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Si T est une partie de 7, T* est un sous-espace vectoriel de # fermé pour
la topologie de la convergence uniforme.

Nous dirons qu’une partie B de & est suffisante st B* = € ~ou sila
topologie initiale dans M | correspondant & B est la topologie vague.

2.2. Détermination de €**

@** est la plus grande partie de 4 telle que la topologie initiale corres-
pondante est la topologie vague.

Proposition A. — Soit X un espace localement compact dénombrable
a I'infini, alors:

G = 6, (=65

Démonstration. Si fe%,, d’aprés [Bourbaki [1], Proposition 9,
p. 61] application u — p(f) est continue pour la topologie vague dans
M 7(X), et par conséquent fe ¥**. Alors €, < €** et

Gi* < G (1)

Prouvons maintenant qu’une fonction de %F* est nécessairement
continue. Soit f une fonction non continue au point x, € X. Alors il existe
¢ > 0tel que, dans tout voisinage de x, il existe x tel que ] J(x)— f(x,)| =c.

A chaque voisinage V' associons la famille ¢ (V) des mesures de Dirac
en chaque point x de V' ou ‘f(x) — f(x,) | = c. Alors ¢ (V) est une base
de filtre dans 7, filtre qui converge vers la mesure de Dirac au point x,
pour la topologie vague. L’image par I’application u — u(f) de cette base
de filtre ne converge pas vers u, (f).

Il en résulte que f n’appartient pas a ¥**; on a donc

¢r* < G,. 2)

Les inclusions (1) et (2) entrainent bien 1'égalité des trois ensembles
CE*, G, CiF*.

§ 3. SECONDE CONNEXION DE GALOIS

3.1. Définitions

Fixons une mesure pu,e M (X) et introduisons la nouvelle relation
entre une topologie t € 7 et une application f'e Z: « I'application u — 1 (f)

L’Enseignement mathém., t. XVII, fasc. 3-4. 22
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est continue au point p, pour la topologie 7 »; relation qu’on écrit t L f.
Pour une partie B = # posons

B ={teJ:yfeB,tLf}.
Pour une partie T de I posons
T° = {feB:yteT,t Lf}.

Les remarques écrites dans le paragraphe 2, a propos de I’application *,
peuvent €tre reprises sans grand changement pour l’application o. Nous
nous intéressons aux parties B de 4, telles que B®° = %2° (les voisinages de
U, pour la topologie initiale correspondante a B sont les mémes que les
voisinages de p, pour la topologie vague).

3.2. Etude de €7°. Démonstration de la premiére partie du Théoréme A
Proposition B. — 62" = R°.

Démonstration. D’aprés Bourbaki [[1] §5.3, proposition 7], si
fe® =% (X, C), Papplication u— u(f) est continue au point y,, si les
applications u — u(g) sont continues au point y, pour tout g e %,; ol ce
qui est équivalent d’aprés la proposition A, si les applications p — p(g)
sont continues au point y, pour tout g e .. On a donc:

R < €.
On en déduit: #°° < €°°°° = ¥°°. D’autre part, de Z o €. on déduit
R° o> €°°, ce qui achéve la démonstration.
Proposition C. — € = R = R' (X).

Démonstration. Puisque £’ est inclus dans Z, Z'° < #°° = €°°.
Montrons que Z'°° > €’.

1) Soit & une fonction borélienne bornée, nulle en dehors d’un compact
et qui vaut o, u,-presque partout, vérifions que 4 appartient & £'°°. Suppo-

sons ' h | bornée par ¢ # 0, et majorons — & par une fonction 4" de £’ qui
c

est nulle u,-presque partout.

Pour toute mesure u de M on a l u(h) | = u (k). Par hypothése si 1
est une topologie de %', la fonction u — u (A) tend vers 0 quand u tend
vers u, pour la topologie t.
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1
Il en est de méme des fonctions u — p (c h) et u— uh).

2) Montrons que si f€ 4., alors fe Z'°. Si f€ €5, ’ensemble des o tels que
u,(f 1 ({«})) n’est pas nul et est au plus dénombrable, son complémentaire
est dense dans R. On en déduit que pour tout ¢ positif on peut trouver g,
une combinaison linéaire finie, de fonctions de £ et une fonction £, nulle
en dehors d’un compact et qui vaut o p,-presque partout, telles que:

lf —(g+h)| =<c¢.

Puisque #'°° est fermée pour la topologie de la convergence uniforme
on en déduit que

feRr ™.
3) Puisque d’aprés 2), ¥. < £'°° on a bien
(g;oo c P00 — oo (O)

La premiére partie du théoréme A est la conséquence du théoréme C,
La démonstration de la deuxiéme partie du théoréme A est repoussée au
§5.3.

3.3. Cas des groupes abéliens. Démonstration du Théoréme B

Le théoréme B est la conséquence de la proposition suivante (bien connu
en théorie des probabilités quand le groupe X est le groupe additif des réels).

Proposition D. — Soient X un groupe abélien localement compact, I le
groupe topologique de ses caractéres continus et (u,) une suite de mesures
de M| (X).

Si la suite (i) des transformées de Fourier-Sieltiés converge ponctuel-
lement vers une fonction f et si f est continue a [’origine, alors la suite (u,)
converge dans M |, pour la topologie vague, vers une mesure dont la trans-
formée de Fourier-Sieltjés est f.

Démonstration. 1) La sphére { u: || Jli H =11} est compacte
pour la topologie vague v; de la suite p, on peut donc extraire une sous-suite
Iy QUi Converge, pour v, Vers une mesure u qui est positive et de norme
au plus égale a 1.

2) Démontrons que u est de norme 1. Soit K un voisinage compact de 0
dans I' et x la fonction caractéristique de k. La fonction y est intégrale
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pour la mesure de Haar /4 dans I'; définissons y: X — C, par:

1) = [rx) () dh(y)

% appartient & C, (X). Pour une mesure de Borel réguliere v telle que |
| v H < oo ona

v() =[x dv) = [y xGdh@)dv(x) = [xG) V@) dh@) (1)
Puisque y appartient & C, (X)),

lim (:ur(n)()d) = M(X)

n— a0

et en utilisant (1) on en déduit:

lim [ 7)) i@ dh () = [x @) a @) dh(y).

h—

Gréce au théoréme de convergence dominée de Lebesgue, on obtient:
fxfMdh@) = np@)dy,
k

et, par conséquent

[fdh@) = wdh(y). (2)
k k
Les fonctions f et p sont continues au point 0, on déduit de (2):

n(0) =f(0) = 1.
La mesure u, mesure positive, est de norme 1.

3) Démontrons que f est la transformée de F ourier-Stieltjés de u et que
la suite (u,) converge vaguement vers u. Il résulte de la proposition A que,
pour tout ye T, /jtt(n) (y) converge vers u (v), par conséquent, on a f = pu.
Comme I’application p — u est injective on en déduit que la suite u, ne
posséde qu’un point d’accumulation p; elle converge donc vers u.

§4. LES ESPACE-MESURES
4.1. Existence de familles suffisantes dénombrables

Prbposition D. — Si X est un localement compact et posséde une base
topologique dénombrable, alors il existe un sous-ensemble # de
%.= %.(X,R) qui est a la fois dénombrable, partout dense dans €. et
suffisant. (¢, muni de la topologie de la convergence uniforme.)
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