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CARACTERISATION
DE CERTAINS TYPES D’ANNEAUX EUCLIDIENS

par Gabriel PICAVET

On dispose dans I’ensemble N des entiers de la théorie de la division
Euclidienne: pour tout couple (a, b)) d’entiers non nuls, il existe deux
entiers ¢ et r tels que a = bg + r, ou r satisfait 0 <<r < b. On peut de
plus affirmer que les entiers ¢ et r sont déterminés de fagon unique.

Une premiére généralisation consiste a étendre a I’ensemble Z des
entiers rationnels cette opération. On sait que pour tout couple (a, b)
d’éléments non nuls de Z, il existe deux entiers rationnels g et r tels que:
a = bg + r, ou r satisfait < | b !

Plus généralement soit 4 un anneau unifére, et désignons par 4* en-
semble des éléments non nuls de 4. L’anneau A4 sera supposé¢ commutatif
et non réduit a zéro dans toute la suite. Suivant [1] Ch. 7, Par. 1, exercice 7
on a:

Iﬂ

DeriNiTION: Un anneau A est dit Euclidien s’il est intégre et s’il existe
une application ¢ de A* dans N, appelée stathme Euclidien, satisfaisant
aux conditions suivantes:

1) Pour tout couple d’éléments x et y de 4* ¢ (xy) > ¢ (x).

2) Pour tout couple d’éléments a et b de 4A*, il existe des éléments ¢ et r
de 4 tels que a = bg + r ou r satisfait soit r = 0 soit ¢ (r) < ¢ (b).

La condition 1) est évidemment satisfaite pour la fonction valeur
absolue sur Z*. Mais en fait cette condition n’est pas essentielle, de méme
on peut remplacer N dans la définition par un ensemble bien ordonné.
On pourra consulter a cet effet [3]. Nous utiliserons pour la suite la défi-
nition donnée ci-dessus.

Une premicre remarque est que ’unicité du quotient et du reste dans N
disparait dans Z. Soient en effet a # 0 et b > 0 des éléments de Z et
supposons que 'on ait: @ = bg + reta = bg' + r' avecr # O et [ r| < b,
ainsi que | r'| < b.

On voit facilement que r # 0 entraine r’ % 0. Si ’'on suppose r # r/,
on déduit des relations précédentes que b < |r — r'| < 2b et puisque
b divise | r — r'|, on obtient: r' —r = bour —r = — b.
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. r . .
On obtient alors r' = r — I—I b. Réciproquement si a = bg + r avec
}ﬂ

les mémes conditions que ci-dessus pour a, b, ¢, r, on peut écrire

r r r
a =b<q+——>+r———bet r——>b| <b.

|r]

|7 |7

Ceci montre que dans le cas d’une division avec un reste » non nul, il
existe une autre division et une seule avec un reste r’ différent de r.

D’autre part si I’on considére un anneau de polynomes K [X] & une
indéterminée sur un corps commutatif K, application d qui a tout poly-
nome non nul associe son degré est un stathme qui fait de K [X] un anneau
Euclidien.

Il est connu que dans ce type d’anneaux le quotient et le reste d’une
division sont uniques.

On peut donc se poser le probléme de la caractérisation des couples
(4, @) formés d’un anneau Euclidien et de son stathme, pour lesquels il
y a unicité du quotient et du reste dans toute division. Ce probléme est
résolu dans la partie I.

Dans la partie II, on caractérise les couples (4, @) Euclidiens tels que ¢
posséde les propriétés formelles de la valeur absolue sur Z.

I. CARACTERISATION DES ANNEAUX EUCLIDIENS
POUR LESQUELS IL Y A UNICITE DE LA DIVISION

Il convient de noter un anneau Euclidien par un couple (4, @), car un
anneau peut €tre Euclidien pour des stathmes différents. On sait, voir par
exemple [4] Ch. I, Par. 15, que dans un anneau Euclidien (4, ¢) deux élé-
ments a et b de A sont associés si et seulement si ¢ (a) = ¢ (b) et a | b.
Il en résulte que u est un élément inversible de 4 (ou unité) si et seule-
ment si @ (u) = ¢ (1). L’ensemble des unités de A sera noté par U (4).

DErFINITION 1: On dira que pour un anneau Euclidien il y a unicité de
la division si le couple (g, r) dont la définition de I'introduction assure
I’existence est unique.

ProrosiTION 1: 11 y a unicité de la division pour (4, ¢) si et seulement
si: pour tout couple (a, b) d’éléments de A* tels que a# b on a

@ (@ — b) < Sup (¢ (@), ¢ (b)).
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Supposons qu’il y ait unicité, et soient a et b des éléments distincts de
A*. Sia—b= — a alors ¢ (a— b) = ¢ (a) et dans ce cas ¢ (a — b)
< Sup (¢ (a), ¢ (b)). Si 2a — b est différent de 0, on peut écrire:

2a —b =(a—-b)-1+a
2a —b =(a—b)-2 + b

L’hypothése ¢ (@) < ¢ (@ — b) et ¢ (b) < ¢ (¢ — b) entraine alors
a = b, par unicité de la division, ce qui est absurde. D’ou: ¢ (a — b)
< Sup (¢ (@), ¢ (D).

La réciproque est bien connue, sa démonstration pouvant se calquer
sur celle qui prouve I'unicité de la division dans un anneau de polynomes.

PROPOSITION 2: Soit (4, ¢) un anneau Euclidien pour lequel il y a uni-
cité de la division. Alors 4 contient un sous corps K constitu¢ par les
unités de A et 0.

11 suffit de prouver que K est un sous groupe additif de 4. Soient ¢ et ¢
des éléments de K distincts et non nuls. La suite d’inégalités: ¢ (1) < ¢ (e—¢')
< Sup (¢ (¢), ¢ (¢)) = @ (1) entraine ¢ — &’ est une unité.

PROPOSITION 3: Soit (4, ) un anneau Euclidien pour lequel il y a
unicité de la division. Si x et y éléments distincts de A* sont tels que
@ (¥) < ¢ (x), alors ¢ (x — y) = @ (x).

La proposition 1 montre déja que ¢ (x — y) < ¢ (x). Supposons que
o (x — ») < o (x), alors 2x — y est différent de 0, car dans le cas contraire
- on aurait ¢ (x — y) égal & ¢ (x). Les relations:

2x —y =x1+(x—y) avec ¢@((x—y) < ¢ (x)
2x —y =x-2+(—y) avec @(—y) <o)

entrainent, par unicité de la divison: 1 = 2. On aurait alors 4 réduit a 0,
ce qui est impossible. Par suite ¢ (x — ) = ¢ (x).

ProprosITION 4: Soit (A4, ¢) un anneau Euclidien pour lequel il y a
unicité de la division. Si 4 n’est pas un corps, il existe un élément x de A*
tel que:

1) Pour tout élément a de A*, il existe un nombre fini d’éléments

€ps ---» & de K, déterminés de fagon unique et tels que a = Y g xh
i=0
2) Si dans Pécriture de a ci-dessus ¢, # 0, alors ¢ (@) = ¢ (x").
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L’ensemble B des éléments a de A* tels que ¢ (@) > ¢ (1) n’est pas
vide. En effet, dans le cas contraire on aurait pour tout élément x de A*
@ (x) = ¢ (1) et A serait un corps. Or ¢ (B) est inclus dans N et par consé-
quent il posséde un plus petit élément ¢ (x).

Soit alors un élément a de A*. Dans le cas ol a appartient a K, I’asser-
tion 1) est démontrée. Si a n’est pas une unité, on peut écrire a = x g, + rq
avec ro = 0 ou ¢ (ry) < ¢ (x). Dans les deux cas r, appartient a K, et
par suite a — r, est différent de 0. De plus ¢ (a — ry) = ¢ (a). Cest clair
st rg = 0.

Sinon on remarque que @ (ry) = 1 < ¢ (a) et alors ¢ (a — ro) = ¢ (a),
d’aprés le résultat de la proposition 3). On en déduit que ¢ (gox) = ¢ (a)
et par suite ¢ (g,) < ¢ (a). Si on avait ¢ (¢y) = ¢ (a), on aurait alors x
appartient & U (A4) puisque ¢ (q5) = @ (gox) dans ce cas. Par conséquent

on a ¢ (qo) < ¢ (a).
En conclusion on peut écrire a = x g, + &, avec g, ¢lément de K et

¢ (q0) < ¢ (a).

Dans ces conditions, si g, appartient a K, ’assertion 1) est démontrée.
Si g, n’appartient pas a K, on est ramené a la situation précédente avec:
go = X q; + & ou g; est élément de K. On démontre de méme que précé-
demment que ¢ (q,) < ¢ (¢o). On construit ainsi, par récurrence, une
suite ¢, ..., g, d’éléments de A* tels que ¢ (q,) < @ (¢,—1) < ... < © (q,)
< ¢ (a) et définis par des relations ¢q; = x¢;+; + &4, OU €4 est un
¢lément de K. La suite d’entiers ¢ (g;) étant strictement décroissante, il
existe un entier n tel que: ¢ (¢,) < ¢ (x) donc tel que g, soit élément de K.
Il suffit alors d’¢liminer les €éléments ¢q; des relations les définissant pour
prouver l’assertion 1). Montrons que la décomposition de a suivant les
puissances de x se fait de fagon unique. Pour cela, on peut remarquer
qu’il suffit de prouver I'indépendance linéaire des puissances de x sur K.
Soit donc une relation g, + &x + ... + ¢, x" = 0 ou les ¢; sont des élé-
ments de K. Si g, est différent de O, la relation ci-dessus entraine que x
est une unité, ce qui est impossible. Par suite g, est égal a 0; simplifiant
alors la relation par x (A4 est intégre), on est ramené a une relation
g + .. +gx""! = 0. On démontre de méme que tous les ¢; sont nuls.

Démontrons maintenant Iassertion 2). Pour tout entier n, x" !
divise x" et ces deux éléments ne sont pas associés, il en résulte que
@ (x""1) < ¢ (x") pour tout entier n. Soit a = gy + g, x + ... + g,x"
ou g, # 0.

Posant ¢ = & + ... + ¢,x"" !, on obtient a = g, + xq. Or xq est
différent de O puisque ¢, # 0, il résulte alors de la proposition 3) que

i s i et ST i ,
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l(p (@) = ¢ (xq) dans le cas ol g, n’est pas nul. Cette égalité est encore
vraie lorsque ¢, = 0.

Mais, de facon analogue, on peut écrire: xg = & x + x*q’ et comme
%ci-dessus on en déduit que ¢ (xq) = ¢ (x*¢’). On démontre, ainsi, par
éQrécurrence, que ¢ (a) = ¢ (g,x") = ¢ (x").

ProprosITION 5: Soit (4, @) un anneau Euclidien pour lequel 1l y a
unicité de la division et tel que 4 ne soit pas un corps. Alors A s’identifie
a un anneau de polynomes K [X] sur un corps et son stathme ¢ a une
fonction de K [XT]* dans N du type w o d, ou w est une fonction stricte-
ment croissante de N dans N et d la fonction degré sur K [X]. Réciproque-
ment (K [X], w 0 d), ou w et d sont définis comme ci-dessus, est un anneau

-~ Euclidien pour lequel il y a unicité de la division.
La partie directe est une interprétation de la proposition 4). La réci-
proque est évidente.

II. CARACTERISATION DES ANNEAUX EUCLIDIENS
DONT LE STATHME POSSEDE LES PROPRIETES DE LA VALEUR ABSOLUE SUR Z

DEFINITION 1: On dira que 'anneau Euclidien (4, ¢) vérifie la propriété
(H) st A n’est pas un corps et si le stathme ¢ vérifie:

1) Pour tout couple d’éléments x et y de A* ¢ (xy) = ¢ (x) ¢ (¥).

2) Pour tout couple d’éléments x et y de A* Iégalité ¢ (x) = ¢ ()
équivaut & x et y sont des éléments associés.

3) Pour tout couple d’éléments x et y de A* tels que x + y # 0
o (x+y) <o)+ o))

j On se propose de prouver que si (4, ¢) vérifie (H), il est alors iso-
~morphe & (Z, | |) en un sens qui sera précisé plus loin.

REMARQUE 1: Un anneau Euclidien dont le stathme est constant est un
~corps. Cette remarque jointe au fait que ¢ (1)*> = ¢ (1) lorsque (4, Q)
vérifie (H '), montre que dans ce cas ¢ (1) = 1. On peut alors prolonger

¢ a A4 en posant ¢ (0) = 0. On pourra donc considérer ¢ comme une
- «norme » sur A.

PROPOSITION 1: Soit (4, ¢) un anneau Euclidien vérifiant (H). D’appli-
~cation canonique de Z dans A4 est une injection.
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Supposons la caractéristique de A égale a p # 0. Pour tout élément

de A* différent de — 1 et désigné par x on a les relations:
(@ (1+x))" = e (1 +x"") <1 + @ (x)*"

pour tout entier .

Ces relations sont obtenues a 'aide de 1) et 3) Déf. 1 et résultent de ce

que p, €tant un nombre premier, divise les coefficients binomiaux Cl’,‘.
1

De Iinégalité ¢ (1 + x) < (1 + ¢ (x)*") ?*, on déduit par passage 2 la
limite ¢ (1 + x) < @ (x). Il en résulte que pour tout élément y de A* et
distinct de — 1l et 1 ona () <o (1 —y) <o (y) et par suite ¢ (p)
= ¢ (1 —y).

D’apres Déf. 1, 2), il existe ¢ élément de U (4) tel que 1 — y = ¢ y.

Alors A serait un corps, ce qui est impossible et p = 0.

Remarque 2: Comme dans I, ’hypothése « A n’est pas un corps»
entraine l’existence d’'un plus petit élément ¢ (x,) dans ¢ (B,) ou B, est
I’ensemble des éléments a de A* tels que ¢ (a) > 1. Alors pour tout entier 7,
il existe un élément x de 4* tel que ¢ (x) > n. Il suffit de remarquer que

¢ (x1") = (¢ (x)"

Par suite B,, ensemble des éléments de A* tels que ¢ (x) > n, est tel
que ¢ (B,) posséde un plus petit élément ¢ (x,). On posera x, = 1.

LeEMME: Soit (4, @) un anneau Euclidien vérifiant (H) et soit x un
élément de 4* non inversible. Si pour tout élément ¢ de U (4) on a
o (x) <@ (1 + ex) alors: ¢ (x) = 2 et x est somme de deux unités de A4.
On peut déja remarquer que 1 + ex n’est pas nul, x n’appartenant pas
a U (A4). On a d’autre part les inégalités: ¢ (x) <o (1 + ex) <1 + ¢ (x).
Or x n’étant pas une unité, on ne peut avoir ¢ (x) = ¢ (1 + &x), cette
égalité entrainant d’aprés Déf. 1, 2, D'existence d’un élément 5 de U (A4)
tel que yx = 1 + ex. On obtient donc, pour tout unité & I’égalité

p(1+ex)y=1++ ¢ (x).

Ilenrésulteque o (1 + x) = @ (1 — x),etparsuite 1l + x = ¢ (1 — x)
ou ¢ appartient a U (4). On en déduit: x (1 + ¢) = ¢ — 1, mais ¢ étant
différent de 1 car 2x # 0 d’aprés la proposition 1, cette égalité entraine:
1 <op(x)<e(e—1)<2. Cect prouve que ¢ (x) = 2. D’autre part,
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o (x)p (1 +¢&) = @(e— 1) <2entraine: 1 + ¢ appartient a U (4) et par
suite x = (1 + &)~* (1 — &) est une somme de deux unités.

ProPOSITION 2: Lorsque (4, ¢) est un anneau Euclidien vérifiant (H ),
la famille (x,) définie dans la remarque 2 posséde les propriétés suivantes:
Pour tout entier n, x, est une somme de » + 1 unités et ¢ (x,) = n + L.

La preuve se fait par récurrence. Supposons que pour toute unité ¢ de 4
on ait ¢ (x;) < ¢ (1 + &x,), le lemme montre que dans ce cas x; est somme
de deux unités et que ¢ (x;) = 2. Si, par contre, il existe une unité ¢ telle
que ¢ (1 + &ex;) < ¢ (x,), la définition de x; montre que 1 + ex; est une
unité. Alors x; est somme de deux unités « et f et de plus 1 < ¢ (x;) <2
entraine ¢ (x;) = 2.

Supposons maintenant que pour n > 2 on ait pour tout entier p < n:
X, est somme de p + 1 unités et ¢ (x,) = p + 1. Par division Euclidienne
on obtient: 1 = x,,1 g +r ol ¢ (r) < ¢ (x,,,). En effet r ne peut étre
nul puisque x,,,; n’est pas une unité. On peut, d’autre part, supposer que r
est différent de 1 et que g est une unité. En effet, il existe une unité ¢ telle
que ¢ (1 + ex,, ) soit strictement inférieur & ¢ (x, ), le lemme entrainant
dans le cas contraire ¢ (x,.,) = 2 en contradiction avec ¢ (x,,.;) > n + 1.
Considérons I'égalité 1 = x,,.{ (— &) + (1 + ex,.); ayant ¢ (1 + &x,44)
< @ (x,+1), la définition de x,., montre que ¢ (r)< n+ 1 ou
r=1+ex,;;. Dautre part 1 — r = — ex,,, entralne: n + 1 < ¢ (x,41)
<n + 2 et alors ¢ (x,,,) = n + 2. Si on avait ¢ (+r) < n + 1 on aurait
@ (X,41) <1 + @) <n+ 2 Ceci prouve que ¢ (r) = n + 1 = ¢ (x,),
d’ou r est somme de # + 1 unités, et, par suite, x,,,; est une somme de
n + 2 unités.

Corrollaire : Tout élément non nul d’un anneau Euclidien vérifiant (H)
est une somme d’unités.

PrOPOSITION 3: Dans tout anneau Euclidien (4, ¢) vérifiant (H), il
existe un entier rationnel p tel que ¢ (p) > 1.

La preuve, comme celle de la proposition suivante, utilise la technique
de [2] Ch. 6, Par. 6. Ceci provient du fait que 'on peut considérer ¢ comme
une « norme ».

Supposons que pour tout entier n # 0 on ait ¢ (1) = 1. Pour tout
couple d’éléments x et y de A linégalité o (x + y) <o (x) + o (»)
entraine ¢ (x + y) <2 Sup (¢ (x), ¢ (¥)). Soit s un entier non nul et
posons ¥ = ¢°, les propriétés de ¢ entrainent: ¥ (x) ¥ (y) = ¥ (xp) et
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Y (x + y) <2°Sup (¥ (x), ¥ (»)) pour tout couple (x, y) d’éléments de A.
On peut alors utiliser une partie de la Prop. 2 de [2], qui montre que pour
n=2"—1, ona Y(x+yp)"<C M+ ¥(H) ou C=2° On en

déduit, par passage & la limite dans 'inégalité ¥ (x + y) < C" (¥ (x)+ ¥ (),
1

que ¥ (x +y) <¥ &+ ¥() Alos o (x+y) <(¢° X + ¢ )
donne par passage a la limite: ¢ (x + y) << Sup (¢ (x), @ (). La partie I
montre qu’alors A4 est isomorphe a un anneau de polynomes K [X], ce qui
est impossible puisque X serait d’aprés le corollaire une somme d’unités.

ProprosITION 4: La restriction a Z du stathme ¢ d’un anneau Euclidien
vérifiant (H) est la valeur absolue | | sur Z. Il en résulte que tout élément x
de A4 peut s’écrire x = n ¢ ol n est un entier rationnel et ¢ une unité.

La preuve s’inspire de [2] Prop. 4, Par. 6, N° 3. Soient « et b des entiers
non nuls et différents de 1 et soit g I'application de Z* — {1} dans R

e Log(o(x)) . . L
définie par g (x) = —L—|—-{~ . Désignons, pour n > 2, la partie enticre
og|x
Loga , . L1
de n Tond par g (n). C’est le plus petit entier m tel que b™ < a" < b™
0g

et il satisfait

Lim a(m) = Log (@) et Lim g (n) = + o0.
ns+w N Log(b) n-+w
On sait de plus que a" = oy + ay b + ... + o, b4 ou les «; sont
des entiers satisfaisant: 0 << «; < b. En utilisant les propriétés de ¢, on
obtient: ¢ (a)" <b (1 + @ (b) + ... + ¢ (b)2™). Dans ces conditions on
ne peut avoir ¢ (b) = 1; en effet ¢ (b) = 1 donne ¢ (a)" <(¢g(n) + 1)b

Lo n) + 1) b.
ou encore Log (¢ (a)) < g (g (n )bl Cette derniére inégalité,
n

entraine alors par passage a la limite, ¢ (¢) = 1 pour tout élément de Z*
distinct de 1, ce qui contredit la proposition 3. On peut donc écrire:

b(l—¢(b)2m1
— 1 + ¢ (b)

¢ (a) < @ (by1™*!

ou encore:
nLog (¢ (@) < Log(b(p (b)—1)" (1 —p (b)"2™1)
+ (g (n)+1) (log (e (b)).

A R AT

s
mAY
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On en déduit que

q(m) +1 Log(e (b))
Log (a)

g(a) <y(n +

ol 7 () est une fonction qui tend vers 0 quand » tend vers l'infini. Il en
résulte, par passage a la limite, que g (a) << g () et donc g (a) = g (D).
Soit s = g (2), alors, pour tout entier @ non nul et distinct de 1, g(@) = s
entraine: ¢ (a) = &°. Cette formule se prolonge & Z par ¢ (a) = |a [’
Puisque, d’aprés la proposition 3, il existe un entier p tel que ¢ (p) < 1,
on a forcément s > 0. D’autre part ¢ (2) <2 entraine 2° <2, ce qui
montre que s < 1. L’hypothése s < 1 entraine 2° < 2 et d’autre part
@ (2) = 2° est un entier nous montre qu’alors 2° = 0 ou 2° = 1 ce qui est
absurde. Il en résulte que s = 1 et la proposition est démontrée.

ProrosITION 5: Un anneau Euclidien vérifiant (H) ne posséde pas
d’unité telle que & = — 1.

Soit ¢ une unité telle que €2 = — 1. On a alors la suite d’égalités:
ol +e)*=0(1+e*=0¢QRe)=0¢(2) =2 qui conduit a la contra-
diction ¢ (1 + ¢)* est un entier égal a 2.

ProrosiTiON 6: L’ensemble des unités d’un anneau Euclidien vérifiant
(H) est réduit a {— 1, 1}.

Soit ¢ une unité de 4 autre que 1 et — 1. Alors 1 + & ne peut étre une
unité.

Supposons que ce ne soit pas le cas et considérons 1 — &. De ¢ (1 — &)
<2 on déduit, compte tenu de la proposition 4, que 1 — ¢ = u ou
I — & = 2u ou u est une unité de A. Soit v I'unité égale a1 + ¢. Sil'on a
1 — & = 2u, on obtient 2 (1 — u) = v et alors 2¢ (I — u) = 1 est absurde.
Si 'on a 1 — &= u, on obtient 4 = (1 + &) — (1 — &)? = v? — 1? et
alors on a 4 = ¢ (4e) = ¢ (v* — u*) < 2 qui est absurde. Donc 1 + ¢
n’est pas une unité, et, puisque ¢ (1 + &) <2, on en déduit ¢ (1 + &) = 2.
La proposition 4 nous montre qu’alors 1 + & = 2u ol u est une unité.
D’autre part ¢* # 1 entraine ¢* # 1 d’aprés la proposition 3.

Soit n I'unité égale & — ¢, elle vérifie n* # 1 et le raisonnement précé-
dent nous montre que 1 +n =2w et 1 — e = 2v ou v et w sont des
unités de A.

La relation 1 + n = (I + ¢) (1 — &) entraine alors 2uv = w ou encore
2= @ wv) = @ (w) =1 ce qui est absurde.
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DEFINITIONS 2: Soient (A4, @) et (4’, ¢') deux anneaux Euclidiens. Un
homomorphisme 4 de Panneau A4 dans Panneau A’ est dit Euclidien si
¢’ oh = ¢. Deux anneaux Euclidiens seront dits isomorphes s’il existe un
homomorphisme d’anneaux Euclidiens de 1'un dans l’autre qui soit un
1Isomorphisme d’anneaux.

THEOREME: Un anneau Euclidien vérifiant (H) est canoniquement
isomorphe & (Z, | |).

L’injection canonique de Z dans A est une surjection puisque, les
unités de 4 étant 1 ou — 1, la proposition 4 nous montre que tout élément
de A4 peut s’écrire x = n.1 ou n est un entier relatif.
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