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pour la mesure de Haar h dans T; définissons x'> X C, par:

Z (x) S y (x)

X appartient à C0 (X). Pour une mesure de Borel régulière v telle que
Il v y < oo on a

v(x) jx(x)dv(x)Jf y (x)x (y) dh (y) dv(x) J (y) v (y) (1)

Puisque x appartient à C0 X),üm (Hrwix)) y" (X)
n ^ go

et en utilisant (1) on en déduit:

lim J X(y)iïz(n)(y)dh{ y)J" y" dh
n-+co

Grâce au théorème de convergence dominée de Lebesgue, on obtient:

I Z (y)/(y) dh (y)j (v) dy
k

et, par conséquent

J /(y) dh (y)J (2)
k k

Les fonctions / et jll sont continues au point 0, on déduit de (2):îi(o)m i.
La mesure /u, mesure positive, est de norme 1.

3) Démontrons que/ est la transformée de Fourier-Stieltjès de ju et que
la suite (fin) converge vaguement vers \i. Il résulte de la proposition A que,

pour tout y e T, jix{n) (y) converge vers jll (v), par conséquent, on a / ji.
Comme l'application ji -» ji est injective on en déduit que la suite jin ne

possède qu'un point d'accumulation jx\ elle converge donc vers ji.

§4. Les espace-mesures

4.1. Existence de familles suffisantes dénombrables

Proposition D. — Si X est un localement compact et possède une base

topologique dénombrable, alors il existe un sous-ensemble de

<ßc <ßc (A, R) qui est à la fois dénombrable, partout dense dans <c et

suffisant. (ffic muni de la topologie de la convergence uniforme.)
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Démonstration. L'ensemble des fonctions de X dans R qui ont

une limite à l'infini est séparable (voir Bourbaki [2], § 3, n° 3).

On en déduit, sans difficulté, que (c est séparable. Il existe donc une

sous-famille de #c dénombrable et partout denses dans <tëc.

Montrons qu'une famille 3F partout dense dans 33
c est suffisante.

Toute famille saturée de 3& est fermée pour la topologie de la convergence

uniforme et par conséquent 3F** qui contient contient ^c. D'où
l'on déduit que ^**** =d <3**. D'autre part, puisque est inclus

dans ^c, 3F** contient 3>**\ On a donc 3F** fé7**, ce qui est une carac-

térisation des familles suffisantes.

4.2. Le point de vue ensembliste

Soient u (w„) une suite de points d'un espace localement compact
X muni d'une mesure pe (X). Si M est une partie de X on note:

JJ (M; n) n ((u„) ; M ; n) card { / e N : 1 ^ i n : ut e M }

Zî=iX("i)

(x désignant la fonction caractéristique de M.)
On dira qu'une famille 3F de parties de X est suffisante pour la mesure p,

si la famille des fonctions caractéristiques correspondantes est suffisante

pour la mesure p.

Proposition E. — Soient (X, p) un espace-mesure. Alors il existe une
famille d'ouverts de X, qui est dénombrable, qui est une base topologique
de X, et qui est suffisante pour la mesure p.

Démonstration. D'après la proposition D, il existe une famille 3F

de fonctions de ^c — F3
c (a, R) partout dense dans

c et dénombrable.
Pour chaque fe 3F considérons un ouvert précompact 0f, qui contient

le support de / et qui est p-^-mesurable.
D'autre part, considérons une partie dénombrable de R, Dp, qui soit

dense dans R et telle que pour tout xe Dp, x AO, pif'1 ({*}) 0. A /
associons la famille dénombrable d'ouverts

^f { Qf n/-1 (]<L b[) : a, b eDp a b }

Considérons enfin l'union des familles ^f, lorsque / parcourt 3F

et montrons que 9JP est une base topologique de X. Soit x un point de X
et U un ouvert contenant x; il existe une fonction continue h à support
compact qui vaut 1 au point x et 0 sur le complémentaire de U. Soit/e 3F
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telle que supxsX { | g (x) - h (x) | } ^ 1/4. Soit a, b appartenant à Dp tels
3 5

que 1/4 <-<-< & et soit l'élément de M\ f (]a, Z?[); c'est un

ouvert contenant x et inclus dans U.
Montrons maintenant que 9JT est suffisante pour la mesure \i. Désignons

par ÏR, la famille des fonctions caractéristiques des éléments de SOL Puisque
SIR c f on a

W° C: m'°o Tc° (1)

D'autre part si M appartenant à M 6f nf'1 Qa, &[), M est

inclus dans une suite d'éléments Mn e tels que :

Mn => 9f nf'1 ({a, b]) => 6f n/"1 ([a, b[).

On en déduit que la fonction caractéristique de

ef n/-1([a,2>D '

appartient à SR00.

Comme ÏR00 est une algèbre fermée pour la topologie
uniforme, il est clair que 3* est inclus dans ÏR00. On en

^00 ^00 ^ gjjoooo gjjoo ^

Le fait que fflL est une famille suffisant pour la mesure

quence de (1) et (2).

§ 5. Existence, propriétés des suites /i-équiréparties
Image d'une suite ^-équirépartie

5.1. Démonstration du Théorème C

Image d'une suite fi-équirépartie

Il est clair, puisque XJ est à base dénombrable, qu'il suffit de démontrer

pour f e $ (XJ, R) que pour ^-presque tout x:

lim - £ f(PJ(a'"(x))) /(/).
n -> oo n i 1

Nous pouvons supposer que yd (/) 0. Posons

de la convergence
déduit

(2)

y, est une consé-
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