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SUITES EQUIREPARTIES
DANS UN ESPACE LOCALEMENT COMPACT

par Jacques LESCA

§ 1. DEFINITIONS ET PRINCIPAUX RESULTATS

1.1.  Définition d’une suite p-équirépartie

Soient X un espace localement compact dénombrable a l'infini, ¢ une
mesure de M T (X), 'ensemble des mesures de Borel régulieres, positives,
de norme 1. Soit u = (u,) une suite de points de X, nous dirons que u est
p-équirépartie si pour toute fonction /" de %, (X, R) (ensemble des fonctions

n

réelles continues & support compact), la limite de la suite n — 1/n Y f(u;)
i=1

existe et vaut u (f). (Voir [3])

1.2.  Caractérisation des suites u-équiréparties

Soit 4 (X, C) P'ensemble de fonctions définies dans X et a valeurs
complexes, boréliennes et bornées.

Soit €, (X, C) le sous-ensemble des fonctions continues de % (X, C).

Soient Z (X, C) le sous-ensemble des fonctions intégrables au sens de
Riemann pour la mesure u (en abrégé u-Z-intégrable) c’est-a-dire des fonc-
tions de % (X, C) dont I’ensemble des points de discontinuité ont une
p-mesure nulle, %' (X) le sous-ensemble de 2 (X, C) constitu¢ par les
fonctions caractéristiques a support compact, fonctions caractéristiques
d’ensembles bornés dont la frontiére a une y-mesure nulle (ensembles dits

u-Z-intégrables).
Nous dirons qu’'une sous famille # de % (X, C) est suffisante pour lu

mesure | Si:

une suite u = (u,) est u-équirépartie si et seulement si pour tout f€ & on a

1 n
lim (~ > f(u») = u(f).

n—ow \N i=1
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Théoréme A. — Soit X un espace localement compact dénombrable
a linfini et u = (u,) une suite de points de X alors

(1) Les familles %, (X, R) (par définition), % (X, C) et %' (X) sont
suffisantes pour la mesure u.

(2) St en outre X posséde une base topologique dénombrable Z (X, C)
est la plus grande famille suffisante pour la mesure u.

Rappelons qu’un espace localement compact possédant une base topo-
logique dénombrable est métrisable et par conséquent dénombrable a
Pinfini.

Théoreme B. — Soit X un groupe abélien topologique localement
compact. Alors la famille I" de ses caractéres continus est suffisante pour
toute mesure .

1.3.  Existence de suites u-équiréparties

Par la suite nous supposons que X est un espace topologique localement
compact possédant une base dénombrable et muni d’une mesure u e M | (X);
on désigne le tout par espace-mesure (X, ).

Soit (X, y) un espace-mesure. X désigne le produit d’une suite d’espaces
identiques & X et uN la « mesure produit » de mesures toutes identiques a .

La Shift-Transformation o est I'application de XN dans lui-méme qui &
x = (X, X5, ...) fait correspondre o (x) = (xy,x3,...). Si J = {ji, .., /n}
est une partie finie de N, nous lui faisons correspondre X7 produit de r
copies de X, X7 est muni de la mesure produit notée u’; (X7, u’) est un
espace mesure. La projection P;: X N X7 est définie par

Pi(x) = Pi((xg,..)) = (%), X s X,)

P; est une application continue et « mesure invariante ».

Théoréme C. — Soient (X, u) un espace-mesure, u = (u,) une suite
croissante d’entiers et J une partie finie de N.

Alors pour pN-presque tout x = (x,) € XN, la suite n —» P, (¢"» (x)) est
w’-équirépartie dans X”.

Comme corollaire du Théoréme C on obtient, en faisant J = {1} et
u, = n: uN-presque toute suite est u-équirépartie. En fait ce dernier résultat

n

pourrait étre déduit du théoréme ergodique individuel (car o est une applica-
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tion mélangeante et par conséquent ergodique), ou alors encore plus simple-
ment de la loi forte des grands nombres.

Si X est compact alors (X~, u¥) est un espace-mesure.

Théoréme D. — Si (X, 1) est un espace-mesure et si, en outre, X est
compact, si (u,) est une suite croissante d’entiers, alors, pour uN-presque tout
x la suite 7 — o™ (x) est uN-équirépartie dans X™.

(Il semble que, mis & part le cas ou u, = n, le théoréme D ne peut €tre
déduit du théoréme ergodique.)

1.4. Espaces produit

Soit (X, u) et (Y, v) deux espaces-mesures, considérons ’espace mesure
(Xx Y, uxv). Lespace Q = (Xx Y)Y muni de la mesure t = (uxv)N
est naturellement identifié¢ a 'espace produit X~ x YN muni de la mesure
produit uN x W,

Il résulte du théoréme D que, pour - presque toute suite ((x,, y,)) de
XN x YN la suite n - (x,,,) est u x v-équirépartie. Ce résultat est

précisé par:

Théoréme E. — Soient (X, ), (Y, v) deux espaces-mesures et y = (y,)
une suite v-équirépartie dans Y. Alors, pour uX-presque tout x = (x,)e XN,
la suite n — (x,, y,) est u x v-équirépartie dans X X Y.

Si Z est un espace localement compactet /: X x Y — Z une application
continue, la suite n — f(x,, y,) est alors équirépartie dans Z pour la mesure
«image par fde u x v». Utilisons cette derniére remarque, nous obtenons
par exemple:

Si (y,) est une suite de réels équirépartie modulo 1 au sens habituel:
(la suite des images dans R/Z est h-équirépartie, h étant la mesure de Haar),
alors la suite u, y, est équirépartie modulo 1 pour uN-presque toute suite (u,)
d’entiers positifs, p étant une mesure quelconque dans I’ensemble des entiers
positifs.

A une sous-suite (x,,y) d’une suite (x,) faisons correspondre la fonction
caractéristique de Pensemble de ses indices ({ o(n) : ne N }). L’ensemble des
sous-suites de (x,) est ainsi identifié & I'ensemble {0, 1 }N u, désigne la
mesure définie dans {0, 1 } par u, ({1}) = a.
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Théoréme F. — Soient (X, u) un espace-mesure, (x,) une suite p-équi-
répartie dans X et o un nombre réel (0 = o= 1).

Alors uN-presque toutes les sous-suites de la suite x, sont u-équiréparties
dans X.

1.5. Généralisation

Soit (X, u) un espace-mesure. A = (a',ﬁ),,eN*,keN* désigne une matrice
infinie de nombres réels non négatifs. On dit qu'une suite x = (x,) de points
de X est A-u-équirépartie si, pour toute fonction fe €. (X, C) la suite
n— o a* f(u,) qui existe, converge vers u (f).

Supposons que pour tout n la série Y =, a* converge et en outre que
lim,_, ., Z;‘;l at = 1, alors les théorémes A, B se généralisent sans
difficultés pour la A-u-équirépartition.

Si en outre il existe o positif tel que sup;>, ar = 0 (n~%), alors les
théoremes C, D et E et F se généralisent pour la A-u-équirépartition.

§ 2. PREMIERE CONNEXION DE (GALOIS
2.1.  Définitions

Soit X un espace topologique localement compact dénombrable a
I'infini et 7 I’ensemble des topologies sur M ] (X). Considérons la relation
suivante entre une topologie T de J et une application fde & = # (X, C):
« L application u — u(f) est continue pour T». Dans le cas ou la relation est
vraie nous écrivons 7 L f.

Si B est une partie de # posons
B* = {1eJ:yfeB,tLf}.

Si T est une partie de  posons
T* = {feB:yteT, TLf}.

(Les deux applications B — B* et T'— T* sont abusivement notés de la
méme fagon). Les images par ces applications sont dites saturées (de # (X, C)
ou de ).

Si on restreint ces applications aux saturés on a deux isomorphismes
inverses de treillis, inverses ’'un de l'autre.

Si B est une partie de 4, alors B* est un intervalle initial fermé, par
exemple si B = ¢, = %.(X, R) par définition B* = [v—][ est 'ensemble
des topologies plus fines que la topologie vague v.
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Si T est une partie de 7, T* est un sous-espace vectoriel de # fermé pour
la topologie de la convergence uniforme.

Nous dirons qu’une partie B de & est suffisante st B* = € ~ou sila
topologie initiale dans M | correspondant & B est la topologie vague.

2.2. Détermination de €**

@** est la plus grande partie de 4 telle que la topologie initiale corres-
pondante est la topologie vague.

Proposition A. — Soit X un espace localement compact dénombrable
a I'infini, alors:

G = 6, (=65

Démonstration. Si fe%,, d’aprés [Bourbaki [1], Proposition 9,
p. 61] application u — p(f) est continue pour la topologie vague dans
M 7(X), et par conséquent fe ¥**. Alors €, < €** et

Gi* < G (1)

Prouvons maintenant qu’une fonction de %F* est nécessairement
continue. Soit f une fonction non continue au point x, € X. Alors il existe
¢ > 0tel que, dans tout voisinage de x, il existe x tel que ] J(x)— f(x,)| =c.

A chaque voisinage V' associons la famille ¢ (V) des mesures de Dirac
en chaque point x de V' ou ‘f(x) — f(x,) | = c. Alors ¢ (V) est une base
de filtre dans 7, filtre qui converge vers la mesure de Dirac au point x,
pour la topologie vague. L’image par I’application u — u(f) de cette base
de filtre ne converge pas vers u, (f).

Il en résulte que f n’appartient pas a ¥**; on a donc

¢r* < G,. 2)

Les inclusions (1) et (2) entrainent bien 1'égalité des trois ensembles
CE*, G, CiF*.

§ 3. SECONDE CONNEXION DE GALOIS

3.1. Définitions

Fixons une mesure pu,e M (X) et introduisons la nouvelle relation
entre une topologie t € 7 et une application f'e Z: « I'application u — 1 (f)

L’Enseignement mathém., t. XVII, fasc. 3-4. 22
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est continue au point p, pour la topologie 7 »; relation qu’on écrit t L f.
Pour une partie B = # posons

B ={teJ:yfeB,tLf}.
Pour une partie T de I posons
T° = {feB:yteT,t Lf}.

Les remarques écrites dans le paragraphe 2, a propos de I’application *,
peuvent €tre reprises sans grand changement pour l’application o. Nous
nous intéressons aux parties B de 4, telles que B®° = %2° (les voisinages de
U, pour la topologie initiale correspondante a B sont les mémes que les
voisinages de p, pour la topologie vague).

3.2. Etude de €7°. Démonstration de la premiére partie du Théoréme A
Proposition B. — 62" = R°.

Démonstration. D’aprés Bourbaki [[1] §5.3, proposition 7], si
fe® =% (X, C), Papplication u— u(f) est continue au point y,, si les
applications u — u(g) sont continues au point y, pour tout g e %,; ol ce
qui est équivalent d’aprés la proposition A, si les applications p — p(g)
sont continues au point y, pour tout g e .. On a donc:

R < €.
On en déduit: #°° < €°°°° = ¥°°. D’autre part, de Z o €. on déduit
R° o> €°°, ce qui achéve la démonstration.
Proposition C. — € = R = R' (X).

Démonstration. Puisque £’ est inclus dans Z, Z'° < #°° = €°°.
Montrons que Z'°° > €’.

1) Soit & une fonction borélienne bornée, nulle en dehors d’un compact
et qui vaut o, u,-presque partout, vérifions que 4 appartient & £'°°. Suppo-

sons ' h | bornée par ¢ # 0, et majorons — & par une fonction 4" de £’ qui
c

est nulle u,-presque partout.

Pour toute mesure u de M on a l u(h) | = u (k). Par hypothése si 1
est une topologie de %', la fonction u — u (A) tend vers 0 quand u tend
vers u, pour la topologie t.
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1
Il en est de méme des fonctions u — p (c h) et u— uh).

2) Montrons que si f€ 4., alors fe Z'°. Si f€ €5, ’ensemble des o tels que
u,(f 1 ({«})) n’est pas nul et est au plus dénombrable, son complémentaire
est dense dans R. On en déduit que pour tout ¢ positif on peut trouver g,
une combinaison linéaire finie, de fonctions de £ et une fonction £, nulle
en dehors d’un compact et qui vaut o p,-presque partout, telles que:

lf —(g+h)| =<c¢.

Puisque #'°° est fermée pour la topologie de la convergence uniforme
on en déduit que

feRr ™.
3) Puisque d’aprés 2), ¥. < £'°° on a bien
(g;oo c P00 — oo (O)

La premiére partie du théoréme A est la conséquence du théoréme C,
La démonstration de la deuxiéme partie du théoréme A est repoussée au
§5.3.

3.3. Cas des groupes abéliens. Démonstration du Théoréme B

Le théoréme B est la conséquence de la proposition suivante (bien connu
en théorie des probabilités quand le groupe X est le groupe additif des réels).

Proposition D. — Soient X un groupe abélien localement compact, I le
groupe topologique de ses caractéres continus et (u,) une suite de mesures
de M| (X).

Si la suite (i) des transformées de Fourier-Sieltiés converge ponctuel-
lement vers une fonction f et si f est continue a [’origine, alors la suite (u,)
converge dans M |, pour la topologie vague, vers une mesure dont la trans-
formée de Fourier-Sieltjés est f.

Démonstration. 1) La sphére { u: || Jli H =11} est compacte
pour la topologie vague v; de la suite p, on peut donc extraire une sous-suite
Iy QUi Converge, pour v, Vers une mesure u qui est positive et de norme
au plus égale a 1.

2) Démontrons que u est de norme 1. Soit K un voisinage compact de 0
dans I' et x la fonction caractéristique de k. La fonction y est intégrale
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pour la mesure de Haar /4 dans I'; définissons y: X — C, par:

1) = [rx) () dh(y)

% appartient & C, (X). Pour une mesure de Borel réguliere v telle que |
| v H < oo ona

v() =[x dv) = [y xGdh@)dv(x) = [xG) V@) dh@) (1)
Puisque y appartient & C, (X)),

lim (:ur(n)()d) = M(X)

n— a0

et en utilisant (1) on en déduit:

lim [ 7)) i@ dh () = [x @) a @) dh(y).

h—

Gréce au théoréme de convergence dominée de Lebesgue, on obtient:
fxfMdh@) = np@)dy,
k

et, par conséquent

[fdh@) = wdh(y). (2)
k k
Les fonctions f et p sont continues au point 0, on déduit de (2):

n(0) =f(0) = 1.
La mesure u, mesure positive, est de norme 1.

3) Démontrons que f est la transformée de F ourier-Stieltjés de u et que
la suite (u,) converge vaguement vers u. Il résulte de la proposition A que,
pour tout ye T, /jtt(n) (y) converge vers u (v), par conséquent, on a f = pu.
Comme I’application p — u est injective on en déduit que la suite u, ne
posséde qu’un point d’accumulation p; elle converge donc vers u.

§4. LES ESPACE-MESURES
4.1. Existence de familles suffisantes dénombrables

Prbposition D. — Si X est un localement compact et posséde une base
topologique dénombrable, alors il existe un sous-ensemble # de
%.= %.(X,R) qui est a la fois dénombrable, partout dense dans €. et
suffisant. (¢, muni de la topologie de la convergence uniforme.)
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Démonstration. L’ensemble des fonctions de X dans R qui ont
une limite & infini est séparable (voir Bourbaki [2], § 3, n° 3).

On en déduit, sans difficulté, que %, est séparable. Il existe donc une
sous-famille # de ¥, dénombrable et partout denses dans €.

Montrons qu’une famille & partout dense dans %, est suffisante.

Toute famille saturée de # est fermée pour la topologie de la conver-
gence uniforme et par conséquent #** qui contient & contient €. D’ou
Pon déduit que F** = F**¥*x o @** D’autre part, puisque F est inclus
dans €,, Z** contient €**. On a donc F** = @**, ce qui est une carac-
térisation des familles suffisantes.

4.2. Le point de vue ensembliste

Soient u = (u,) une suite de points d’un espace localement compact
X muni d’une mesure ue M, (X). Si M est une partic de X on note:

II(M;n) = II((u); M;n) =card{ieN:1=i=n:ue M}
= Z?=1 x ()

(x désignant la fonction caractéristique de M.)

On dira qu’une famille # de parties de X est suffisante pour la mesure v,
si la famille des fonctions caractéristiques correspondantes est suffisante
pour la mesure .

Proposition E. — Soient (X, u) un espace-mesure. Alors il existe une
famille d’ouverts de X, qui est dénombrable, qui est une base topologique
de X, et qui est suffisante pour la mesure u.

Démonstration. D’aprés la proposition D, il existe une famille &
de fonctions de €. = %, (o, R) partout dense dans %, et dénombrable.

Pour chaque fe # considérons un ouvert précompact 0, qui contient
le support de f et qui est u-Z-mesurable.

D’autre part, considérons une partie dénombrable de R, D,, qui soit
dense dans R et telle que pour tout xe D, x #0, u(f~ ' ({x}) = 0. A f
associons la famille dénombrable d’ouverts

G, ={0,nf"'(Ja,b):a,beD,,a=b}.

Considérons enfin MM’ I'union des familles ¥, lorsque f parcourt &
et montrons que I’ est une base topologique de X. Soit x un point de X
et U un ouvert contenant x; il existe une fonction continue /# a support
compact qui vaut 1 au point x et 0 sur le complémentaire de U. Soit fe &
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telle que sup,.y { lg (x) — h(x) ] } = 1/4. Soit a, b appartenant a D, tels
3 5
que 1/4 =a < 3 < 4 < b et soit Iélément de M’, £~ (Ja, b]); c’est un

ouvert contenant x et inclus dans U.

Montrons maintenant que 9t est suffisante pour la mesure p. Désignons
par M, la famille des fonctions caractéristiques des ¢léments de IN. Puisque
M < R ona

E):Roo — R0 — (620 (1)

D’autre part si M appartenant & 4, M = 0, n f~"' (la, b[), M est
inclus dans une suite d’éléments M, € ¥, tels que:

M,20,nf " ([a,b]) 2 0, f " ([a,b]).
On en déduit que la fonction caractéristique de
0,0 f " ([a, 0D,

appartient a %,
Comme M°’ est une algebre fermée pour la topologie de la convergence
uniforme, il est clair que & est inclus dans M. On en déduit

e9;"00 — (gzo c SUtOOOO — %00 . (2)

Le fait que 9" est une famille suffisant pour la mesure p, est une consé-
quence de (1) et (2).

§ 5. EXISTENCE, PROPRIETES DES SUITES U-EQUIREPARTIES
IMAGE D’UNE SUITE pU-EQUIREPARTIE

5.1. Démonstration du Théoréeme C
Image d’une suite p-équirépartie

11 est clair, puisque X” est & base dénombrable, qu’il suffit de démontrer
pour fe # (X’, R) que pour u)-presque tout x: '

1 n
lim — .; f(Py (0" (x)) = 1/ (f).

n—oo n

Nous pouvons supposer que p’ (f) = 0. Posons
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1 n
a; =a;,(x) = (PJ (O-“i(x))) et v, =9,(x) = ;z; f(a;) .

1) Notre premiére étape va consister & majorer la mesure uN de ’appli-
cation x — v, (x). Il est clair que u (v,) = 0; il est clair d’autre part que s
lp - q [ >~ Max { n; — ny:ny,n,e€J} = r les deux applications a, et q,
de XN dans X’ sont indépendantes. (Pour deux partles mesurables A, et
A, de XJonaalorsuN(a '4,) na,’ (A J) = K (a '(4,) N(a"1 (A D))
et par conséquent, i’ (a,.a,) = p (a ) (a,) =

On déduit de 13, en posant m = Max { 1f(y) ‘ yeX’}:

WNOY f@p)fla)=m*> Y 1=2m’n.

1<p<n 1<p<n
1<qg<n 1<q<n
[p—ql=<r

On en déduit: u~ (v,2) = 2m?*/n.

2) Utilisant I'inégalité de Bienaymé Tchebychef, nous obtenons une
majoration de la mesure de I’ensemble:

A,(6) = (xeX™: (0,00 =8} 4 (4) = o n = 0(1jm)(n->0).

3) On en déduit que la sous-suite # — v,2(x) converge vers 0 pour
presque tout x. En effet, ’ensemble

lim sup (4, (e)) = {x:limsup [v,2(x)| > e} = 0 U A.(s)

n— oo n=oo seN n2 <s

a pour mesure 0 quel que soit ¢ > 0.

4) Prouvons enfin que si v,2 converge vers 0, la suite v, converge vers 0.
. . - . 2
Soit, pour n € N, I’entier r défini par: r” =n < (r+1)s, alors

1 r 72 1/ J
;lzz =— - 2<LZ >+ Za (1)

n r =1

= m ((r+1)*—r?), et, par conséquent, - Y a; tend vers 0 quand n
2

02

4
tend vers + oo; — tend vers 1 quand » tend vers + co. On déduit de (1)
n ,

que si v, tend vers 0 quand r tend vers + oo, v, tend vers O quand # tend
vers + oo.
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5.2. Démonstration du Théoréeme D

Soit (X, ) un espace mesure, X compact. Nous devons prouver que
pour uN-presque tout point x e XN, et pour toute partie S de X~ qui est
pN-Z-intégrable

lim, ., 1T (05 S, m)fn = i (S), (1)

la suite v étant définie par v, = " (x).

Posons J, = { 1,2, ..., p }. Il résulte du théoréme 3.A que, pour tout p
et pour uN-presque tout x e XN la suite n — P 5, (@ (x)) est p’r-équi-
répartie dans X’P. Montrons que cette derniére assertion est équivalent a
« a"™ (x) uN-équirépartie dans XN »,

Soit, en effet, (v,) une suite de points de X™ telle que pour tout p, P Ty (v,)
est p’pP-équirépartie dans X’P; montrons tout d’abord que si K est un
compact de XN on a:

lim sup {II (v; K,n)/n} = uN(K). (2)
n—co
Posons F, = P;' (P, (K)); K étant fermé, il est Iintersection de F,.
Pour ¢ positif, on peut donc choisir k de telle sorte que

uN(F) =uN (k) + ¢/2.

Par ailleurs P, (K) est fermé et puisque X”* est normal il existe un ensemble
L, u’*%-intégrable, qui le contient et tel que

W (L) = uw* (P, (K)) + /2.
Si M = P}kl (N), il est clair que M contient K, que pu™ (M) = u(K) + ¢
et que
lim {IT(v; M;n)/n} = 1N(M).

n— o0

La relation (2) s’en déduit.

Pour obtenir (1) pour une partie u"-Z-intégrable quelconque, il suffit
d’utiliser la relation (2), d’une part pour I’adhérence de F. d’autre part pour
le complémentaire de I’'intérieur de F.

5.3. Suites adjacentes — Fin de la démonstration du Théoreme A

Soit X un espace métrique (distance notée d). On dit que deux suites
u = (u,), v = (v,) sont adjacentes si d (u,, v,) tend vers la limite 0 quand »

T e i A R B R B 5 L R Ko o T e S e,

PR ISR DI S Y DML

NS R




— 323 —

tend vers l'infini. Dans un tel espace une fonction continue a support
compact est uniformément continue. Et par conséquent:

Proposition F. — Soient (X, u) un espace-mesure. Si deux suites sont
adjacentes pour une distance d dont la topologie est équivalente a celle de
X, si ['une est u-équirépartie il en est de méme de [’autre.

La seconde partie du théoréme A est une conséquence du résultat:
« Si X posséde une base dénombrable, €°° = # = #° », conséquence de
la proposition B et de la proposition suivante.

Proposition G. — Si (X, w) est un espace-mesure, alors

€' < R .

Démonstration. Montrons que si fe £ (X, R) n’est pas u-Z-inte-
grable, alors f n’appartient pas a %;’.

Si f n’est pas u-Z-intégrable, il existe un nombre positif a et une partie
borelienne M de X de mesure positive, tels que pour tout me M

lim sup f(x) —lim inf f(x) > a.
X—m xX—=m
Soit u = (u,) une suite de points de X qui est u,-équirépartie et telle que, si
y désigne la fonction caractéristique de M

lim 3 ) = 1, () = (M) ()
(c’est dire que la « densité » des points de la suite qui appartiennent a M
égale u,(M). Une telle suite existe; pour s’en rendre compte, il suffit de
reprendre la démonstration du théoréme 3.A en « ajoutant » a la famille
« suffisante » pour y,, dénombrable, la fonction y.

Un espace localement compact a base dénombrable est métrisable. Soit
d une métrique dont la topologie est équivalente & celle de x. A partir de la
suite u, construisons deux suites u#’ et u” définies ainsi:

14

g 4
St u, ¢ M on prend ', = u’, = u,.

Si u, e M on prend v, et u”, vérifiant:

d (una u,n) = 1/n > d (una u”n) = 1/”
f(u’/n) —f(u”n) =7
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Il est clair que les suites u’ et u” sont équirépartie. D’autre part, on a

1= ) 1 , a ”
- Zf(“ i) — _Zf(u D) > - Z x (uy);
ni=1 n ni=1
les deux suites
1 n 1 n
n—-— Y fwy) e n->->Y f"
ni=1 ni=1
ne peuvent tendre toutes les deux vers u, (f) puisque

La g
lim - ) y(u) = ap, (M).
ni=1

5.4. Image d’une suite équirépartie

Soient X, Y deux espaces localement compacts et /: X — Y une applica-
tion borélienne. Si u est une mesure sur X son image par f est une mesure

notée fu (fu(4) = u(f~"' (4))).

Nous obtiendrons

Proposition H. — Soient (X, u) un «espace-mesure », Y un espace
topologique localement compact et f: X — Y une application borélienne.
Alors les assertions suivantes sont équivalentes.

(a) Pour toute fonction ge @, (Y, C), g o f est u-Z-intégrable.
(b) Pour toute fonction g, fu-%-intégrable, g o f est u-Z-intégrable.

(c) Pour toute fonction g caractéristique d’une partie de Y, fu-Z-intégrable,
g o fest u-Z-intégrable.

(d) Pour toute suite u = (u,) de points de X qui est u-équirépartie son
image fu = (f(u,)) est fu-équirépartie.

Démonstration. Les implications schématisées par:
b = ()
U U

(©) => (d) sont évidentes




— 325 —

Prouvons, pour achever la démonstration:

non (b) => non (d) .

Soit g et fu-Z-intégrable telle que g o f n’est pas p-Z-intégrable. Mais
d’aprés la proposition G, il existe une suite de points de X, u qui est p-€équi-
répartie et telle qu’on n’a pas

lim Y g (f(u)) = u(g@of) =rfu(g)-

La suite fu n’est pas fu-équirépartie.

5.5.  Suites uniformément équirépartie

Soient (X, 1) un espace mesure et u = (u,) une suite de points de X.

Nous dirons que la suite u est uniformément u-équirépartie, si, pour
toute partie M, u-R-intégrable, la suite n — IT (M; N, N+n)/n converge
vers u (M), uniformément par rapport a N.

Existe-t-il toujours des suites uniformément réparties dans un espace
mesure (X, u)? Si X est un groupe abélien compact monothétique, et u la
mesure de Haar dans X la réponse est oui. Il est clair aussi que si (X, p)
et (Y, v) sont des espaces si f: X — Y conserve la mesurabilité et est telle
que pour toute partie mesurable 4 de Y, p(f ™! (4)) = v (4); s’il existe
une suite de points de X uniformément p-équirépartie, son image par f est
une suite de points de Y uniformément-v-équirépartie.

Si p est mesure de Dirac 0, la suite u, = a est uniformément p-équirépartie,
cest dire que uN-presque toutes les suites sont uniformément équiréparties
Cependant

Proposition I. — Si (X, p) est un « espace mesure » et si u n’est pas une
mesure de Dirac, alors pour uN-presque tout x = (x,) € XN la suite (x,)
n’est pas uniformément u-équirépartie.

Démonstration. Nous mettrons en évidence 1’existence d’une
partie D de X™ qui ne contient aucune suite uniformément p-équirépartie
et dont la mesure u~ est 1.

Soit 4 un ensemble u-Z-intégrable tel que 0 < u(4) < 1. Il résulte
de la démonstration du théoréme C que, pour tout #n € N, pour u-Npresque
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tout x = x4, X,, ..., la propriété 2 (k,n): x,, €A, X4, €A, ..., X4, €A
a la fréquence égale a (u (A))". On en déduit que I’ensemble D des x € X N
tels que pour tout 7 il existe k de telle sorte qu’on ait la propriété 2 (k, n)
est un ensemble de mesure 1.

D ne contient aucune suite uniformément p-équirépartie car pour une
telle suite il existe n, pour lequel la propriété 2 (k, n,) n’a jamais lieu.

5.6. Conditions minimales d’équirépartition

On peut, dans certains cas déterminer des familles B de fonctions four-
nissant un systéme de conditions nécessaires et suffisantes pour 1’équi-
répartition d’une suite, familles qui sont minimales.

Proposition E. — Soient X un groupe abélien compact, I' le groupe de
ses caracteres continus et I'" un sous-ensemble de I' tel que

— Le caractére trivial n’appartient pas a y'.

— Si y est un caractére non trivial et j son caractére conjugué, un et
un seul des deux caracteéres y, 7 appartient a I"".

Alors I'' est une partie suffisante pour la mesure de Haar h, qui est mini-
male.

Démonstration. Il estclair que I'" est une partie suffisante pour la
mesure i puisque I est une partie suffisante pour la mesure 4. Considérons
Vo€’ et I'" =1T"— {y,}. I'"" n’est pas une partie suffisante de Z (X, C); en
effet, nous allons vérifier qu’il existe une mesure p, distincte de la mesure de

Haar # telle que, pour tout ye I'”, i (y) = h (y). Alors comme il existe une
.o 1
suite u, u-équirépartie, cette suite vérifie la condition lim = 2y (u,) = h(y),

pour tout y e I'”, elle n’est pas cependant A-équirépartie.

Considérons en effet la mesure v définie a ’aide de la fonction réelle
positive % (y,+7,) (7, est le conjugué de y,) (dv = % (y, (x)+7, (x)) dh (x))
alors on vérifie facilement que

w="hnh+v

est telle que

A
A

p(y) = h{y) =0 (yel'”),
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tandis que

w(y,) = h(y) +41 =1%.

§ 6. ESPACES PRODUIT

6.1.  Familles suffisantes dans un espace produit

Proposition F. — Soient (X, u), (Y, v) deux espaces-mesures et %
[resp. ¥7] une famille d’ouverts de X, dénombrable et suffisante pour la
mesure u [resp. v], base topologique de X [resp. Y]. Alors Mt = { U x V.
Ue, Ve } est une base topologique dénombrable de X x Y, suffisante
pour la mesure p X v,

Démonstration. I est une base dénombrable de X x Y, mon-
trons qu’elle est suffisante pour la mesure u x v. Soit une suite u = (u,)
-de points de X x Y telle que pour tout M = U x Vet :

lim {(M,n)/n} = pU-vV = puxv(M). (1)
11 est clair que la relation (1) reste vraie pour I’algébre de Boole engendrée
par la famille 9 et en particulier, qu’elle est vraie lorsqu’on remplace M
par une union finie d’éléments de la famille 9t.

Soit @ un ouvert de X x Y. @ est couvert par les éléments de la famille M
qui sont inclus dans @. Il s’en suit que pour tout ¢ > 0 il existe une union
finie S d’é¢1éments de I tels que S > O et u (O —S) = e. On en déduit que:

lim inf { T (O;n)/n} = pux v(0O). (2)

Si enfin A4 est une partie de X x Y dont la frontiére est de mesure nulle,
-on déduit, de la propriété précédente appliquée d’une part a I'intérieur de 4
et d’autre part & I’'intérieur de son complémentaire:

lim (IT (A; n)/n) = u x v(A4).

H—=>0oo

La famille 9 est donc bien suffisante pour u x v.

6.2.  Deémonstration du Théoréeme E

Utilisons % [resp. #"] une famille dénombrable suffisante pour la mesure u
[resp. v]. Pour qu’une suite u, = (x,, y,) soit u X v équirépartie, il faut et il




— 328 —

suffit que pour tout ¥ e ¥~ la suite des indices (n;) tels que y, € V ait la fré-
quence v (V), et que, la sous suite i — x,, soit u-équirépartie dans X.
Or par hypothése, la premiére condition est remplie. v fixé, la seconde
condition I’est pour uN-presque tout x = (x,) de X™ d’aprés le théoréme 3.A.
Puisque la famille ¥~ est dénombrable, la fin de la preuve est immédiate.

6.3. Démonstration du Théoréeme F

Soit a un point arbitraire de X. Définissons I’application continue f de
{0,1} x X dans X par

f(O0,x) =a f(1,x) =x.

La fonction f est continue et I'image par f de la mesure v = pu, X u estla
mesure f(v) = (1—a) 9, + au, ou §, désigne la mesure de Dirac au point a.
Alors d’aprés le théoréme E, (y,)N-presque toutes les suites (p,) de (0, 1)
sont telles que (y,, x,) est v-équirépartie, et par conséquent la suite n —
f(y,, x,) est f(v)-équirépartie. |
D’autre part, pour uN-presque toute suite (y,), o a la « fréquence »
1 — o. On déduit des deux derniers résultats, que pour ul-presque sous-
suite de x, est u-équirépartie dans X; on vérifie, facilement, en effet, que si
une suite est v-équirépartie et qu’elle contient une sous-suite de densité
1 — o, §, équirépartie, la sous-suite constituée par les « termes restants »

est u-équirépartie.
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