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. r . .
On obtient alors r' = r — I—I b. Réciproquement si a = bg + r avec
}ﬂ

les mémes conditions que ci-dessus pour a, b, ¢, r, on peut écrire

r r r
a =b<q+——>+r———bet r——>b| <b.

|r]

|7 |7

Ceci montre que dans le cas d’une division avec un reste » non nul, il
existe une autre division et une seule avec un reste r’ différent de r.

D’autre part si I’on considére un anneau de polynomes K [X] & une
indéterminée sur un corps commutatif K, application d qui a tout poly-
nome non nul associe son degré est un stathme qui fait de K [X] un anneau
Euclidien.

Il est connu que dans ce type d’anneaux le quotient et le reste d’une
division sont uniques.

On peut donc se poser le probléme de la caractérisation des couples
(4, @) formés d’un anneau Euclidien et de son stathme, pour lesquels il
y a unicité du quotient et du reste dans toute division. Ce probléme est
résolu dans la partie I.

Dans la partie II, on caractérise les couples (4, @) Euclidiens tels que ¢
posséde les propriétés formelles de la valeur absolue sur Z.

I. CARACTERISATION DES ANNEAUX EUCLIDIENS
POUR LESQUELS IL Y A UNICITE DE LA DIVISION

Il convient de noter un anneau Euclidien par un couple (4, @), car un
anneau peut €tre Euclidien pour des stathmes différents. On sait, voir par
exemple [4] Ch. I, Par. 15, que dans un anneau Euclidien (4, ¢) deux élé-
ments a et b de A sont associés si et seulement si ¢ (a) = ¢ (b) et a | b.
Il en résulte que u est un élément inversible de 4 (ou unité) si et seule-
ment si @ (u) = ¢ (1). L’ensemble des unités de A sera noté par U (4).

DErFINITION 1: On dira que pour un anneau Euclidien il y a unicité de
la division si le couple (g, r) dont la définition de I'introduction assure
I’existence est unique.

ProrosiTION 1: 11 y a unicité de la division pour (4, ¢) si et seulement
si: pour tout couple (a, b) d’éléments de A* tels que a# b on a

@ (@ — b) < Sup (¢ (@), ¢ (b)).
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Supposons qu’il y ait unicité, et soient a et b des éléments distincts de
A*. Sia—b= — a alors ¢ (a— b) = ¢ (a) et dans ce cas ¢ (a — b)
< Sup (¢ (a), ¢ (b)). Si 2a — b est différent de 0, on peut écrire:

2a —b =(a—-b)-1+a
2a —b =(a—b)-2 + b

L’hypothése ¢ (@) < ¢ (@ — b) et ¢ (b) < ¢ (¢ — b) entraine alors
a = b, par unicité de la division, ce qui est absurde. D’ou: ¢ (a — b)
< Sup (¢ (@), ¢ (D).

La réciproque est bien connue, sa démonstration pouvant se calquer
sur celle qui prouve I'unicité de la division dans un anneau de polynomes.

PROPOSITION 2: Soit (4, ¢) un anneau Euclidien pour lequel il y a uni-
cité de la division. Alors 4 contient un sous corps K constitu¢ par les
unités de A et 0.

11 suffit de prouver que K est un sous groupe additif de 4. Soient ¢ et ¢
des éléments de K distincts et non nuls. La suite d’inégalités: ¢ (1) < ¢ (e—¢')
< Sup (¢ (¢), ¢ (¢)) = @ (1) entraine ¢ — &’ est une unité.

PROPOSITION 3: Soit (4, ) un anneau Euclidien pour lequel il y a
unicité de la division. Si x et y éléments distincts de A* sont tels que
@ (¥) < ¢ (x), alors ¢ (x — y) = @ (x).

La proposition 1 montre déja que ¢ (x — y) < ¢ (x). Supposons que
o (x — ») < o (x), alors 2x — y est différent de 0, car dans le cas contraire
- on aurait ¢ (x — y) égal & ¢ (x). Les relations:

2x —y =x1+(x—y) avec ¢@((x—y) < ¢ (x)
2x —y =x-2+(—y) avec @(—y) <o)

entrainent, par unicité de la divison: 1 = 2. On aurait alors 4 réduit a 0,
ce qui est impossible. Par suite ¢ (x — ) = ¢ (x).

ProprosITION 4: Soit (A4, ¢) un anneau Euclidien pour lequel il y a
unicité de la division. Si 4 n’est pas un corps, il existe un élément x de A*
tel que:

1) Pour tout élément a de A*, il existe un nombre fini d’éléments

€ps ---» & de K, déterminés de fagon unique et tels que a = Y g xh
i=0
2) Si dans Pécriture de a ci-dessus ¢, # 0, alors ¢ (@) = ¢ (x").
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L’ensemble B des éléments a de A* tels que ¢ (@) > ¢ (1) n’est pas
vide. En effet, dans le cas contraire on aurait pour tout élément x de A*
@ (x) = ¢ (1) et A serait un corps. Or ¢ (B) est inclus dans N et par consé-
quent il posséde un plus petit élément ¢ (x).

Soit alors un élément a de A*. Dans le cas ol a appartient a K, I’asser-
tion 1) est démontrée. Si a n’est pas une unité, on peut écrire a = x g, + rq
avec ro = 0 ou ¢ (ry) < ¢ (x). Dans les deux cas r, appartient a K, et
par suite a — r, est différent de 0. De plus ¢ (a — ry) = ¢ (a). Cest clair
st rg = 0.

Sinon on remarque que @ (ry) = 1 < ¢ (a) et alors ¢ (a — ro) = ¢ (a),
d’aprés le résultat de la proposition 3). On en déduit que ¢ (gox) = ¢ (a)
et par suite ¢ (g,) < ¢ (a). Si on avait ¢ (¢y) = ¢ (a), on aurait alors x
appartient & U (A4) puisque ¢ (q5) = @ (gox) dans ce cas. Par conséquent

on a ¢ (qo) < ¢ (a).
En conclusion on peut écrire a = x g, + &, avec g, ¢lément de K et

¢ (q0) < ¢ (a).

Dans ces conditions, si g, appartient a K, ’assertion 1) est démontrée.
Si g, n’appartient pas a K, on est ramené a la situation précédente avec:
go = X q; + & ou g; est élément de K. On démontre de méme que précé-
demment que ¢ (q,) < ¢ (¢o). On construit ainsi, par récurrence, une
suite ¢, ..., g, d’éléments de A* tels que ¢ (q,) < @ (¢,—1) < ... < © (q,)
< ¢ (a) et définis par des relations ¢q; = x¢;+; + &4, OU €4 est un
¢lément de K. La suite d’entiers ¢ (g;) étant strictement décroissante, il
existe un entier n tel que: ¢ (¢,) < ¢ (x) donc tel que g, soit élément de K.
Il suffit alors d’¢liminer les €éléments ¢q; des relations les définissant pour
prouver l’assertion 1). Montrons que la décomposition de a suivant les
puissances de x se fait de fagon unique. Pour cela, on peut remarquer
qu’il suffit de prouver I'indépendance linéaire des puissances de x sur K.
Soit donc une relation g, + &x + ... + ¢, x" = 0 ou les ¢; sont des élé-
ments de K. Si g, est différent de O, la relation ci-dessus entraine que x
est une unité, ce qui est impossible. Par suite g, est égal a 0; simplifiant
alors la relation par x (A4 est intégre), on est ramené a une relation
g + .. +gx""! = 0. On démontre de méme que tous les ¢; sont nuls.

Démontrons maintenant Iassertion 2). Pour tout entier n, x" !
divise x" et ces deux éléments ne sont pas associés, il en résulte que
@ (x""1) < ¢ (x") pour tout entier n. Soit a = gy + g, x + ... + g,x"
ou g, # 0.

Posant ¢ = & + ... + ¢,x"" !, on obtient a = g, + xq. Or xq est
différent de O puisque ¢, # 0, il résulte alors de la proposition 3) que

i s i et ST i ,
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l(p (@) = ¢ (xq) dans le cas ol g, n’est pas nul. Cette égalité est encore
vraie lorsque ¢, = 0.

Mais, de facon analogue, on peut écrire: xg = & x + x*q’ et comme
%ci-dessus on en déduit que ¢ (xq) = ¢ (x*¢’). On démontre, ainsi, par
éQrécurrence, que ¢ (a) = ¢ (g,x") = ¢ (x").

ProprosITION 5: Soit (4, @) un anneau Euclidien pour lequel 1l y a
unicité de la division et tel que 4 ne soit pas un corps. Alors A s’identifie
a un anneau de polynomes K [X] sur un corps et son stathme ¢ a une
fonction de K [XT]* dans N du type w o d, ou w est une fonction stricte-
ment croissante de N dans N et d la fonction degré sur K [X]. Réciproque-
ment (K [X], w 0 d), ou w et d sont définis comme ci-dessus, est un anneau

-~ Euclidien pour lequel il y a unicité de la division.
La partie directe est une interprétation de la proposition 4). La réci-
proque est évidente.

II. CARACTERISATION DES ANNEAUX EUCLIDIENS
DONT LE STATHME POSSEDE LES PROPRIETES DE LA VALEUR ABSOLUE SUR Z

DEFINITION 1: On dira que 'anneau Euclidien (4, ¢) vérifie la propriété
(H) st A n’est pas un corps et si le stathme ¢ vérifie:

1) Pour tout couple d’éléments x et y de A* ¢ (xy) = ¢ (x) ¢ (¥).

2) Pour tout couple d’éléments x et y de A* Iégalité ¢ (x) = ¢ ()
équivaut & x et y sont des éléments associés.

3) Pour tout couple d’éléments x et y de A* tels que x + y # 0
o (x+y) <o)+ o))

j On se propose de prouver que si (4, ¢) vérifie (H), il est alors iso-
~morphe & (Z, | |) en un sens qui sera précisé plus loin.

REMARQUE 1: Un anneau Euclidien dont le stathme est constant est un
~corps. Cette remarque jointe au fait que ¢ (1)*> = ¢ (1) lorsque (4, Q)
vérifie (H '), montre que dans ce cas ¢ (1) = 1. On peut alors prolonger

¢ a A4 en posant ¢ (0) = 0. On pourra donc considérer ¢ comme une
- «norme » sur A.

PROPOSITION 1: Soit (4, ¢) un anneau Euclidien vérifiant (H). D’appli-
~cation canonique de Z dans A4 est une injection.
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