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Théorème F. — Soient (X, fi) un espace-mesure, (x„) une suite jx-équi-

répartie dans X et a un nombre réel (0 ^ 1).

Alors fi^-presque toutes les sous-suites de la suite xn sont jx-équiréparties
dans X.

1.5. Généralisation

Soit (X, jx) un espace-mesure. A (akn)neN*>keN* désigne une matrice
infinie de nombres réels non négatifs. On dit qu'une suite x (x„) de points
de X est ^4-^-équirépartie si, pour toute fonction /e Cßc (X, C) la suite

n ir=i aknf(uk) existe, converge vers jx(f).
Supposons que pour tout n la série Yjk=i akn converge et en outre que

lim^oo Yj?=i an alors les théorèmes A, B se généralisent sans

difficultés pour la A-fi-équirépartition.
Si en outre il existe a positif tel que supf=l ak 0 (ft~a), alors les

théorèmes C, D et E et F se généralisent pour la A-^i-équirépartition.

§2. Première connexion de Galois

2.1. Définitions

Soit X un espace topologique localement compact dénombrable à

l'infini et ST l'ensemble des topologies sur M\ (X). Considérons la relation
suivante entre une topologie t de FT et une application/ de & ^ (X, C) :

« L \application fx -> fi (/) est continue pour t ». Dans le cas où la relation est

vraie nous écrivons t _L /.

Si B est une partie de & posons

B* {xeST-.yfeB ,t
Si T est une partie de FT posons

T* {f e B: y t e T, T !/}
(Les deux applications B B* et T -+ T* sont abusivement notés de la

même façon). Les images par ces applications sont dites saturées (de &(X, C)
ou de TT).

Si on restreint ces applications aux saturés on a deux isomorphismes
inverses de treillis, inverses l'un de l'autre.

Si B est une partie de âS, alors B* est un intervalle initial fermé, par
exemple si B ^C(X, R) par définition J5* est l'ensemble

des topologies plus fines que la topologie vague v.
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Si T est une partie de 3T, T* est un sous-espace vectoriel de $ fermé pour
la topologie de la convergence uniforme.

Nous dirons qu'une partie B de & est suffisante si B* c ou si la

topologie initiale dans M\ correspondant à B est la topologie vague.

2.2. Détermination de

est la plus grande partie de & telle que la topologie initiale
correspondante est la topologie vague.

Proposition A. — Soit X un espace localement compact dénombrable
à l'infini, alors:

#**)

Démonstration. Si d'après [Bourbaki [1], Proposition 9,

p. 61] l'application p.-* pif) est continue pour la topologie vague dans

M0, et par conséquent fe Alors c &** et

(1)

Prouvons maintenant qu'une fonction de est nécessairement
continue. Soit / une fonction non continue au point x0 e X. Alors il existe

c > 0 tel que, dans tout voisinage de x0 il existe x tel que | / (x) - / (x0) | > c.

A chaque voisinage V associons la famille cp (V) des mesures de Dirac
en chaque point x de f ou |/(x) — fixf) | > c. Alors cp (V) est une base
de filtre dans filtre qui converge vers la mesure de Dirac au point x0

pour la topologie vague. L'image par l'application p pif) de cette base
de filtre ne converge pas vers p0 if).

Il en résulte que / n'appartient pas à ; on a donc

#**<=«;. (2)

Les inclusions (1) et (2) entraînent bien l'égalité des trois ensembles

tf**, Vb, Vf*.

§ 3. Seconde connexion de Galois

3.1. Définitions

Fixons une mesure /<„ e M,+ (X) et introduisons la nouvelle relation
entre une topologie t e F et une application/eJ:« l'application /t -> // (/
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