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telle que supxsX { | g (x) - h (x) | } ^ 1/4. Soit a, b appartenant à Dp tels
3 5

que 1/4 <-<-< & et soit l'élément de M\ f (]a, Z?[); c'est un

ouvert contenant x et inclus dans U.
Montrons maintenant que 9JT est suffisante pour la mesure \i. Désignons

par ÏR, la famille des fonctions caractéristiques des éléments de SOL Puisque
SIR c f on a

W° C: m'°o Tc° (1)

D'autre part si M appartenant à M 6f nf'1 Qa, &[), M est

inclus dans une suite d'éléments Mn e tels que :

Mn => 9f nf'1 ({a, b]) => 6f n/"1 ([a, b[).

On en déduit que la fonction caractéristique de

ef n/-1([a,2>D '

appartient à SR00.

Comme ÏR00 est une algèbre fermée pour la topologie
uniforme, il est clair que 3* est inclus dans ÏR00. On en

^00 ^00 ^ gjjoooo gjjoo ^

Le fait que fflL est une famille suffisant pour la mesure

quence de (1) et (2).

§ 5. Existence, propriétés des suites /i-équiréparties
Image d'une suite ^-équirépartie

5.1. Démonstration du Théorème C

Image d'une suite fi-équirépartie

Il est clair, puisque XJ est à base dénombrable, qu'il suffit de démontrer

pour f e $ (XJ, R) que pour ^-presque tout x:

lim - £ f(PJ(a'"(x))) /(/).
n -> oo n i 1

Nous pouvons supposer que yd (/) 0. Posons

de la convergence
déduit

(2)

y, est une consé-
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1 "

aiat(x) (Pj(aui(x)))et £f(at) •

n i i

1) Notre première étape va consister à majorer la mesure $ de l'application

x -> v„2(x). Il est clair que a (v„) 0; il est clair d'autre part que si

\p- q| Max { ni- n2:n1,n2eJ}r les deux applications et aq

de XNdans Xs sont indépendantes. (Pour deux parties mesurables Ap et

Aqde XJ on a alors ,uN a~1 (Ap)n a~1 1 1
(Aq)))

et, par conséquent, fiJ(ap. aq) fi' (ap) fi' (aCj) 0.

On déduit de là, en posant m Max { | / | : y } :

PN(I f(ap)f(aq))^m2£1 — " •

1<p<n 1<p<n
1<q<n 1<q<n

\P~<l\<r

On en déduit: /iN (vn2) 2m2/n.

2) Utilisant l'inégalité de Bienaymé Tchebychef, nous obtenons une

majoration de la mesure de l'ensemble:

2 yyi
2

A„(e) {x e XN : \ v„(x)|^ £} : fiN(^1 0(1/«) (n -> co).

3) On en déduit que la sous-suite n vn2 (x) converge vers 0 pour
presque tout x. En effet, l'ensemble

lim sup [An (e)) {x: lim sup | vn2 (x) | > s } n u An2 (s)
n->oo n= oo seN n%<. s

a pour mesure 0 quel que soit s > 0.

4) Prouvons enfin que si vn2 converge vers 0, la suite vn converge vers 0.

Soit, pour n e N, l'entier r défini par: r2 < (r+ 1)2, alors

1 " r2 1 / ''2 \ 1 11

2 !««)+-(1)n i i n r \i=i / n r2

» 1 n

I y U; | ^ m ((r+1)2 - r2), et, par conséquent, - Y a; tend vers 0 quand n
r2 n r"2

r2
tend vers + co; — tend vers 1 quand « tend vers + oo. On déduit de (1)

n
que si vn2 tend vers 0 quand r tend vers + oo, vn tend vers 0 quand n tend
vers + oo.
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5.2. Démonstration du Théorème D

Soit (X, y) un espace mesure, X compact. Nous devons prouver que

pour /iN-presque tout point x g Xn, et pour toute partie S de XN qui est

jaN-^-intégrable

lim TI (v; S,n)/n (S),(1)

la suite v étant définie par vn on (x).
Posons Jp { 1, 2, ...,p }. Il résulte du théorème 3.A que, pour tout p

et pour ^'-presque tout x g Xn la suite n -> PJp (<jUn (x)) est p,JP-équi-

répartie dans Xjp. Montrons que cette dernière assertion est équivalent à

« olln (x) /iN-équirépartie dans XN ».

Soit, en effet, (?;„) une suite de points de XN telle que pour tout p, PJp (vn)

est //^-équirépartie dans Xjp; montrons tout d'abord que si K est un

compact de XN on a:

lim sup {II(v; K,n)/n} ^/F (K) (2)
co

Posons Fk PJ^ (PJk (K)); K étant fermé, il est l'intersection de Fk.

Pour s positif, on peut donc choisir k de telle sorte que

(Fr) — (F) + e/2

Par ailleurs PJk (.K) est fermé et puisque XJk est normal il existe un ensemble

L, ^-^-intégrable, qui le contient et tel que

fiJk(L)^fiJk(PJk(K)) + s/2.

Si M PJk (N), il est clair que M contient K, que /xN (M) ^ /r (K) + 8

et que

lim { H (v; M; n)ln } /jn(M).
n-> oo

La relation (2) s'en déduit.

Pour obtenir (1) pour une partie /rN-^-intégrable quelconque, il suffit

d'utiliser la relation (2), d'une part pour l'adhérence de F. d'autre part pour
le complémentaire de l'intérieur de F.

5.3. Suites adjacentes — Fin de la démonstration du Théorème A

Soit X un espace métrique (distance notée d). On dit que deux suites

u (un), v (vn) sont adjacentes si d (un, v„) tend vers la limite 0 quand n
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tend vers l'infini. Dans un tel espace une fonction continue à support

compact est uniformément continue. Et par conséquent:

Proposition F. — Soient (X, p) un espace-mesure. Si deux suites sont

adjacentes pour une distance d dont la topologie est équivalente à celle de

X, si / 'une est p-équirépartie il en est de même de l'autre.

La seconde partie du théorème A est une conséquence du résultat:

« Si X possède une base dénombrable, 0t =* &00 », conséquence de

la proposition B et de la proposition suivante.

Proposition G. — Si (X, p) est un espace-mesure, alors

<g°c° c m.

Démonstration. Montrons que si/ef (X, R) n'est pas p-t%-inté-

grable, alors / n'appartient pas à ^°c°.

Si / n'est pas /i-^-intégrable, il existe un nombre positif a et une partie
borelienne M de X de mesure positive, tels que pour tout me M

lim sup /(%) — lim inf f(x) > a
X~+m x-+m

Soit u (un) une suite de points de X qui est p0-équirépartie et telle que, si

X désigne la fonction caractéristique de M

lim
1

X *(«;) Ho(.X) Ho (M) (1)
n ;=i

(c'est dire que la « densité » des points de la suite qui appartiennent à M
égale p0(M). Une telle suite existe; pour s'en rendre compte, il suffit de

reprendre la démonstration du théorème 3.A en «ajoutant» à la famille
« suffisante » pour p0, dénombrable, la fonction %.

Un espace localement compact à base dénombrable est métrisable. Soit
d une métrique dont la topologie est équivalente à celle de x. A partir de la
suite w, construisons deux suites u' et u" définies ainsi:

Si un $ M on prend un un un.

Si une M on prend u n et u n vérifiant :

d (un,ufn) sä 1 /n d (un, u"n) X 1 fn
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Il est clair que les suites u'et u"sont équirépartie. D'autre part, on a

- Z /("';) _ -Z/(«"«) > - Z
n ; i n n ,- 1

les deux suites

» ->• - Z /(u'i) ^
1

Z /(«";)
»Fl «i=l

ne peuvent tendre toutes les deux vers \xa (/) puisque

a "
lim - Z X("i) a Ho (M)

n i= i

5.4. Image d'une suite équirépartie

Soient Z, F deux espaces localement compacts et/: Z - F une application

borélienne. Si p est une mesure sur Z son image par / est une mesure
notée fn (fn(A) p(/_1 (/())).

Nous obtiendrons

Proposition H. — Soient (Z, p) un « espace-mesure », F un espace

topologique localement compact et /: Z -> F une application borélienne.
Alors les assertions suivantes sont équivalentes.

(a) Pour toute fonction g e Cêc (F, C), g of est ^-^-intégrable.

(b) Pour toute fonction g, fp-ffl-intégrable, g o / est /x-^-intégrable.

(c) Pour toute fonction g caractéristique d'une partie de F, /a-^-intégrable,
g o / est /i-^-intégrable.

(d) Pour toute suite u (un) de points de Z qui est ^-équirépartie son

image fu (f(un)) est //^-équirépartie.

Démonstration. Les implications schématisées par:

(b) => (a)

(c) => (d) sont évidentes
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Prouvons, pour achever la démonstration:

non (b) => non (d).

Soit g et ///-^-intégrable telle que g of n'est pas ^-^-intégrable. Mais

d'après la proposition G, il existe une suite de points de X, u qui est p-équi-

répartie et telle qu'on n'a pas

lim Y, 9(/ ("«)) 9(9°f)
La suite/ un'est pas //(-équirépartie.

5.5. Suites uniformément équirépartie

Soient (X, p) un espace mesure et u (u„) une suite de points de X.

Nous dirons que la suite u est uniformément p-équirépartie, si, pour
toute partie M, //-^-intégrable, la suite n -» II (M; N, N+ri)/n converge
vers p (M), uniformément par rapport à N.

Existe-t-il toujours des suites uniformément réparties dans un espace

mesure (X, //)? Si X est un groupe abélien compact monothétique, et p la
mesure de Haar dans X la réponse est oui. Il est clair aussi que si (X, p)
et Y, v) sont des espaces si /: X Y conserve la mesurabilité et est telle

que pour toute partie mesurable A de Y, p(f~x (A)) v(A); s'il existe

une suite de points de X uniformément /^-équirépartie, son image par / est

une suite de points de Y uniformément-v-équirépartie.

Si p est mesure de Dirac ôa, la suite un a est uniformément //-équirépartie,
c'est dire que pN-presque toutes les suites sont uniformément équiréparties
Cependant

Proposition I. — Si (X, p) est un « espace mesure » et si p n'est pas une
mesure de Dirac, alors pour pN-presque tout x (x„) e XN la suite (xn)
n 'est pas uniformément p-équirépartie.

Démonstration. Nous mettrons en évidence l'existence d'une
partie D de XN qui ne contient aucune suite uniformément //-équirépartie
et dont la mesure pN est 1.

Soit A un ensemble /z-^-intégrable tel que 0 < p (A) < 1. Il résulte
de la démonstration du théorème C que, pour tout n e N, pour /z-Npresque
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tout x xl5 x2, la propriété (k, n): xk+1 g A, xk+2 e A, xk+n g yf
a la fréquence égale à (/z (A))"0. On en déduit que l'ensemble D des x g Xn
tels que pour tout n il existe k de telle sorte qu'on ait la propriété £P (k, n)
est un ensemble de mesure 1.

D ne contient aucune suite uniformément /z-équirépartie car pour une
telle suite il existe n0 pour lequel la propriété & (,k, n0) n'a jamais lieu.

5.6. Conditions minimales d'équirépartition

On peut, dans certains cas déterminer des familles B de fonctions
fournissant un système de conditions nécessaires et suffisantes pour l'équi-
répartition d'une suite, familles qui sont minimales.

Proposition E. — Soient X un groupe abélien compact, r le groupe de

ses caractères continus et T' un sous-ensemble de r tel que

— Le caractère trivial n'appartient pas à y'.

— Si y est un caractère non trivial et y son caractère conjugué, un et

un seul des deux caractères y, y appartient à r'.
Alors r' est une partie suffisante pour la mesure de Haar h, qui est

minimale.

Démonstration. Il est clair que F' est une partie suffisante pour la

mesure h puisque r est une partie suffisante pour la mesure h. Considérons

y0 eT' et r" — T' — {y0}. r" n'est pas une partie suffisante de (X, C); en

effet, nous allons vérifier qu'il existe une mesure /z, distincte de la mesure de

Haar h telle que, pour tout y g T", ji (y) h (y). Alors comme il existe une

suite u, ju-équirépartie, cette suite vérifie la condition lim — S y (un) h (y),.

pour tout y g r", elle n'est pas cependant /z-équirépartie.
Considérons en effet la mesure v définie à l'aide de la fonction réelle

positive i(y0 + y0) (y„estle conjugué de y0)

alors on vérifie facilement que

fi — h + v

est telle que

fi (y) h(7) 0 (yer"),



tandis que

P (y0) h (>o) + i i •

§6. Espaces produit

6.1. Familles suffisantes dans un espace produit

Proposition F. — Soient (X, p), Y, v) deux espaces-mesures et %

[resp. if\ une famille d'ouverts de X, dénombrable et suffisante pour la

mesure p [resp. v], base topologique de X [resp. Y]. Alors 501 { U x V :

6/ e K g ^ } est une base topologique dénombrable de A x Y, suffisante

pour la mesure p x v.

Démonstration. 501 est une base dénombrable de JE x 7, montrons

qu'elle est suffisante pour la mesure p x v. Soit une suite u (un)

de points de X x Y telle que pour tout M U x V e 501 :

lim {Il (M, n)jn } pU • vV p x v (M) (1)
n-> oo

Il est clair que la relation (1) reste vraie pour l'algèbre de Boole engendrée

par la famille 501 et en particulier, qu'elle est vraie lorsqu'on remplace M
par une union finie d'éléments de la famille 501.

Soit 0 un ouvert de A x Y. 0 est couvert par les éléments de la famille 501

qui sont inclus dans (9. Il s'en suit que pour tout s > 0 il existe une union
finie S d'éléments de 501 tels que S > 0 et p {(9 — S) ^ s. On en déduit que:

lim inf { TI ((V; n)/n } p x v (0) (2)
n-> oo

Si enfin A est une partie de X x Y dont la frontière est de mesure nulle,
on déduit, de la propriété précédente appliquée d'une part à l'intérieur de A
et d'autre part à l'intérieur de son complémentaire:

lim (17 (A; n)jn) p x v (A).
/!-» 00

La famille 501 est donc bien suffisante pour p x v.

6.2. Démonstration du Théorème E

Utilisons °ll [resp. y] une famille dénombrable suffisante pour la mesure p
[resp. v]. Pour qu'une suite un (x„, yn) soit p x v équirépartie, il faut et il
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