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Si T est une partie de 3T, T* est un sous-espace vectoriel de $ fermé pour
la topologie de la convergence uniforme.

Nous dirons qu'une partie B de & est suffisante si B* c ou si la

topologie initiale dans M\ correspondant à B est la topologie vague.

2.2. Détermination de

est la plus grande partie de & telle que la topologie initiale
correspondante est la topologie vague.

Proposition A. — Soit X un espace localement compact dénombrable
à l'infini, alors:

#**)

Démonstration. Si d'après [Bourbaki [1], Proposition 9,

p. 61] l'application p.-* pif) est continue pour la topologie vague dans

M0, et par conséquent fe Alors c &** et

(1)

Prouvons maintenant qu'une fonction de est nécessairement
continue. Soit / une fonction non continue au point x0 e X. Alors il existe

c > 0 tel que, dans tout voisinage de x0 il existe x tel que | / (x) - / (x0) | > c.

A chaque voisinage V associons la famille cp (V) des mesures de Dirac
en chaque point x de f ou |/(x) — fixf) | > c. Alors cp (V) est une base
de filtre dans filtre qui converge vers la mesure de Dirac au point x0

pour la topologie vague. L'image par l'application p pif) de cette base
de filtre ne converge pas vers p0 if).

Il en résulte que / n'appartient pas à ; on a donc

#**<=«;. (2)

Les inclusions (1) et (2) entraînent bien l'égalité des trois ensembles

tf**, Vb, Vf*.

§ 3. Seconde connexion de Galois

3.1. Définitions

Fixons une mesure /<„ e M,+ (X) et introduisons la nouvelle relation
entre une topologie t e F et une application/eJ:« l'application /t -> // (/

L'Enseignement mathém., t. XVII, fasc. 3-4. 22
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est continue au point p0 pour la topologie t »; relation qu'on écrit t _L /.
Pour une partie B c $ posons

B°{te5"ry/eß,! 1/}.
Pour une partie Tde STposons

T° {/EB:VtgT,T1/}.
Les remarques écrites dans le paragraphe 2, à propos de l'application *,

peuvent être reprises sans grand changement pour l'application o. Nous
nous intéressons aux parties B de telles que B° ^°c0 (les voisinages de

fi0 pour la topologie initiale correspondante à B sont les mêmes que les

voisinages de p0 pour la topologie vague).

3.2. Etude de °c°. Démonstration de la première partie du Théorème A

Proposition B. — °c° 0t00.

Démonstration. D'après Bourbaki [[1] §5.3, proposition 7], si

&(X,C), l'application p-> p(f) est continue au point p0, si les

applications p -> p (g) sont continues au point p0 pour tout g e ; où ce

qui est équivalent d'après la proposition A, si les applications p - p (g)
sont continues au point jxQ pour tout g e ^c. On a donc :

@ a %°c°

On en déduit: 0t00 c cß0000 ^00. D'autre part, de M T!c on déduit
M00 =3 c00, ce qui achève la démonstration.

Proposition C. — ^00 M' 0t' (X).

Démonstration. Puisque M' est inclus dans 0l'00 a 0l00 ^°c°.

Montrons que M'00 =>

1) Soit h une fonction borélienne bornée, nulle en dehors d'un compact
et qui vaut o, ^-presque partout, vérifions que h appartient à 0T00. Suppo-

,i 1

sons h bornée par c ^ 0, et majorons - h par une fonction h' de 0P quiil- c

est nulle p0-presque partout.

Pour toute mesure p de on a | p(h) | ^ p(h'). Par hypothèse si t
est une topologie de M'00, la fonction p jx {h') tend vers 0 quand p tend

vers p0 pour la topologie t.
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Il en est de même des fonctions fi -» hj et n -+

2) Montrons que si fe alors fe 01'°°. Si fe cêc, l'ensemble des a tels que

po (/"1 ({a})) n'est pas nul et est au plus dénombrable, son complémentaire

est dense dans R. On en déduit que pour tout e positif on peut trouver g,

une combinaison linéaire finie, de fonctions de M et une fonction A, nulle

en dehors d'un compact et qui vaut o ^-presque partout, telles que :

1/ - (g+h) I < s.

Puisque M'00 est fermée pour la topologie de la convergence uniforme

on en déduit que

/e M'00.

3) Puisque d'après 2), <c c= 0t'00 on a bien

c= m'0000 0'°° (0)

La première partie du théorème A est la conséquence du théorème C.

La démonstration de la deuxième partie du théorème A est repoussée au

§5.3.

3.3. Cas des groupes abéliens. Démonstration du Théorème B

Le théorème B est la conséquence de la proposition suivante (bien connu
en théorie des probabilités quand le groupe X est le groupe additif des réels).

Proposition D. — Soient X un groupe abélien localement compact, JH le

groupe topologique de ses caractères continus et (pn) une suite de mesures
de Mt (X).

Si la suite (/}„) des transformées de Fourier-Sieltjès converge ponctuellement

vers une fonction / et si / est continue à l 'origine, alors la suite (ju„)

converge dans Mx+, pour la topologie vague, vers une mesure dont la
transformée de Fourier-Sieltjès est /.

Démonstration. 1) La sphère { p,' || M || — 1 } est compacte
pour la topologie vague v; de la suite pn on peut donc extraire une sous-suite

Px(n) qui converge, pour v, vers une mesure p qui est positive et de norme
au plus égale à 1.

2) Démontrons que p est de norme 1. Soit K un voisinage compact de 0
dans T et x la fonction caractéristique de k. La fonction x est intégrale



pour la mesure de Haar h dans T; définissons x'> X C, par:

Z (x) S y (x)

X appartient à C0 (X). Pour une mesure de Borel régulière v telle que
Il v y < oo on a

v(x) jx(x)dv(x)Jf y (x)x (y) dh (y) dv(x) J (y) v (y) (1)

Puisque x appartient à C0 X),üm (Hrwix)) y" (X)
n ^ go

et en utilisant (1) on en déduit:

lim J X(y)iïz(n)(y)dh{ y)J" y" dh
n-+co

Grâce au théorème de convergence dominée de Lebesgue, on obtient:

I Z (y)/(y) dh (y)j (v) dy
k

et, par conséquent

J /(y) dh (y)J (2)
k k

Les fonctions / et jll sont continues au point 0, on déduit de (2):îi(o)m i.
La mesure /u, mesure positive, est de norme 1.

3) Démontrons que/ est la transformée de Fourier-Stieltjès de ju et que
la suite (fin) converge vaguement vers \i. Il résulte de la proposition A que,

pour tout y e T, jix{n) (y) converge vers jll (v), par conséquent, on a / ji.
Comme l'application ji -» ji est injective on en déduit que la suite jin ne

possède qu'un point d'accumulation jx\ elle converge donc vers ji.

§4. Les espace-mesures

4.1. Existence de familles suffisantes dénombrables

Proposition D. — Si X est un localement compact et possède une base

topologique dénombrable, alors il existe un sous-ensemble de

<ßc <ßc (A, R) qui est à la fois dénombrable, partout dense dans <c et

suffisant. (ffic muni de la topologie de la convergence uniforme.)
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