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SUITES EQUIREPARTIES
DANS UN ESPACE LOCALEMENT COMPACT

par Jacques LESCA

§ 1. DEFINITIONS ET PRINCIPAUX RESULTATS

1.1.  Définition d’une suite p-équirépartie

Soient X un espace localement compact dénombrable a l'infini, ¢ une
mesure de M T (X), 'ensemble des mesures de Borel régulieres, positives,
de norme 1. Soit u = (u,) une suite de points de X, nous dirons que u est
p-équirépartie si pour toute fonction /" de %, (X, R) (ensemble des fonctions

n

réelles continues & support compact), la limite de la suite n — 1/n Y f(u;)
i=1

existe et vaut u (f). (Voir [3])

1.2.  Caractérisation des suites u-équiréparties

Soit 4 (X, C) P'ensemble de fonctions définies dans X et a valeurs
complexes, boréliennes et bornées.

Soit €, (X, C) le sous-ensemble des fonctions continues de % (X, C).

Soient Z (X, C) le sous-ensemble des fonctions intégrables au sens de
Riemann pour la mesure u (en abrégé u-Z-intégrable) c’est-a-dire des fonc-
tions de % (X, C) dont I’ensemble des points de discontinuité ont une
p-mesure nulle, %' (X) le sous-ensemble de 2 (X, C) constitu¢ par les
fonctions caractéristiques a support compact, fonctions caractéristiques
d’ensembles bornés dont la frontiére a une y-mesure nulle (ensembles dits

u-Z-intégrables).
Nous dirons qu’'une sous famille # de % (X, C) est suffisante pour lu

mesure | Si:

une suite u = (u,) est u-équirépartie si et seulement si pour tout f€ & on a

1 n
lim (~ > f(u») = u(f).

n—ow \N i=1
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Théoréme A. — Soit X un espace localement compact dénombrable
a linfini et u = (u,) une suite de points de X alors

(1) Les familles %, (X, R) (par définition), % (X, C) et %' (X) sont
suffisantes pour la mesure u.

(2) St en outre X posséde une base topologique dénombrable Z (X, C)
est la plus grande famille suffisante pour la mesure u.

Rappelons qu’un espace localement compact possédant une base topo-
logique dénombrable est métrisable et par conséquent dénombrable a
Pinfini.

Théoreme B. — Soit X un groupe abélien topologique localement
compact. Alors la famille I" de ses caractéres continus est suffisante pour
toute mesure .

1.3.  Existence de suites u-équiréparties

Par la suite nous supposons que X est un espace topologique localement
compact possédant une base dénombrable et muni d’une mesure u e M | (X);
on désigne le tout par espace-mesure (X, ).

Soit (X, y) un espace-mesure. X désigne le produit d’une suite d’espaces
identiques & X et uN la « mesure produit » de mesures toutes identiques a .

La Shift-Transformation o est I'application de XN dans lui-méme qui &
x = (X, X5, ...) fait correspondre o (x) = (xy,x3,...). Si J = {ji, .., /n}
est une partie finie de N, nous lui faisons correspondre X7 produit de r
copies de X, X7 est muni de la mesure produit notée u’; (X7, u’) est un
espace mesure. La projection P;: X N X7 est définie par

Pi(x) = Pi((xg,..)) = (%), X s X,)

P; est une application continue et « mesure invariante ».

Théoréme C. — Soient (X, u) un espace-mesure, u = (u,) une suite
croissante d’entiers et J une partie finie de N.

Alors pour pN-presque tout x = (x,) € XN, la suite n —» P, (¢"» (x)) est
w’-équirépartie dans X”.

Comme corollaire du Théoréme C on obtient, en faisant J = {1} et
u, = n: uN-presque toute suite est u-équirépartie. En fait ce dernier résultat

n

pourrait étre déduit du théoréme ergodique individuel (car o est une applica-
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tion mélangeante et par conséquent ergodique), ou alors encore plus simple-
ment de la loi forte des grands nombres.

Si X est compact alors (X~, u¥) est un espace-mesure.

Théoréme D. — Si (X, 1) est un espace-mesure et si, en outre, X est
compact, si (u,) est une suite croissante d’entiers, alors, pour uN-presque tout
x la suite 7 — o™ (x) est uN-équirépartie dans X™.

(Il semble que, mis & part le cas ou u, = n, le théoréme D ne peut €tre
déduit du théoréme ergodique.)

1.4. Espaces produit

Soit (X, u) et (Y, v) deux espaces-mesures, considérons ’espace mesure
(Xx Y, uxv). Lespace Q = (Xx Y)Y muni de la mesure t = (uxv)N
est naturellement identifié¢ a 'espace produit X~ x YN muni de la mesure
produit uN x W,

Il résulte du théoréme D que, pour - presque toute suite ((x,, y,)) de
XN x YN la suite n - (x,,,) est u x v-équirépartie. Ce résultat est

précisé par:

Théoréme E. — Soient (X, ), (Y, v) deux espaces-mesures et y = (y,)
une suite v-équirépartie dans Y. Alors, pour uX-presque tout x = (x,)e XN,
la suite n — (x,, y,) est u x v-équirépartie dans X X Y.

Si Z est un espace localement compactet /: X x Y — Z une application
continue, la suite n — f(x,, y,) est alors équirépartie dans Z pour la mesure
«image par fde u x v». Utilisons cette derniére remarque, nous obtenons
par exemple:

Si (y,) est une suite de réels équirépartie modulo 1 au sens habituel:
(la suite des images dans R/Z est h-équirépartie, h étant la mesure de Haar),
alors la suite u, y, est équirépartie modulo 1 pour uN-presque toute suite (u,)
d’entiers positifs, p étant une mesure quelconque dans I’ensemble des entiers
positifs.

A une sous-suite (x,,y) d’une suite (x,) faisons correspondre la fonction
caractéristique de Pensemble de ses indices ({ o(n) : ne N }). L’ensemble des
sous-suites de (x,) est ainsi identifié & I'ensemble {0, 1 }N u, désigne la
mesure définie dans {0, 1 } par u, ({1}) = a.
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Théoréme F. — Soient (X, u) un espace-mesure, (x,) une suite p-équi-
répartie dans X et o un nombre réel (0 = o= 1).

Alors uN-presque toutes les sous-suites de la suite x, sont u-équiréparties
dans X.

1.5. Généralisation

Soit (X, u) un espace-mesure. A = (a',ﬁ),,eN*,keN* désigne une matrice
infinie de nombres réels non négatifs. On dit qu'une suite x = (x,) de points
de X est A-u-équirépartie si, pour toute fonction fe €. (X, C) la suite
n— o a* f(u,) qui existe, converge vers u (f).

Supposons que pour tout n la série Y =, a* converge et en outre que
lim,_, ., Z;‘;l at = 1, alors les théorémes A, B se généralisent sans
difficultés pour la A-u-équirépartition.

Si en outre il existe o positif tel que sup;>, ar = 0 (n~%), alors les
théoremes C, D et E et F se généralisent pour la A-u-équirépartition.

§ 2. PREMIERE CONNEXION DE (GALOIS
2.1.  Définitions

Soit X un espace topologique localement compact dénombrable a
I'infini et 7 I’ensemble des topologies sur M ] (X). Considérons la relation
suivante entre une topologie T de J et une application fde & = # (X, C):
« L application u — u(f) est continue pour T». Dans le cas ou la relation est
vraie nous écrivons 7 L f.

Si B est une partie de # posons
B* = {1eJ:yfeB,tLf}.

Si T est une partie de  posons
T* = {feB:yteT, TLf}.

(Les deux applications B — B* et T'— T* sont abusivement notés de la
méme fagon). Les images par ces applications sont dites saturées (de # (X, C)
ou de ).

Si on restreint ces applications aux saturés on a deux isomorphismes
inverses de treillis, inverses ’'un de l'autre.

Si B est une partie de 4, alors B* est un intervalle initial fermé, par
exemple si B = ¢, = %.(X, R) par définition B* = [v—][ est 'ensemble
des topologies plus fines que la topologie vague v.
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