. 4.c.

Pour déterminer une solution de l'équation X2 Y2D1 + Z2D2,
on se ramène d'abord à résoudre l'équation équivalente du type aoc2 bß2

+ cy2 où a, b et c sont des entiers strictement positifs. On fait ensuite

calculer une solution en entiers a, ß et y de l'équation aa2 bß2 + cy2

en programmant des essais méthodiques, dans l'ordre croissant, pour
l'entier oc, puis, a étant fixé, pour l'entier ß : on prend pour valeur initiale

b + c
de a la partie entière de et, pour une valeur de a fixée, on fait balayer

a

laoc2 — c
par ß les valeurs comprises entre 1 et / ; on itère le procédé jusqu'à

v
ce que l'on obtienne une solution.

Bien que les calculs aient été faits à la machine pour 1 < | m | < 10 000,

nous ne donnons ici qu'un extrait des tables ainsi obtenues1). Cet extrait

0 Un exemplaire ronéotypé complet de ces tables peut être obtenu à l'Institut de
mathématiques pures, Boîte postale 116, 38 — Saint-Martin d'Hères, France.
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J; correspond à 4600 < | m | < 5200, cette tranche de nombres est telle que

j l'on trouve la plupart des valeurs obtenues pour (Ru R2, R3) et (Ru R2, ^3)
lorsque | m | varie de 1 à 10 000.

On peut noter cependant que, pour les valeurs de | m | inférieures à

10 000, deux extensions seulement ont un 8-rang du 2-groupe des classes

d'idéaux au sens restreint strictement supérieur à 1 ; il s'agit de Q -6491)

et Q (^-7966), pour lesquelles R3 est égal à 2.

On peut aussi remarquer que, alors que la différence R2 — R2 est

toujours positive ou nulle — cf. [2] —, il n'en est pas de même pour R3 — R3

par exemple pour Q G/-4705) et Q (J4705), R3 — R3 — 1.

Tableau I: Rl9 R2, pour Q (-y/m

1

m
\

Ri R2 Ru m Ri R2 *3 m Ri Ri RÔ
i

m Ri Rz Rs

4607 2 1 1 4767 3 1 0 4899 3 1 1 5066 2 1 0
4614 2 1 0 4777 1 1 0 4902 3 1 0 5069 1 1 0
4633 1 1 0 4786 1 1 0 4930 3 1 0 5105 1 1 1

i 4645 1 1 0 4807 3 1 1 4939 2 1 0 5109 2 1 0
1 4658 2 2 0 4810 3 2 0 4946 1 1 0 5134 2 1 0

4669 2 1 1 4827 2 1 0 4953 2 1 0 5135 3 1 0
4674 3 1 0 4830 4 1 0 4971 2 1 1 5138 2 1 0
4705 1 1 1 4834 1 1 0 4981 1 1 1 5141 1 1 0
4711 2 1 0 4838 2 1 0 5002 2 1 1 5181 2 1 0
4715 3 1 0 4849 1 1 0 5017 1 1 0 5183 2 1 1

4717 1 1 0 4882 1 1 0 5026 2 1 0 5186 1 1 1

4718 2 1 0 4890 3 1 0 5037 2 1 0 5190 3 1 0
4738 2 1 1 4891 2 1 0 5042 1 1 0
4754 1 1 0 4895 3 1 0 5045 1 1 0
4763 2 1 0 4898 2 1 0 5057 1 1 0

i
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Tableau II: Rt, R2,R3 pour Q(

m Ri i?2 *3 m Rt R'2 *3 m Ri R2 Rs m Ri Rz R%

4602 3 1 1 4754 1 1 0 4899 2 1 1 5069 2 1 0
4605 3 1 1 4763 1 1 0 4902 3 1 1 5073 3 1 0
4607 1 1 1 4766 1 1 1 4907 1 1 0 5074 2 1 0
4613 2 1 0 4767 2 1 1 4917 3 1 0 5079 1 1 1

4614 2 1 0 4771 1 1 0 4921 3 1 0 5081 1 1 0
4619 1 1 0 4777 2 2 1 4930 3 1 1 5083 2 1 0
4622 1 1 0 4781 2 1 1 4935 3 1 0 5086 1 1 1

4631 1 1 0 4786 1 1 1 4937 1 1 0 5089 2 1 1

4633 2 2 1 4790 2 1 1 4939 1 1 1 5095 1 1 1

4634 2 1 0 4791 1 1 0 4942 2 1 0 5102 1 1 1

4641 4 1 1 4793 1 1 1 4946 1 1 1 5105 2 1 0
4642 2 1 0 4794 3 1 1 4953 3 1 1 5106 3 1 0
4645 2 1 1 4798 1 1 1 4955 1 1 0 5109 3 1 1

4646 2 1 0 4801 1 1 1 4962 2 1 1 5113 1 1 0
4647 1 1 1 4807 2 1 0 4963 1 1 0 5115 3 1 0
4649 1 1 1 4810 3 2 0 4965 3 1 0 5117 3 1 1

4657 1 1 1 4817 1 1 1 4966 2 1 0 5129 2 1 0
4658 2 2 1 4818 3 1 1 4969 1 1 1 5134 2 2 1

4665 3 1 0 4821 2 1 0 4971 1 1 1 5135 2 1 0
4669 3 1 1 4823 2 1 1 4978 2 1 0 5138 2 1 1

4673 1 1 0 4826 2 1 0 4981 2 1 1 5141 2 1 0
4674 3 1 0 4827 1 1 0 4982 2 1 0 5143 1 1 1

4677 2 1 0 4829 2 1 0 4985 2 1 0 5153 1 1 0
4681 2 1 1 4830 4 1 0 4993 1 1 1 5154 2 1 0
4683 2 1 1 4834 1 1 0 4994 2 1 1 5155 1 1 0
4687 1 1 1 4838 2 1 0 5002 2 1 1 5159 2 1 0
4690 3 1 1 4841 2 1 1 5005 4 1 0 5161 2 1 0
4699 1 1 0 4843 1 1 1 5006 1 1 0 5173 2 1 0
4702 1 1 1 4845 4 1 0 5007 1 1 0 5174 2 1 0
4705 2 1 0 4846 1 1 0 5009 1 1 0 5177 2 1 0
4710 3 1 1 4849 2 1 1 5010 3 1 0 5178 2 1 1

4711 1 1 0 4853 2 1 1 5015 2 1 0 5181 3 1 0
4715 2 1 0 4855 1 1 0 5017 2 1 1 5182 1 1 1

4717 2 1 0 4858 2 1 0 5026 2 1 0 5183 1 1 1

4718 2 2 1 4863 1 1 0 5033 2 1 0 5185 3 1 1

4721 1 1 1 4866 2 1 0 5034 2 1 0 5186 1 1 1

4722 2 1 0 4867 1 1 1 5037 3 2 0 5187 3 1 0
4729 1 1 1 4882 1 1 1 5042 1 1 0 5190 3 2 1

4730 3 1 0 4889 1 1 1 5045 2 1 0 5191 1 1 1

4738 2 1 1 4890 3 1 1 5053 2 1 0 5195 1 1 1

4741 2 1 0 4891 1 1 0 5057 2 1 1 5198 2 1 0
4745 3 1 0 4894 1 1 1 5063 1 1 0
4747 1 1 1 4895 2 2 1 5065 2 1 0

4749 2 1 1 4898 2 1 0 5066 2 1 0
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N.B. : Dans le tableau I ne sont pas mentionnées les valeurs de m telles que, pour Q (y7m),

R2 0. De même, les valeurs de m telles que, pour Q R2 — 0 ne sont pas
mentionnées dans le tableau II.
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