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telle que sup,.y { lg (x) — h(x) ] } = 1/4. Soit a, b appartenant a D, tels
3 5
que 1/4 =a < 3 < 4 < b et soit Iélément de M’, £~ (Ja, b]); c’est un

ouvert contenant x et inclus dans U.

Montrons maintenant que 9t est suffisante pour la mesure p. Désignons
par M, la famille des fonctions caractéristiques des ¢léments de IN. Puisque
M < R ona

E):Roo — R0 — (620 (1)

D’autre part si M appartenant & 4, M = 0, n f~"' (la, b[), M est
inclus dans une suite d’éléments M, € ¥, tels que:

M,20,nf " ([a,b]) 2 0, f " ([a,b]).
On en déduit que la fonction caractéristique de
0,0 f " ([a, 0D,

appartient a %,
Comme M°’ est une algebre fermée pour la topologie de la convergence
uniforme, il est clair que & est inclus dans M. On en déduit

e9;"00 — (gzo c SUtOOOO — %00 . (2)

Le fait que 9" est une famille suffisant pour la mesure p, est une consé-
quence de (1) et (2).

§ 5. EXISTENCE, PROPRIETES DES SUITES U-EQUIREPARTIES
IMAGE D’UNE SUITE pU-EQUIREPARTIE

5.1. Démonstration du Théoréeme C
Image d’une suite p-équirépartie

11 est clair, puisque X” est & base dénombrable, qu’il suffit de démontrer
pour fe # (X’, R) que pour u)-presque tout x: '

1 n
lim — .; f(Py (0" (x)) = 1/ (f).

n—oo n

Nous pouvons supposer que p’ (f) = 0. Posons
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1 n
a; =a;,(x) = (PJ (O-“i(x))) et v, =9,(x) = ;z; f(a;) .

1) Notre premiére étape va consister & majorer la mesure uN de ’appli-
cation x — v, (x). Il est clair que u (v,) = 0; il est clair d’autre part que s
lp - q [ >~ Max { n; — ny:ny,n,e€J} = r les deux applications a, et q,
de XN dans X’ sont indépendantes. (Pour deux partles mesurables A, et
A, de XJonaalorsuN(a '4,) na,’ (A J) = K (a '(4,) N(a"1 (A D))
et par conséquent, i’ (a,.a,) = p (a ) (a,) =

On déduit de 13, en posant m = Max { 1f(y) ‘ yeX’}:

WNOY f@p)fla)=m*> Y 1=2m’n.

1<p<n 1<p<n
1<qg<n 1<q<n
[p—ql=<r

On en déduit: u~ (v,2) = 2m?*/n.

2) Utilisant I'inégalité de Bienaymé Tchebychef, nous obtenons une
majoration de la mesure de I’ensemble:

A,(6) = (xeX™: (0,00 =8} 4 (4) = o n = 0(1jm)(n->0).

3) On en déduit que la sous-suite # — v,2(x) converge vers 0 pour
presque tout x. En effet, ’ensemble

lim sup (4, (e)) = {x:limsup [v,2(x)| > e} = 0 U A.(s)

n— oo n=oo seN n2 <s

a pour mesure 0 quel que soit ¢ > 0.

4) Prouvons enfin que si v,2 converge vers 0, la suite v, converge vers 0.
. . - . 2
Soit, pour n € N, I’entier r défini par: r” =n < (r+1)s, alors

1 r 72 1/ J
;lzz =— - 2<LZ >+ Za (1)

n r =1

= m ((r+1)*—r?), et, par conséquent, - Y a; tend vers 0 quand n
2

02

4
tend vers + oo; — tend vers 1 quand » tend vers + co. On déduit de (1)
n ,

que si v, tend vers 0 quand r tend vers + oo, v, tend vers O quand # tend
vers + oo.
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5.2. Démonstration du Théoréeme D

Soit (X, ) un espace mesure, X compact. Nous devons prouver que
pour uN-presque tout point x e XN, et pour toute partie S de X~ qui est
pN-Z-intégrable

lim, ., 1T (05 S, m)fn = i (S), (1)

la suite v étant définie par v, = " (x).

Posons J, = { 1,2, ..., p }. Il résulte du théoréme 3.A que, pour tout p
et pour uN-presque tout x e XN la suite n — P 5, (@ (x)) est p’r-équi-
répartie dans X’P. Montrons que cette derniére assertion est équivalent a
« a"™ (x) uN-équirépartie dans XN »,

Soit, en effet, (v,) une suite de points de X™ telle que pour tout p, P Ty (v,)
est p’pP-équirépartie dans X’P; montrons tout d’abord que si K est un
compact de XN on a:

lim sup {II (v; K,n)/n} = uN(K). (2)
n—co
Posons F, = P;' (P, (K)); K étant fermé, il est Iintersection de F,.
Pour ¢ positif, on peut donc choisir k de telle sorte que

uN(F) =uN (k) + ¢/2.

Par ailleurs P, (K) est fermé et puisque X”* est normal il existe un ensemble
L, u’*%-intégrable, qui le contient et tel que

W (L) = uw* (P, (K)) + /2.
Si M = P}kl (N), il est clair que M contient K, que pu™ (M) = u(K) + ¢
et que
lim {IT(v; M;n)/n} = 1N(M).

n— o0

La relation (2) s’en déduit.

Pour obtenir (1) pour une partie u"-Z-intégrable quelconque, il suffit
d’utiliser la relation (2), d’une part pour I’adhérence de F. d’autre part pour
le complémentaire de I’'intérieur de F.

5.3. Suites adjacentes — Fin de la démonstration du Théoreme A

Soit X un espace métrique (distance notée d). On dit que deux suites
u = (u,), v = (v,) sont adjacentes si d (u,, v,) tend vers la limite 0 quand »

T e i A R B R B 5 L R Ko o T e S e,

PR ISR DI S Y DML

NS R
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tend vers l'infini. Dans un tel espace une fonction continue a support
compact est uniformément continue. Et par conséquent:

Proposition F. — Soient (X, u) un espace-mesure. Si deux suites sont
adjacentes pour une distance d dont la topologie est équivalente a celle de
X, si ['une est u-équirépartie il en est de méme de [’autre.

La seconde partie du théoréme A est une conséquence du résultat:
« Si X posséde une base dénombrable, €°° = # = #° », conséquence de
la proposition B et de la proposition suivante.

Proposition G. — Si (X, w) est un espace-mesure, alors

€' < R .

Démonstration. Montrons que si fe £ (X, R) n’est pas u-Z-inte-
grable, alors f n’appartient pas a %;’.

Si f n’est pas u-Z-intégrable, il existe un nombre positif a et une partie
borelienne M de X de mesure positive, tels que pour tout me M

lim sup f(x) —lim inf f(x) > a.
X—m xX—=m
Soit u = (u,) une suite de points de X qui est u,-équirépartie et telle que, si
y désigne la fonction caractéristique de M

lim 3 ) = 1, () = (M) ()
(c’est dire que la « densité » des points de la suite qui appartiennent a M
égale u,(M). Une telle suite existe; pour s’en rendre compte, il suffit de
reprendre la démonstration du théoréme 3.A en « ajoutant » a la famille
« suffisante » pour y,, dénombrable, la fonction y.

Un espace localement compact a base dénombrable est métrisable. Soit
d une métrique dont la topologie est équivalente & celle de x. A partir de la
suite u, construisons deux suites u#’ et u” définies ainsi:

14

g 4
St u, ¢ M on prend ', = u’, = u,.

Si u, e M on prend v, et u”, vérifiant:

d (una u,n) = 1/n > d (una u”n) = 1/”
f(u’/n) —f(u”n) =7
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Il est clair que les suites u’ et u” sont équirépartie. D’autre part, on a

1= ) 1 , a ”
- Zf(“ i) — _Zf(u D) > - Z x (uy);
ni=1 n ni=1
les deux suites
1 n 1 n
n—-— Y fwy) e n->->Y f"
ni=1 ni=1
ne peuvent tendre toutes les deux vers u, (f) puisque

La g
lim - ) y(u) = ap, (M).
ni=1

5.4. Image d’une suite équirépartie

Soient X, Y deux espaces localement compacts et /: X — Y une applica-
tion borélienne. Si u est une mesure sur X son image par f est une mesure

notée fu (fu(4) = u(f~"' (4))).

Nous obtiendrons

Proposition H. — Soient (X, u) un «espace-mesure », Y un espace
topologique localement compact et f: X — Y une application borélienne.
Alors les assertions suivantes sont équivalentes.

(a) Pour toute fonction ge @, (Y, C), g o f est u-Z-intégrable.
(b) Pour toute fonction g, fu-%-intégrable, g o f est u-Z-intégrable.

(c) Pour toute fonction g caractéristique d’une partie de Y, fu-Z-intégrable,
g o fest u-Z-intégrable.

(d) Pour toute suite u = (u,) de points de X qui est u-équirépartie son
image fu = (f(u,)) est fu-équirépartie.

Démonstration. Les implications schématisées par:
b = ()
U U

(©) => (d) sont évidentes
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Prouvons, pour achever la démonstration:

non (b) => non (d) .

Soit g et fu-Z-intégrable telle que g o f n’est pas p-Z-intégrable. Mais
d’aprés la proposition G, il existe une suite de points de X, u qui est p-€équi-
répartie et telle qu’on n’a pas

lim Y g (f(u)) = u(g@of) =rfu(g)-

La suite fu n’est pas fu-équirépartie.

5.5.  Suites uniformément équirépartie

Soient (X, 1) un espace mesure et u = (u,) une suite de points de X.

Nous dirons que la suite u est uniformément u-équirépartie, si, pour
toute partie M, u-R-intégrable, la suite n — IT (M; N, N+n)/n converge
vers u (M), uniformément par rapport a N.

Existe-t-il toujours des suites uniformément réparties dans un espace
mesure (X, u)? Si X est un groupe abélien compact monothétique, et u la
mesure de Haar dans X la réponse est oui. Il est clair aussi que si (X, p)
et (Y, v) sont des espaces si f: X — Y conserve la mesurabilité et est telle
que pour toute partie mesurable 4 de Y, p(f ™! (4)) = v (4); s’il existe
une suite de points de X uniformément p-équirépartie, son image par f est
une suite de points de Y uniformément-v-équirépartie.

Si p est mesure de Dirac 0, la suite u, = a est uniformément p-équirépartie,
cest dire que uN-presque toutes les suites sont uniformément équiréparties
Cependant

Proposition I. — Si (X, p) est un « espace mesure » et si u n’est pas une
mesure de Dirac, alors pour uN-presque tout x = (x,) € XN la suite (x,)
n’est pas uniformément u-équirépartie.

Démonstration. Nous mettrons en évidence 1’existence d’une
partie D de X™ qui ne contient aucune suite uniformément p-équirépartie
et dont la mesure u~ est 1.

Soit 4 un ensemble u-Z-intégrable tel que 0 < u(4) < 1. Il résulte
de la démonstration du théoréme C que, pour tout #n € N, pour u-Npresque
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tout x = x4, X,, ..., la propriété 2 (k,n): x,, €A, X4, €A, ..., X4, €A
a la fréquence égale a (u (A))". On en déduit que I’ensemble D des x € X N
tels que pour tout 7 il existe k de telle sorte qu’on ait la propriété 2 (k, n)
est un ensemble de mesure 1.

D ne contient aucune suite uniformément p-équirépartie car pour une
telle suite il existe n, pour lequel la propriété 2 (k, n,) n’a jamais lieu.

5.6. Conditions minimales d’équirépartition

On peut, dans certains cas déterminer des familles B de fonctions four-
nissant un systéme de conditions nécessaires et suffisantes pour 1’équi-
répartition d’une suite, familles qui sont minimales.

Proposition E. — Soient X un groupe abélien compact, I' le groupe de
ses caracteres continus et I'" un sous-ensemble de I' tel que

— Le caractére trivial n’appartient pas a y'.

— Si y est un caractére non trivial et j son caractére conjugué, un et
un seul des deux caracteéres y, 7 appartient a I"".

Alors I'' est une partie suffisante pour la mesure de Haar h, qui est mini-
male.

Démonstration. Il estclair que I'" est une partie suffisante pour la
mesure i puisque I est une partie suffisante pour la mesure 4. Considérons
Vo€’ et I'" =1T"— {y,}. I'"" n’est pas une partie suffisante de Z (X, C); en
effet, nous allons vérifier qu’il existe une mesure p, distincte de la mesure de

Haar # telle que, pour tout ye I'”, i (y) = h (y). Alors comme il existe une
.o 1
suite u, u-équirépartie, cette suite vérifie la condition lim = 2y (u,) = h(y),

pour tout y e I'”, elle n’est pas cependant A-équirépartie.

Considérons en effet la mesure v définie a ’aide de la fonction réelle
positive % (y,+7,) (7, est le conjugué de y,) (dv = % (y, (x)+7, (x)) dh (x))
alors on vérifie facilement que

w="hnh+v

est telle que

A
A

p(y) = h{y) =0 (yel'”),
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tandis que

w(y,) = h(y) +41 =1%.

§ 6. ESPACES PRODUIT

6.1.  Familles suffisantes dans un espace produit

Proposition F. — Soient (X, u), (Y, v) deux espaces-mesures et %
[resp. ¥7] une famille d’ouverts de X, dénombrable et suffisante pour la
mesure u [resp. v], base topologique de X [resp. Y]. Alors Mt = { U x V.
Ue, Ve } est une base topologique dénombrable de X x Y, suffisante
pour la mesure p X v,

Démonstration. I est une base dénombrable de X x Y, mon-
trons qu’elle est suffisante pour la mesure u x v. Soit une suite u = (u,)
-de points de X x Y telle que pour tout M = U x Vet :

lim {(M,n)/n} = pU-vV = puxv(M). (1)
11 est clair que la relation (1) reste vraie pour I’algébre de Boole engendrée
par la famille 9 et en particulier, qu’elle est vraie lorsqu’on remplace M
par une union finie d’éléments de la famille 9t.

Soit @ un ouvert de X x Y. @ est couvert par les éléments de la famille M
qui sont inclus dans @. Il s’en suit que pour tout ¢ > 0 il existe une union
finie S d’é¢1éments de I tels que S > O et u (O —S) = e. On en déduit que:

lim inf { T (O;n)/n} = pux v(0O). (2)

Si enfin A4 est une partie de X x Y dont la frontiére est de mesure nulle,
-on déduit, de la propriété précédente appliquée d’une part a I'intérieur de 4
et d’autre part & I’'intérieur de son complémentaire:

lim (IT (A; n)/n) = u x v(A4).

H—=>0oo

La famille 9 est donc bien suffisante pour u x v.

6.2.  Deémonstration du Théoréeme E

Utilisons % [resp. #"] une famille dénombrable suffisante pour la mesure u
[resp. v]. Pour qu’une suite u, = (x,, y,) soit u X v équirépartie, il faut et il
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