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tandis que

P (y0) h (>o) + i i •

§6. Espaces produit

6.1. Familles suffisantes dans un espace produit

Proposition F. — Soient (X, p), Y, v) deux espaces-mesures et %

[resp. if\ une famille d'ouverts de X, dénombrable et suffisante pour la

mesure p [resp. v], base topologique de X [resp. Y]. Alors 501 { U x V :

6/ e K g ^ } est une base topologique dénombrable de A x Y, suffisante

pour la mesure p x v.

Démonstration. 501 est une base dénombrable de JE x 7, montrons

qu'elle est suffisante pour la mesure p x v. Soit une suite u (un)

de points de X x Y telle que pour tout M U x V e 501 :

lim {Il (M, n)jn } pU • vV p x v (M) (1)
n-> oo

Il est clair que la relation (1) reste vraie pour l'algèbre de Boole engendrée

par la famille 501 et en particulier, qu'elle est vraie lorsqu'on remplace M
par une union finie d'éléments de la famille 501.

Soit 0 un ouvert de A x Y. 0 est couvert par les éléments de la famille 501

qui sont inclus dans (9. Il s'en suit que pour tout s > 0 il existe une union
finie S d'éléments de 501 tels que S > 0 et p {(9 — S) ^ s. On en déduit que:

lim inf { TI ((V; n)/n } p x v (0) (2)
n-> oo

Si enfin A est une partie de X x Y dont la frontière est de mesure nulle,
on déduit, de la propriété précédente appliquée d'une part à l'intérieur de A
et d'autre part à l'intérieur de son complémentaire:

lim (17 (A; n)jn) p x v (A).
/!-» 00

La famille 501 est donc bien suffisante pour p x v.

6.2. Démonstration du Théorème E

Utilisons °ll [resp. y] une famille dénombrable suffisante pour la mesure p
[resp. v]. Pour qu'une suite un (x„, yn) soit p x v équirépartie, il faut et il
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suffit que pour tout V e la suite des indices (;nf) tels que yneV ait la
fréquence v (F), et que, la sous suite i — xn. soit fi-équirépartie dans X.

Or par hypothèse, la première condition est remplie, v fixé, la seconde

condition l'est pour ^-presque tout x (xn) de XN d'après le théorème 3.A.
Puisque la famille X" est dénombrable, la fin de la preuve est immédiate.

6.3. Démonstration du Théorème F

Soit a un point arbitraire de X. Définissons l'application continue / de

{ 0, 1 } x X dans X par

/(0, x) a f(l,x)=x.
La fonction / est continue et l'image par / de la mesure v fia x yt est la

mesure/(v) (1 — oc) Ôa + a/t, où ôa désigne la mesure de Dirac au point a.

Alors d'après le théorème E, (/a)N-presque toutes les suites (yn) de (0, 1)N

sont telles que (yn, xn) est v-équirépartie, et par conséquent la suite n

f(yn, *n) est /(v)-équirépartie.
D'autre part, pour presque toute suite (yn), o a la « fréquence »

1 — oc. On déduit des deux derniers résultats, que pour ^-presque sous-
suite de xn est /i-équirépartie dans X; on vérifie, facilement, en effet, que si

une suite est v-équirépartie et qu'elle contient une sous-suite de densité
1 — a, ôa équirépartie, la sous-suite constituée par les « termes restants »

est /z-équirépartie.
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