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I. DEFINITIONS ET RAPPELS

%\

Dans toute la suite, £ désigne un espace vectoriel, de dimension finie,
sur le corps k = R ou C.

1. RAPPELS
1.1. — [4] (page 101) ‘

On note APE la puissance extérieure p-ieme de espace vectoriel E.
Si i : F— E est une application linéaire, on note

h? : N°F — NPE la puissance extérieure p-iéme de 4.

Si h est injective, AP est aussi injective et on identifiera dans la suite i
NPF et son image par A”. i

Si h est un automorphisme de E, AP est un automorphisme de APE et
Popération de GI (FE) dans APE est définie par:

Gl (E) x N°E — N°E 3}
(h, w) - h* (w)

Dans le cas oi E est de dimension finie #, soit {aq, ..., a,} une base de
E; alors

pour p = n les p-vecteurs décomposables
o A o Ay avec 1 =iy < .. <1i,=n forment une base de N\’E

pour p > n N\PE se réduit a 0.

1.2. — [2] (page 120) :
Si E=E; @ E,, on a un isomorphisme canonique,

NE~@®(NE, & NTIE,).

0=g<p

En particulier, si £, est un sous-espace de E de dimension 1, £, un
supplémentaire quelconque de E;, donc de dimension n -- 1, on a

NE = (E; @ NTE) @ NE,

Cela signifie que tout élément ® € N\PE s’écrit de maniére unique sous
la forme
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w=u0A0+ o,

ot acE; cE; 0e/N"'E, «c N’7'E; w,e/\’E, c/\PE.

REMARQUE. — Donc a A w = 0w = o A 0.

1.3. — Si X est un corps, H un sous-corps de K, E un espace vectoriel sur
le corps H, E I’espace vectoriel obtenu a partir de E par extension du corps
des scalaires de H a K, alors;

a) I'application  de E dans Ey définie parn (x) = 1 ® x est H-linéaire
injective (ce qui permettra d’identifier £ & un sous-ensemble de Ey) et
I’ensemble des éléments de la forme 1 ® x engendre Ek.

b) si 4 est un homomorphisme de I’espace vectoriel £ dans 1’espace
vectoriel E’ (espace vectoriel sur le corps H), il lui correspond un homo-
morphisme unique A; de Ex dans Ex tel que le diagramme suivant soit
commutatif’

E h El

nl ln”

Ey "™, Eg
Le noyau de /g, K-er Ay, est engendré par n (K-er h).
L’image de hg, Im . hy, est engendrée par n’" (Im h).
c¢) il y un isomorphisme canonique de APE sur {\PE)y.

Nous utiliserons ces remarques dans le cas ou H = R, K = C.

REMARQUE. — En particulier (E)* et (E*). sont canomniquement
isomorphes, dés que E est un espace vectoriel réel de dimension finie. Nous
les identifierons dans la suite et écrirons simplement E ..

2. LE RANG

2.1. — [4] (chapitre I)

DEFINITION. — Soient E un espace vectoriel, w € A’E un p-vecteur de
E; le support de w est le plus petit sous-espace vectoriel S, = E, tel que

w € N\PS,,; sa dimension est le rang de w; le corang de w est la codimention
de S, dans E.
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Pour déterminer le rang d’un p-vecteur, nous utiliserons, principalement,
les deux remarques suivantes, vraies si E est de dimension finie.

a) soient w et @’ deux p-vecteurs, avec p = 2;sidim (S, n S,) =p—2,
alors S,4, =S, + S,. En particulier, si S,n S, = {0} alors,
rang (0+ ') = rang  + rang ’.

b) soient w un p-vecteur et w’ un g-vecteur, non nuls, si S, N S, = {0},
alors Syp, =S, @S, et rangw A ®" = rang w + rang w'.

2.2 — Si n est la dimension de E, supposé de dimension finie, on désigne
par 27 . I’ensemble des p-vecteurs de rang r. On sait [2] (page 104) que

a) pour 3 =p =n—3 cet ensemble est non vide si et seulement st
r=0,p,p+2,p+ 3, ..,n

b) pour les valeurs de r précédentes X7 , est une sous-variété réguliére
de APE, de dimension C¥ + r (n—r).

2.3. — Le rang est invariant dans [’action canonique du groupe Gl (E) dans
NPE.

2.4. — Soit E un espace vectoriel réel de dimension finie; désignons par
E. son complexifié. A\PE peut €tre considéré comme un sous-espace réel
de APE.. Soit o un élément de APE, désignons par o le méme élément
envisagé comme élément de APE.

PROPOSITION. — S“’c = (S,)c et, w et ws ont méme rang.

3. LONGUEUR. B — LONGUEUR

Dans la suite on désigne par » la dimension de E.

3.1. — Longueur — expression minimale [4] (page 112)

Soit w un p-vecteur non nul; w peut s’écrire comme somme d’éléments
décomposables de APE (d’'une mamniére qui n’est pas unique).

Considérons D'ensemble F, des systemes libres s = {wy, ..., ;}
d’éléments décomposables de APE tcls que

k
o= o
i=1

Le nombre [/ (w) = inf k s’appelle la longueur de o.
seF
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Soit alors {®;, ..., w;} un élément de F tel que k = /{w)

(o)
Y. s’appelle une expression minimale de o.

i=19;

REMARQUES. — 1) Il est clair que la longueur d’un p-vecteur w est
invariante dans laction canonique du groupe linéaire G/ (E) dans APE.

2) Nous verrons (chapitre III, B. 2) que par passage au complexifié, la
longueur d’un élément w de APE, E espace vectoriel réel, n’est pas conservée.
En désignant par w. 'image de w par l'injection canonique de APE dans
NPE, on a

I(we) =1 (w).

3.2. — B-Longueur B-expression minimale.

Soit B I’ensemble des bases b de E et soit @ un élément non nul de APE.
A chaque b = {«y, ..., a,} € B on peut associer un systéme libre unique
Sp, (04, ..., @), d’éléments décomposables de APE tels que

COi=).iOCi1 Ao A O 1.éi1<...<ip‘;/‘n

i
k
Vi,1..ket) w; = w. Une telle expression s’appelle B-expression de .
i~ 1

Soit F = {s, | be B). Le nombre L (0) = inf k s’appelle la B-longueur
spe F
de .

k
Soit (@, ..., @) un élément de F tel que k = L (w), Y w; s’appelle une
i=1
B-expression minimale de .

REMARQUES. — 1) La B-longueur d’un p-vecteur non nul est toujours
supérieure ou égale a sa longueur

[ =L

2) La B-longueur d’un élément w de APE est invariante dans I’action
canonique du groupe linéaire G/ (E) dans APE,

3) La B-longueur nr’est pas invariante par passage au complexifié
(chapitre III, B.2). Une base de E, espace vectoriel réel, étant aussi une
base de E¢, nous aurons avec des notations évidentes 1, (we) == L (w) pour
tout w e A\PE.
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4. REMARQUE GENERALE

Les classifications ultérieures seront faites en envisageant les rangs
successifs croissants.

Désignons par k le corps de base (R ou C). Nous savons que ’ensemble,
2y ., des p-vecteurs de rang r de APk", est une réunion de trajectoires de
Gl (n).

La classification des p-vecteurs de rang r dans APK" se réduit a celle
des p-vecteurs de rang r dans APk"; en effet soient w, et w, deux éléments
de rang r de APk"; alors, modulo une transformation linéaire convenable,
on peut supposer leurs supports confondus en un méme sous-espace S de
dimension r; si une transformation linéaire, & € GI (k, n), échange w, et
w,, elle laisse invariant S et sa restriction a .S échange w, et w,, envisagés
en tant qu’éléments de APS; la réciproque est évidente.

11 est clair qu’a chaque orbite de G/ (k, ) dans 27 | (variété des p-vecteurs
de rang r dans /\Pk") correspond biunivoquement une orbite de GI (k, n)
dans 2% | (variété des p-vecteurs de rang r dans APk"), de méme codimension.

La classification des p-vecteurs de rang r sera donc faite dans un espace
de dimension r.

5. REMARQUES

Dans la suite, 7 (D) désigne I'idéal de AE, engendré par D, droite de
I’espace vectoriel E de dimension finie et @, I'image du trivecteur w par
’application canonique: AE — N3E/D.

50— wp =0 wel(D).

52.—Si D, et D, sont deux droites distinctes, et weI(D;) nI(D,)
alors @ est décomposable.

5.3. — Si @, est décomposable, alors 'image réciproque du support de
@ par la projection canonique de E sur E/D est un 4-plan, H (D, w),
contenant D, que nous désignerons simplement par Hp pour w fixé. D’autre
part, a tout 3-plan P de H, ne contenant pas D, est attaché un élément o,
de A\’P tel que w — w, soit un élément de I (D).

5.4. — Si D et 4 sont deux droites telles que: we I (4), w ¢ I(D) et wp
décomposable, alors 4 est contenue dans H,.

En effet, si on désigne par A4 la projection de 4 sur E/D, il est clair
que @ est un élément de I'idéal de AE/D engendré par 4.




— 231 —

5.5 — Soient D et D' deux droites distinctes de E, telles que Op et Op
soient décomposables; si H, et Hj. sont confondus, le rang de w est
strictement inférieur a 6.
En effet, il suffit de choisir dans H}, un sous-espace F de dimension 3
ne contenant ni D ni D’. D’aprés la remarque 5.3, il existe un élément w;
de A°F tel que:
w— w;el(D), w— Aw,el(D) ol Aek

donc

(1= w,el(D)+ I(D)
donc

l1-1A=0 et
w—w,el(D)nlI(D)

et par conséquent, le rang ne peut &tre plus grand que 5.

II. Etupk DE X, 5 (k = Rou C)

1. PROPOSITION

Pour tout w élément de N°E, E de dimension 5, il existe une droite A <= E,
~ telle que w soit un élément de I (A4).

DEMONSTRATION. — Soit D une droite quelconque. Si w ¢ I (D), @, est
~un élément décomposable non nul de A3E/D; soit alors D’ une droite
supplémentaire de H,, dans E. La dimension de H, n Hy,. est 3. Désignons
~ par F ce sous-espace; d’aprés la démonstration de la remarque 5.5., il

. existe un trivecteur w; de support F tel que w — w, soit un élément de

I (D) n I(D’) et par conséquent nul ou décomposable. Le premier cas est
~ trivial; dans le second 4 = S, _,, N Sy, €st une droite et w un €élément
~de I(4).

Si w est de rang 5, d’aprés la remarque 5.2., la droite 4 est unique.

COROLLAIRE. — 1) Soit @ un élément de X 5, il existe une base
{ag, ..., a,} de E telle que

W= 0y NGy AOz+ 0y Ay A Us (1)

2) X3 .5 est une trajectoire de G/ (F) de dimension 5 (n—3).
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