Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 17 (1971)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUITES ÉQUIRÉPARTIES DANS UN ESPACE LOCALEMENT

COMPACT

Autor: Lesca, Jacques

Kapitel: §3. Seconde connexion de Galois

DOI: https://doi.org/10.5169/seals-44585

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Si T est une partie de \mathcal{T} , T^* est un sous-espace vectoriel de \mathcal{B} fermé pour la topologie de la convergence uniforme.

Nous dirons qu'une partie B de \mathcal{B} est suffisante si $B^* = \mathscr{C}_c^*$ ou si la topologie initiale dans M_1^+ correspondant à B est la topologie vague.

2.2. Détermination de \mathscr{C}_c^{**}

 \mathscr{C}_c^* est la plus grande partie de \mathscr{B} telle que la topologie initiale correspondante est la topologie vague.

Proposition A. — Soit X un espace localement compact dénombrable à l'infini, alors:

$$\mathscr{C}_{c}^{**} = \mathscr{C}_{b}(=\mathscr{C}_{b}^{**})$$

Démonstration. Si $f \in \mathcal{C}_b$, d'après [Bourbaki [1], Proposition 9, p. 61] l'application $\mu \to \mu(f)$ est continue pour la topologie vague dans $M_1^+(X)$, et par conséquent $f \in \mathcal{C}_c^{**}$. Alors $\mathcal{C}_b \subset \mathcal{C}_c^{**}$ et

$$\mathscr{C}_b^{**} \subset \mathscr{C}_b^{**}. \tag{1}$$

Prouvons maintenant qu'une fonction de \mathscr{C}_c^{**} est nécessairement continue. Soit f une fonction non continue au point $x_o \in X$. Alors il existe c > 0 tel que, dans tout voisinage de x_o il existe x tel que $|f(x) - f(x_o)| \ge c$.

A chaque voisinage V associons la famille $\varphi(V)$ des mesures de Dirac en chaque point x de V ou $|f(x) - f(x_o)| \ge c$. Alors $\varphi(V)$ est une base de filtre dans \mathscr{T} , filtre qui converge vers la mesure de Dirac au point x_o pour la topologie vague. L'image par l'application $\mu \to \mu(f)$ de cette base de filtre ne converge pas vers $\mu_o(f)$.

Il en résulte que f n'appartient pas à \mathscr{C}_c^{**} ; on a donc

$$\mathscr{C}_c^{**} \subset \mathscr{C}_b \,. \tag{2}$$

Les inclusions (1) et (2) entraı̂nent bien l'égalité des trois ensembles \mathscr{C}_c^{**} , \mathscr{C}_b , \mathscr{C}_b^{**} .

§ 3. SECONDE CONNEXION DE GALOIS

3.1. Définitions

Fixons une mesure $\mu_o \in M_1^+(X)$ et introduisons la nouvelle relation entre une topologie $\tau \in \mathcal{F}$ et une application $f \in \mathcal{B}$: « l'application $\mu \to \mu(f)$

est continue au point μ_o pour la topologie τ »; relation qu'on écrit $\tau \perp f$. Pour une partie $B \subset \mathcal{B}$ posons

$$B^o = \{ \tau \in \mathcal{T} : \forall f \in B, \tau \perp f \}.$$

Pour une partie T de \mathcal{T} posons

$$T^o = \{ f \in B : \forall \tau \in T, \tau \perp f \} .$$

Les remarques écrites dans le paragraphe 2, à propos de l'application *, peuvent être reprises sans grand changement pour l'application o. Nous nous intéressons aux parties B de \mathcal{B} , telles que $B^o = \mathscr{C}_c^{oo}$ (les voisinages de μ_o pour la topologie initiale correspondante à B sont les mêmes que les voisinages de μ_o pour la topologie vague).

3.2. Etude de \mathscr{C}_c^{oo} . Démonstration de la première partie du Théorème A

Proposition B. —
$$\mathscr{C}_c^{oo} = \mathscr{R}^{oo}$$
.

Démonstration. D'après Bourbaki [[1] §5.3, proposition 7], si $f \in \mathcal{R} = \mathcal{R}(X, \mathbb{C})$, l'application $\mu \to \mu(f)$ est continue au point μ_o , si les applications $\mu \to \mu(g)$ sont continues au point μ_o pour tout $g \in \mathcal{C}_b$; où ce qui est équivalent d'après la proposition A, si les applications $\mu \to \mu(g)$ sont continues au point μ_o pour tout $g \in \mathcal{C}_c$. On a donc:

$$\mathcal{R} \subset \mathcal{C}_c^{oo}.$$

On en déduit: $\mathscr{R}^{oo} \subset \mathscr{C}^{oooo} = \mathscr{C}^{oo}$. D'autre part, de $\mathscr{R} \supset \mathscr{C}_c$ on déduit $\mathscr{R}^{oo} \supset \mathscr{C}^{oo}$, ce qui achève la démonstration.

Proposition C. —
$$\mathscr{C}^{oo} = \mathscr{R}' = \mathscr{R}'(X)$$
.

Démonstration. Puisque \mathscr{R}' est inclus dans \mathscr{R} , $\mathscr{R}'^{oo} \subset \mathscr{R}^{oo} = \mathscr{C}_c^{oo}$. Montrons que $\mathscr{R}'^{oo} \supset \mathscr{C}_c^{oo}$.

1) Soit h une fonction borélienne bornée, nulle en dehors d'un compact et qui vaut o, μ_o -presque partout, vérifions que h appartient à \mathcal{R}'^{oo} . Supposons |h| bornée par $c \neq 0$, et majorons $\frac{1}{c}h$ par une fonction h' de \mathcal{R}' qui est nulle μ_o -presque partout.

Pour toute mesure μ de M_1^+ on a $|\mu(h)| \leq \mu(h')$. Par hypothèse si τ est une topologie de \mathcal{R}'^{oo} , la fonction $\mu \to \mu(h')$ tend vers 0 quand μ tend vers μ_o pour la topologie τ .

Il en est de même des fonctions $\mu \to \mu \left(\frac{1}{c}h\right)$ et $\mu \to \mu(h)$.

2) Montrons que si $f \in \mathcal{C}_c$, alors $f \in \mathcal{R}'^{oo}$. Si $f \in \mathcal{C}^c$, l'ensemble des α tels que $\mu_o\left(f^{-1}\left(\{\alpha\}\right)\right)$ n'est pas nul et est au plus dénombrable, son complémentaire est dense dans \mathbf{R} . On en déduit que pour tout ε positif on peut trouver g, une combinaison linéaire finie, de fonctions de \mathcal{R} et une fonction h, nulle en dehors d'un compact et qui vaut o μ_o -presque partout, telles que:

$$|f - (g+h)| \le \varepsilon.$$

Puisque \mathcal{R}'^{00} est fermée pour la topologie de la convergence uniforme on en déduit que

$$f \in \mathcal{R}'^{oo}$$
.

3) Puisque d'après 2), $\mathscr{C}_c \subset \mathscr{R}'^{oo}$ on a bien

$$\mathscr{C}_{c}^{'00} \subset \mathscr{R}^{'0000} = \mathscr{R}^{'00} \,. \tag{0}$$

La première partie du théorème A est la conséquence du théorème C. La démonstration de la deuxième partie du théorème A est repoussée au §5.3.

3.3. Cas des groupes abéliens. Démonstration du Théorème B

Le théorème B est la conséquence de la proposition suivante (bien connu en théorie des probabilités quand le groupe X est le groupe additif des réels).

Proposition D. — Soient X un groupe abélien localement compact, Γ le groupe topologique de ses caractères continus et (μ_n) une suite de mesures de $M_1^+(X)$.

Si la suite $(\hat{\mu}_n)$ des transformées de Fourier-Sieltjès converge ponctuellement vers une fonction f et si f est continue à l'origine, alors la suite (μ_n) converge dans M_1^+ , pour la topologie vague, vers une mesure dont la transformée de Fourier-Sieltjès est f.

Démonstration. 1) La sphère $\{\mu: ||\mu|| \le 1\}$ est compacte pour la topologie vague v; de la suite μ_n on peut donc extraire une sous-suite $\mu_{\tau(n)}$ qui converge, pour v, vers une mesure μ qui est positive et de norme au plus égale à 1.

2) Démontrons que μ est de norme 1. Soit K un voisinage compact de 0 dans Γ et χ la fonction caractéristique de k. La fonction χ est intégrale

pour la mesure de Haar h dans Γ ; définissons $\hat{\chi}: X \to \mathbb{C}$, par:

$$\hat{\chi}(x) = \int \gamma(x) \chi(\gamma) dh(\gamma)$$

 $\hat{\chi}$ appartient à $C_o(X)$. Pour une mesure de Borel régulière ν telle que $||v|| < \infty$ on a

$$v(\hat{\chi}) = \int \hat{\chi}(x) \, dv(x) = \iint \gamma(x) \, \chi(\gamma) \, dh(\gamma) \, dv(x) = \int \chi(\gamma) \, \hat{v}(\gamma) \, dh(\gamma) \quad (1)$$

Puisque $\hat{\chi}$ appartient à $C_{\alpha}(X)$,

$$\lim_{n\to\infty} \left(\mu_{\tau(n)}(\chi)\right) = \mu(\chi)$$

et en utilisant (1) on en déduit:

$$\lim_{n\to\infty} \int \chi(\gamma) \,\hat{\mu}_{\tau(n)}(\gamma) \,dh(\gamma) = \int \chi(\gamma) \,\hat{\mu}(\gamma) \,dh(\gamma).$$

Grâce au théorème de convergence dominée de Lebesgue, on obtient:

$$\int \chi(\gamma) f(\gamma) dh(\gamma) = \int_{k} \hat{\mu}(\gamma) d\gamma,$$

et, par conséquent

$$\int_{k} f(\gamma) \, dh(\gamma) = \int_{k} \hat{\mu}(\gamma) \, dh(\gamma) \,. \tag{2}$$

Les fonctions f et μ sont continues au point 0, on déduit de (2):

$$\hat{\mu}(0) = f(0) = 1$$
.

La mesure μ , mesure positive, est de norme 1.

3) Démontrons que f est la transformée de Fourier-Stieltjès de μ et que la suite (μ_n) converge vaguement vers μ . Il résulte de la proposition A que, pour tout $\gamma \in \Gamma$, $\hat{\mu}_{\tau(n)}(\gamma)$ converge vers $\mu(\nu)$, par conséquent, on a $f = \mu$. Comme l'application $\mu \to \hat{\mu}$ est injective on en déduit que la suite μ_n ne possède qu'un point d'accumulation μ ; elle converge donc vers μ .

§ 4. Les espace-mesures

4.1. Existence de familles suffisantes dénombrables

Proposition D. — Si X est un localement compact et possède une base topologique dénombrable, alors il existe un sous-ensemble \mathscr{F} de $\mathscr{C}_c = \mathscr{C}_c(X, \mathbf{R})$ qui est à la fois dénombrable, partout dense dans \mathscr{C}_c et suffisant. (\mathscr{C}_c muni de la topologie de la convergence uniforme.)