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Théoréme F. — Soient (X, u) un espace-mesure, (x,) une suite p-équi-
répartie dans X et o un nombre réel (0 = o= 1).

Alors uN-presque toutes les sous-suites de la suite x, sont u-équiréparties
dans X.

1.5. Généralisation

Soit (X, u) un espace-mesure. A = (a',ﬁ),,eN*,keN* désigne une matrice
infinie de nombres réels non négatifs. On dit qu'une suite x = (x,) de points
de X est A-u-équirépartie si, pour toute fonction fe €. (X, C) la suite
n— o a* f(u,) qui existe, converge vers u (f).

Supposons que pour tout n la série Y =, a* converge et en outre que
lim,_, ., Z;‘;l at = 1, alors les théorémes A, B se généralisent sans
difficultés pour la A-u-équirépartition.

Si en outre il existe o positif tel que sup;>, ar = 0 (n~%), alors les
théoremes C, D et E et F se généralisent pour la A-u-équirépartition.

§ 2. PREMIERE CONNEXION DE (GALOIS
2.1.  Définitions

Soit X un espace topologique localement compact dénombrable a
I'infini et 7 I’ensemble des topologies sur M ] (X). Considérons la relation
suivante entre une topologie T de J et une application fde & = # (X, C):
« L application u — u(f) est continue pour T». Dans le cas ou la relation est
vraie nous écrivons 7 L f.

Si B est une partie de # posons
B* = {1eJ:yfeB,tLf}.

Si T est une partie de  posons
T* = {feB:yteT, TLf}.

(Les deux applications B — B* et T'— T* sont abusivement notés de la
méme fagon). Les images par ces applications sont dites saturées (de # (X, C)
ou de ).

Si on restreint ces applications aux saturés on a deux isomorphismes
inverses de treillis, inverses ’'un de l'autre.

Si B est une partie de 4, alors B* est un intervalle initial fermé, par
exemple si B = ¢, = %.(X, R) par définition B* = [v—][ est 'ensemble
des topologies plus fines que la topologie vague v.
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Si T est une partie de 7, T* est un sous-espace vectoriel de # fermé pour
la topologie de la convergence uniforme.

Nous dirons qu’une partie B de & est suffisante st B* = € ~ou sila
topologie initiale dans M | correspondant & B est la topologie vague.

2.2. Détermination de €**

@** est la plus grande partie de 4 telle que la topologie initiale corres-
pondante est la topologie vague.

Proposition A. — Soit X un espace localement compact dénombrable
a I'infini, alors:

G = 6, (=65

Démonstration. Si fe%,, d’aprés [Bourbaki [1], Proposition 9,
p. 61] application u — p(f) est continue pour la topologie vague dans
M 7(X), et par conséquent fe ¥**. Alors €, < €** et

Gi* < G (1)

Prouvons maintenant qu’une fonction de %F* est nécessairement
continue. Soit f une fonction non continue au point x, € X. Alors il existe
¢ > 0tel que, dans tout voisinage de x, il existe x tel que ] J(x)— f(x,)| =c.

A chaque voisinage V' associons la famille ¢ (V) des mesures de Dirac
en chaque point x de V' ou ‘f(x) — f(x,) | = c. Alors ¢ (V) est une base
de filtre dans 7, filtre qui converge vers la mesure de Dirac au point x,
pour la topologie vague. L’image par I’application u — u(f) de cette base
de filtre ne converge pas vers u, (f).

Il en résulte que f n’appartient pas a ¥**; on a donc

¢r* < G,. 2)

Les inclusions (1) et (2) entrainent bien 1'égalité des trois ensembles
CE*, G, CiF*.

§ 3. SECONDE CONNEXION DE GALOIS

3.1. Définitions

Fixons une mesure pu,e M (X) et introduisons la nouvelle relation
entre une topologie t € 7 et une application f'e Z: « I'application u — 1 (f)
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