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CARACTÉRISATION
DE CERTAINS TYPES D'ANNEAUX EUCLIDIENS

par Gabriel Picavet

On dispose dans l'ensemble N des entiers de la théorie de la division

Euclidienne : pour tout couple {a, b) d'entiers non nuls, il existe deux

entiers q et r tels que a bq + r, où r satisfait 0 < r < b. On peut de

plus affirmer que les entiers q et r sont déterminés de façon unique.
Une première généralisation consiste à étendre à l'ensemble Z des

entiers rationnels cette opération. On sait que pour tout couple (a, b)

d'éléments non nuls de Z, il existe deux entiers rationnels q et r tels que:
a — bq + r, où r satisfait | r | < | b |.

Plus généralement soit A un anneau unifère, et désignons par A*
l'ensemble des éléments non nuls de A. L'anneau A sera supposé commutatif
et non réduit à zéro dans toute la suite. Suivant [1] Ch. 7, Par. 1, exercice 7

on a:

Définition: Un anneau A est dit Euclidien s'il est intègre et s'il existe

une application cp de X* dans N, appelée stathme Euclidien, satisfaisant

aux conditions suivantes:

1) Pour tout couple d'éléments x et y de A* cp (.xy) > cp (x).

2) Pour tout couple d'éléments a et b de A*, il existe des éléments q et r
de A tels que a bq + r où r satisfait soit r 0 soit cp (r) < cp (b).

La condition 1) est évidemment satisfaite pour la fonction valeur
absolue sur Z*. Mais en fait cette condition n'est pas essentielle, de même
on peut remplacer N dans la définition par un ensemble bien ordonné.
On pourra consulter à cet effet [3]. Nous utiliserons pour la suite la
définition donnée ci-dessus.

Une première remarque est que l'unicité du quotient et du reste dans N
disparaît dans Z. Soient en effet a ^ 0 et b > 0 des éléments de Z et

supposons que l'on ait: a bq + r et a bq' + r' avec r ^ 0 et | r | < b,
ainsi que \ r' \ < b.

On voit facilement que r ^ 0 entraîne r' # 0. Si l'on suppose r # r',
on déduit des relations précédentes que 6<|r-r,|<2Z> et puisque
b divise | r - r' |, on obtient: r' - r b ou r' - r - b.



On obtient alors r' r — — b. Réciproquement si a bq + r avec
| r |

les mêmes conditions que ci-dessus pour a, b, q, r, on peut écrire

r
a bU+T—j) + r et

\r\J | r | r |

< b.

Ceci montre que dans le cas d'une division avec un reste r non nul, il
existe une autre division et une seule avec un reste r' différent de r.

D'autre part si l'on considère un anneau de polynômes K[X] à une
indéterminée sur un corps commutatif K, l'application d qui à tout
polynôme non nul associe son degré est un stathme qui fait de K [X] un anneau
Euclidien.

Il est connu que dans ce type d'anneaux le quotient et le reste d'une
division sont uniques.

On peut donc se poser le problème de la caractérisation des couples

(A, cp) formés d'un anneau Euclidien et de son stathme, pour lesquels il
y a unicité du quotient et du reste dans toute division. Ce problème est

résolu dans la partie I.
Dans la partie II, on caractérise les couples (A, cp) Euclidiens tels que cp

possède les propriétés formelles de la valeur absolue sur Z.

I. Caractérisation des Anneaux Euclidiens
POUR LESQUELS IL Y A UNICITÉ DE LA DIVISION

Il convient de noter un anneau Euclidien par un couple (A, cp), car un
anneau peut être Euclidien pour des stathmes différents. On sait, voir par
exemple [4] Ch. I, Par. 15, que dans un anneau Euclidien (A, cp) deux
éléments a et b de A sont associés si et seulement si cp (a) cp (b) et a | b.

Il en résulte que u est un élément inversible de A (ou unité) si et seulement

si cp (u) cp (1). L'ensemble des unités de A sera noté par U (A).

Définition 1 : On dira que pour un anneau Euclidien il y a unicité de

la division si le couple (iq, r) dont la définition de l'introduction assure

l'existence est unique.

Proposition 1 : Il y a unicité de la division pour (A, cp) si et seulement

si: pour tout couple (a, b) d'éléments de A* tels que a ^ b on a

cp {a - b) < Sup (cp (a), cp (b)).
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Supposons qu'il y ait unicité, et soient a et b des éléments distincts de

A*. Si a - b -a alors cp (a - b) cp (a) et dans ce cas cp (a - b)

< Sup (cp (à), (p (b)). Si 2a - b est différent de 0, on peut écrire:

2a — b (a — b) • 1 + a

2a — b — (a — b) • 2 + b

L'hypothèse cp (a) < (p (a — b) et (p (b) < cp {a — b) entraîne alors

a b, par unicité de la division, ce qui est absurde. D'où: cp (a — b)

< Sup (cp (a), cp 0b)).

La réciproque est bien connue, sa démonstration pouvant se calquer

sur celle qui prouve l'unicité de la division dans un anneau de polynômes.

Proposition 2: Soit (A, cp) un anneau Euclidien pour lequel il y a unicité

de la division. Alors A contient un sous corps K constitué par les

unités de A et 0.

Il suffit de prouver que K est un sous groupe additif de A. Soient a et a'

des éléments de K distincts et non nuls. La suite d'inégalités : cp (1) < cp (s - a')

< Sup (cp (a), cp (a')) cp (1) entraîne a - a' est une unité.

Proposition 3 : Soit (A, cp) un anneau Euclidien pour lequel il y a

unicité de la division. Si x et y éléments distincts de A* sont tels que

9 (y) < 9 (x)> alors cp (x — y) cp (x).
La proposition 1 montre déjà que cp (x — y) < <p (x). Supposons que

cp (x — y) < cp (.x), alors 2x — y est différent de 0, car dans le cas contraire
on aurait cp (x - y) égal à cp (x). Les relations:

2x — y x -1 + (x —y) avec cp (x —y) < cp (x)

2x — y x • 2 + — y) avec cp —y) < cp (x)

entraînent, par unicité de la divison: 1 2. On aurait alors A réduit à 0,
ce qui est impossible. Par suite cp (x — y) cp (x).

Proposition 4: Soit (A, cp) un anneau Euclidien pour lequel il y a
unicité de la division. Si A n'est pas un corps, il existe un élément x de A*
tel que:

1) Pour tout élément a de A*, il existe un nombre fini d'éléments
n

£0,..., an de K, déterminés de façon unique et tels que a at x\
i 0

2) Si dans l'écriture de a ci-dessus e„ ^ 0, alors <p {a) cp
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L'ensemble B des éléments a de A* tels que cp (à) > cp (1) n'est pas
vide. En effet, dans le cas contraire on aurait pour tout élément x de A*
cp (x) cp (l) et A serait un corps. Or cp (B) est inclus dans N et par conséquent

il possède un plus petit élément cp (x).
Soit alors un élément a de A*. Dans le cas où a appartient à K, l'assertion

1) est démontrée. Si a n'est pas une unité, on peut écrire a x q0 + r0
avec r0 0 ou cp (r0) < cp (x). Dans les deux cas r0 appartient à K', et

par suite a - r0 est différent de 0. De plus cp {a — r0) — cp (a). C'est clair
si r0 0.

Sinon on remarque que cp (r0) 1 < cp (<a) et alors cp (a — r0) cp (a),

d'après le résultat de la proposition 3). On en déduit que cp (q0x) cp (a)
et par suite cp (q0) < cp (a). Si on avait cp (q0) cp (a), on aurait alors x
appartient à U (A) puisque cp («q0) cp (q0x) dans ce cas. Par conséquent
on a cp (q0) < cp (a).

En conclusion on peut écrire a x q0 + s0 avec 80 élément de K et

<P (go) < (p (à).
Dans ces conditions, si q0 appartient à K, l'assertion 1) est démontrée.

Si q0 n'appartient pas à K, on est ramené à la situation précédente avec:

q0 x q± + s1 où s est élément de K. On démontre de même que
précédemment que cp (gq) < cp (q0). On construit ainsi, par récurrence, une
suite fo, qn d'éléments de A* tels que cp (qn) < cp (qn-i) < < cp (q0)

< cp (a) et définis par des relations qt xqi+1 + si+1 où ei+1 est un
élément de K. La suite d'entiers cp (qt) étant strictement décroissante, il
existe un entier n tel que : cp (qn) < cp (x) donc tel que qn soit élément de K.

Il suffit alors d'éliminer les éléments qt des relations les définissant pour
prouver l'assertion 1). Montrons que la décomposition de a suivant les

puissances de x se fait de façon unique. Pour cela, on peut remarquer
qu'il suffit de prouver l'indépendance linéaire des puissances de x sur K.
Soit donc une relation s0 + e-x + + sn xn 0 où les st sont des

éléments de K. Si £0 est différent de 0, la relation ci-dessus entraîne que x
est une unité, ce qui est impossible. Par suite e0 est égal à 0; simplifiant
alors la relation par x (A est intègre), on est ramené à une relation

+ + £„x"-1 0. On démontre de même que tous les £t sont nuls.

Démontrons maintenant l'assertion 2). Pour tout entier n,x1l~x
divise xn et ces deux éléments ne sont pas associés, il en résulte que
cp (x""1) < cp (x") pour tout entier n. Soit a s0 + g1 x + + snxn

ou sn 7^ 0.

Posant q + + £nxn_1, on obtient a s0 + xq. Or xq est

différent de 0 puisque sn ^ 0, il résulte alors de la proposition 3) que
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cp (a) cp (xq) dans le cas où e0 n'est pas nul. Cette égalité est. encore

vraie lorsque s0 0.

Mais, de façon analogue, on peut écrire: xq x + x2q' et comme
I ci-dessus on en déduit que cp (xq) cp (x2ql). On démontre, ainsi, par
i récurrence, que cp (a) cp (snx") cp (x").

Proposition 5 : Soit (A, cp) un anneau Euclidien pour lequel il y a

unicité de la division et tel que A ne soit pas un corps. Alors A s'identifie
à un anneau de polynômes K [X] sur un corps et son stathme cp à une
fonction de K [X]* dans N du type œ o d, où co est une fonction strictement

croissante de N dans N et d la fonction degré sur K [X]. Réciproquement

(.K [X], œ o d), oxi cd et d sont définis comme ci-dessus, est un anneau
Euclidien pour lequel il y a unicité de la division.

La partie directe est une interprétation de la proposition 4). La
réciproque est évidente.

II. Caractérisation des anneaux Euclidiens
DONT LE STATHME POSSÈDE LES PROPRIÉTÉS DE LA VALEUR ABSOLUE SUR Z

Définition 1 : On dira que l'anneau Euclidien (A, cp) vérifie la propriété
(H) si A n'est pas un corps et si le stathme cp vérifie:

1) Pour tout couple d'éléments v et y de A* cp (xy) cp (x) cp (y).

2) Pour tout couple d'éléments x et y de A* l'égalité cp (x) cp (y)
équivaut k x et y sont des éléments associés.

3) Pour tout couple d'éléments x et y de A* tels que x + y ^ 0
cp (x + y) < cp (x) + cp (y).

On se propose de prouver que si (A,cp) vérifie (H), il est alors
isomorphe à (Z, | |) en un sens qui sera précisé plus loin.

Remarque 1 : Un anneau Euclidien dont le stathme est constant est un
corps. Cette remarque jointe au fait que cp (l)2 cp (1) lorsque (A, cp)

vérifie (H), montre que dans ce cas cp 1) 1. On peut alors prolonger
cp à A en posant cp (0) 0. On pourra donc considérer cp comme une
« norme » sur A.

Proposition 1: Soit (A, cp) un anneau Euclidien vérifiant (H). L'application

canonique de Z dans A est une injection.
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Supposons la caractéristique de A égale à p ^ 0. Pour tout élément
de A* différent de — 1 et désigné par x on a les relations:

(9 (1 + x))pn 9(1 +*pn) <1+9 (x)pn

pour tout entier n.

Ces relations sont obtenues à l'aide de 1) et 3) Déf. 1 et résultent de ce

que /?, étant un nombre premier, divise les coefficients binomiaux C*.
î

De l'inégalité 9 (1 + x) < (1 + 9 (x)p") pre, on déduit par passage à la
limite 9 (1 + x) < 9 (x). Il en résulte que pour tout élément y de A* et
distinct de — 1 et 1 on a 9 (y) < 9 (1 — y) < 9 (y) et par suite 9 (^)

9 (1 - y).
D'après Déf. 1, 2), il existe e élément de U(A) tel que 1 — y sy.
Alors A serait un corps, ce qui est impossible et p 0.

Remarque 2: Comme dans I, l'hypothèse «A n'est pas un corps»
entraîne l'existence d'un plus petit élément 9 (xx) dans 9 (B^ où B1 est

l'ensemble des éléments a de +* tels que 9 (à) > 1. Alors pour tout entier n,
il existe un élément x de A* tel que 9 (x) > n. Il suffit de remarquer que

(P (V) ((p (Xjf.

Par suite Bn, ensemble des éléments de A* tels que 9 (x) > n, est tel

que 9 (Bn) possède un plus petit élément 9 (xn). On posera x0 1.

Lemme: Soit (A, 9) un anneau Euclidien vérifiant (H) et soit x un
élément de A* non inversible. Si pour tout élément £ de U (A) on a

9 (x) < 9 (1 + £x) alors: 9 (x) 2 et x est somme de deux unités de A.
On peut déjà remarquer que 1 + ex n'est pas nul, x n'appartenant pas

à U (A). On a d'autre part les inégalités: 9 (x) < 9 (1 + ex) < 1 + 9 (x).
Or x n'étant pas une unité, on ne peut avoir 9 (x) 9 (1 + ex), cette

égalité entraînant d'après Déf. 1, 2, l'existence d'un élément t] de U (A)
tel que rjx 1 + ex. On obtient donc, pour tout unité e l'égalité

9 (1 + ex) 1 + 9 (x).

Il en résulte que 9 (1 + x) 9 (1 — x), et par suite 1 + x e (1 — x)
où e appartient à U (A). On en déduit: x(l + e) e — 1, mais e étant
différent de 1 car 2x ^ 0 d'après la proposition 1, cette égalité entraîne:
1 < 9 (x) < 9 (e — 1) < 2. Ceci prouve que 9 (x) 2. D'autre part,
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ç (x) cp (1 4- s) cp (s - 1) < 2 entraîne: 1 4- s appartient à U(A) et par
suite x (1 4- e)_1 (1 — s) est une somme de deux unités.

Proposition 2: Lorsque (A, cp) est un anneau Euclidien vérifiant (H),
la famille (X) définie dans la remarque 2 possède les propriétés suivantes:

Pour tout entier n, xn est une somme de n 4- 1 unités et cp (x„) n 4- 1.

La preuve se fait par récurrence. Supposons que pour toute unité s de A

on ait cp (xj < cp (1 4- ex^, le lemme montre que dans ce cas x1 est somme
de deux unités et que cp (x^ 2. Si, par contre, il existe une unité e telle

que cp (1 + eXi) < cp (xj, la définition de xt montre que 1 4- sx1 est une
unité. Alors xt est somme de deux unités a et ß et de plus 1 < cp (xj < 2

entraîne cp (xx) 2.

Supposons maintenant que pour « >2 on ait pour tout entier p < n :

xp est somme de p 4- 1 unités et cp (xp) p 4- 1. Par division Euclidienne
on obtient: 1 xn+1 q 4- r où cp (r) < cp (x„+1). En effet r ne peut être
nul puisque xn+l n'est pas une unité. On peut, d'autre part, supposer que r
est différent de 1 et que q est une unité. En effet, il existe une unité s telle

que cp (1 + £X„+1) soit strictement inférieur à cp (xn+1), le lemme entraînant
dans le cas contraire cp (xw+1) 2 en contradiction avec cp (xn+1) > n + 1.

Considérons l'égalité 1 xn+1 (- e) + (1 + £x„+1); ayant cp (1 + exn+1)

< cp (xn + l)9 la définition de xn+l montre que cp (r)< n + 1 où
r 1 + ex„+1. D'autre part 1 - r - £xn+1 entraîne: n + 1 < cp (xn+1)

< n + 2 et alors cp (xn+1) n + 2. Si on avait cp (r) < n + 1 on aurait
cp (xB + 1) <1 4- cp (r) < n 4- 2. Ceci prouve que cp (r) n 4- 1 cp (x„),
d'où r est somme de n 4- 1 unités, et, par suite, x„+1 est une somme de

n 4-2 unités.

Corrollaire : Tout élément non nul d'un anneau Euclidien vérifiant (H)
est une somme d'unités.

Proposition 3 : Dans tout anneau Euclidien (A, cp) vérifiant (H), il
existe un entier rationnel p tel que cp (p) > 1.

La preuve, comme celle de la proposition suivante, utilise la technique
de [2] Ch. 6, Par. 6. Ceci provient du fait que l'on peut considérer cp comme
une « norme ».

Supposons que pour tout entier n # 0 on ait cp (n) 1. Pour tout
couple d'éléments x et y de A l'inégalité cp (x + y) < cp (x) + cp (y)
entraîne cp (x 4- y) < 2 Sup (cp (x), cp (y)). Soit s un entier non nul et
posons W cp\ les propriétés de cp entraînent: ¥ (x) ¥ (y) ¥ (xy) et
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F (x + y) < 2s Sup (F (x), F (y)) pour tout couple (x, y) d'éléments de A.
On peut alors utiliser une partie de la Prop. 2 de [2], qui montre que pour
n 2r - 1, on a: F (x + y)n < Cr (*F (x) + lF (y))n où C 2S. On en

r

déduit, par passage à la limite dans l'inégalité F (x + y) < Cn (F (x) + F 0)),
î

que F (x + y) < F (x) + F (y). Alors cp (x + y) < (cps (x) + cps (y))s
donne par passage à la limite: cp (x + y) < Sup (cp (x), <p (>'))• La partie I
montre qu'alors A est isomorphe à un anneau de polynômes K [X\ ce qui
est impossible puisque X serait d'après le corollaire une somme d'unités.

Proposition 4: La restriction à Z du stathme cp d'un anneau Euclidien
vérifiant (H) est la valeur absolue j | sur Z. Il en résulte que tout élément x
de A peut s'écrire x n s où n est un entier rationnel et s une unité.

La preuve s'inspire de [2] Prop. 4, Par. 6, N° 3. Soient a et b des entiers

non nuls et différents de 1 et soit g l'application de Z* - {1} dans R

Log (cp (x))
defime par g (x) Désignons, pour n > 2, la partie entière

Log | x |

Log a
de n par q (n). C'est le plus petit entier m tel que bm < an < b

Log b

et il satisfait

q(n)Log (a)
Lim et Lim q (n) + oo.
n-> + co n Log (b) tj y -j- co

On sait de plus que an a0 + oq b + 4- ocq(n) bq(n) où les oq sont
des entiers satisfaisant: 0 < oq < b. En utilisant les propriétés de cp, on
obtient: cp (a)n < b (1 + cp (b) + + cp (b)q(-n)). Dans ces conditions on
ne peut avoir cp (b) 1 ; en effet cp (b) 1 donne cp (a)n < (q (;n) + 1) b

Log [(q (n) + 1) b].
ou encore Log (cp (a)) < Cette dernière inégalité,

n

entraîne alors par passage à la limite, cp (a) 1 pour tout élément de Z*
distinct de 1, ce qui contredit la proposition 3. On peut donc écrire:

bU-cpiby^-1)
*« < ——; V ^ v ^ -1 + Cp (b)

où encore:

n Log (ç> (a)) < Log (b(<p (b) — 1)
1 (1 -q>(b) q("> J))

+ («(«) +1) (log(<p (b)).
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On en déduit que

t\ 4 0) + Log(ç»(i>))
,{«)<,(.) + — Log(a)

où y (n) est une fonction qui tend vers 0 quand n tend vers l'infini. Il en

résulte, par passage à la limite, que g (a) < g (b) et donc g (a) g (b).

Soit s — g (2), alors, pour tout entier a non nul et distinct de 1, g (à) s

entraîne: q> (a) as. Cette formule se prolonge à Z par cp (a) — | a |s.

Puisque, d'après la proposition 3, il existe un entier p tel que cp(p) < 1,

on a forcément s > 0. D'autre part cp (2) < 2 entraîne Is < 2, ce qui
montre que s < 1. L'hypothèse s < 1 entraîne 2S < 2 et d'autre part
cp (2) 2* est un entier nous montre qu'alors Is 0 ou 2s 1 ce qui est

absurde. Il en résulte que s 1 et la proposition est démontrée.

Proposition 5: Un anneau Euclidien vérifiant (H) ne possède pas
d'unité telle que s2 — 1.

Soit s une unité telle que s2 - - 1. On a alors la suite d'égalités:

(p (1 + s)2 cp ((1 + s)2) cp (2s) ç (2) 2 qui conduit à la contradiction

(p (1 + s)2 est un entier égal à 2.

Proposition 6: L'ensemble des unités d'un anneau Euclidien vérifiant
(H) est réduit à { — 1,1}.

Soit s une unité de A autre que 1 et — 1. Alors 1 + s ne peut être une
unité.

Supposons que ce 11e soit pas le cas et considérons 1 — s. De cp (1 — s)

< 2 on déduit, compte tenu de la proposition 4, que 1 — s u ou
1 - s lu où u est une unité de A. Soit v l'unité égale à 1 + s. Si l'on a
1 - s 2u, on obtient 2 (1 - u) v et alors 2cp (1 — 11) 1 est absurde.
Si l'on a 1 — s w, on obtient 4s (1 + s)2 — (1 — s)2 v2 — u2 et
alors on a 4 cp (4s) cp (v2 — u2) < 2 qui est absurde. Donc 1 + s

n'est pas une unité, et, puisque q> (1 + s) < 2, on en déduit cp (1 + s) 2.
La proposition 4 nous montre qu'alors 1 + s 2u où u est une unité.
D'autre part s2 =£ 1 entraîne s4 A 1 d'après la proposition 5.

Soit 7/ l'unité égale à — s2, elle vérifie r\2 ^ 1 et le raisonnement précédent

nous montre que 1 + rj 2w et 1 - s 2v où î; et w sont des
unités de A.

La relation 1 + rj (1 + s) (1 — s) entraîne alors 2uv w ou encore
2 cp (uv) cp (w) 1 ce qui est absurde.
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Définitions 2: Soient (A, cp) et (A', cp') deux anneaux Euclidiens. Un jj

homomorphisme h de l'anneau A dans l'anneau Ä est dit Euclidien si j

cp' oh (p. Deux anneaux Euclidiens seront dits isomorphes s'il existe un jj

homomorphisme d'anneaux Euclidiens de l'un dans l'autre qui soit un I1

isomorphisme d'anneaux. I'

Théorème: Un anneau Euclidien vérifiant (H) est canoniquement
isomorphe à (Z, | |).

L'injection canonique de Z dans A est une surjection puisque, les

unités de A étant 1 ou - 1, la proposition 4 nous montre que tout élément
de A peut s'écrire x n 1 où n est un entier relatif.
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