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SUITES ÉQUIRÉPARTIES
DANS UN ESPACE LOCALEMENT COMPACT

par Jacques Lesca

§ 1. Définitions et principaux résultats

1.1. Définition d'une suite ji-équirépartie

Soient A un espace localement compact dénombrable à l'infini, p une

mesure de M\ (A), l'ensemble des mesures de Borel régulières, positives,

de norme 1. Soit u (un) une suite de points de X, nous dirons que u est

/uéquirépartie si pour toute fonction/ de 33
c (A, R) (ensemble des fonctions

réelles continues à support compact), la limite de la suite n -> Ijn £ j (w,-)

existe et vaut ju (/). (Voir [3])

1.2. Caractirisation des suites ji-équiréparties

Soit 3b (A, C) l'ensemble de fonctions définies dans A et à valeurs

complexes, boréliennes et bornées.

Soit #b (A, C) le sous-ensemble des fonctions continues de 3d (A, C).

Soient 3k (A, C) le sous-ensemble des fonctions intégrables au sens de

Riemann pour la mesure p (en abrégé /i-JMntégrable) c'est-à-dire des fonctions

de 3b (A, C) dont l'ensemble des points de discontinuité ont une

/(-mesure nulle, 3k' (A) le sous-ensemble de 01 (A, C) constitué par les

fonctions caractéristiques à support compact, fonctions caractéristiques
d'ensembles bornés dont la frontière à une ^-mesure nulle (ensembles dits

/(-^-intégrables).

Nous dirons qu'une sous famille #" de 3b (A, C) est suffisante pour la

mesure p si:

une suite u (un) est /i-équirépartie si et seulement si pour tout fie 3F on a

n

i 1
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Théorème A. — Soit X un espace localement compact dénombrable
à l'infini et u (un) une suite de points de X alors

(1) Les familles <c (X, R) (par définition), 0t (X, C) et 0T (X) sont
suffisantes pour la mesure p.

(2) Si en outre X possède une base topologique dénombrable 0t. (X, C)
est la plus grande famille suffisante pour la mesure ju.

Rappelons qu'un espace localement compact possédant une base

topologique dénombrable est métrisable et par conséquent dénombrable à

l'infini.

Théorème B. — Soit X un groupe abélien topologique localement

compact. Alors la famille T de ses caractères continus est suffisante pour
toute mesure p.

1.3. Existence de suites p-équiréparties

Par la suite nous supposons que X est un espace topologique localement

compact possédant une base dénombrable et muni d'une mesure fie M * (X) ;

on désigne le tout par espace-mesure (X, p).
Soit (X, ii) un espace-mesure. XN désigne le produit d'une suite d'espaces

identiques à X et pN la « mesure produit » de mesures toutes identiques à ji.
La Shift-Transformation o est l'application de XN dans lui-même qui à

x (x1? x2, •••) fait correspondre a (x) (x2,x3,...). Si J { /\, ...,/„ }
est une partie finie de N, nous lui faisons correspondre XJ produit de r
copies de X, XJ est muni de la mesure produit notée pJ ; (XJ, jiJ) est un

espace mesure. La projection Pji XN -> XJ est définie par

Pj{x)Pj((Xi,...))
Pj est une application continue et « mesure invariante ».

Théorème C. — Soient (X, f) un espace-mesure, u — (,un) une suite

croissante d'entiers et J une partie finie de N.
Alors pour jiN-presque tout x (xn) e XN, la suite n — P3 (olln (x)) est

fiJ-équirépartie dans XJ.

Comme corollaire du Théorème C on obtient, en faisant J { 1 } et

un n: fif-presque toute suite est ji-équirépartie. En fait ce dernier résultat

pourrait être déduit du théorème ergodique individuel (car o est une applica-
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tion mélangeante et par conséquent ergodique), ou alors encore plus simplement

de la loi forte des grands nombres.

Si X est compact alors (XN, pN) est un espace-mesure.

Théorème D. — Si (X, p) est un espace-mesure et si, en outre, X est

compact, si (u„) est une suite croissante d'entiers, alors, pour pN-presque tout

x la suite n - otln (x) est p%-équirépartie dans ZN.

(Il semble que, mis à part le cas ou un /?, le théorème D ne peut être

déduit du théorème ergodique.)

1.4. Espaces produit

Soit (X, /*) et (7, v) deux espaces-mesures, considérons l'espace mesure

(X x 7, p x v). L'espace ß (Lx 7)N muni de la mesure t (px v)N

est naturellement identifié à l'espace produit ZN x 7N muni de la mesure

produit pN x vN.

Il résulte du théorème D que, pour t- presque toute suite ((x„, >>„)) de

XN x 7n, la suite n (x„, >>„) est p x v-équirépartie. Ce résultat est

précisé par:

Théorème E. — Soient (7, p), (7, v) deux espaces-mesures et j (>>„)

une suite v-équirépartie dans Y. Alors, pour /iN-presque tout x (x„) g 7n,
la suite n -> (xn, est p x v-équirépartie dans X X Y.

Si Z est un espace localement compact et/: X x 7 Z une application
continue, la suite n -> f (xn, y„) est alors équirépartie dans Z pour la mesure
« image par/ de p x v ». Utilisons cette dernière remarque, nous obtenons

par exemple:
Si (yn) est une suite de réels équirépartie modulo 1 au sens habituel:

(la suite des images dans R/Z est h-équirépartie, h étant la mesure de Haar),
alors la suite un yn est équirépartie modulo 1 pour /^-presque toute suite (un)

d'entiers positifs, p étant une mesure quelconque dans l'ensemble des entiers

positifs.
A une sous-suite (x(T(„)) d'une suite (x„) faisons correspondre la fonction

caractéristique de l'ensemble de ses indices ({ o{n) : n g N }). L'ensemble des

sous-suites de (x„) est ainsi identifié à l'ensemble { 0, 1 }N pa désigne la
mesure définie dans { 0, 1 } par pa ({1}) a.
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Théorème F. — Soient (X, fi) un espace-mesure, (x„) une suite jx-équi-

répartie dans X et a un nombre réel (0 ^ 1).

Alors fi^-presque toutes les sous-suites de la suite xn sont jx-équiréparties
dans X.

1.5. Généralisation

Soit (X, jx) un espace-mesure. A (akn)neN*>keN* désigne une matrice
infinie de nombres réels non négatifs. On dit qu'une suite x (x„) de points
de X est ^4-^-équirépartie si, pour toute fonction /e Cßc (X, C) la suite

n ir=i aknf(uk) existe, converge vers jx(f).
Supposons que pour tout n la série Yjk=i akn converge et en outre que

lim^oo Yj?=i an alors les théorèmes A, B se généralisent sans

difficultés pour la A-fi-équirépartition.
Si en outre il existe a positif tel que supf=l ak 0 (ft~a), alors les

théorèmes C, D et E et F se généralisent pour la A-^i-équirépartition.

§2. Première connexion de Galois

2.1. Définitions

Soit X un espace topologique localement compact dénombrable à

l'infini et ST l'ensemble des topologies sur M\ (X). Considérons la relation
suivante entre une topologie t de FT et une application/ de & ^ (X, C) :

« L \application fx -> fi (/) est continue pour t ». Dans le cas où la relation est

vraie nous écrivons t _L /.

Si B est une partie de & posons

B* {xeST-.yfeB ,t
Si T est une partie de FT posons

T* {f e B: y t e T, T !/}
(Les deux applications B B* et T -+ T* sont abusivement notés de la

même façon). Les images par ces applications sont dites saturées (de &(X, C)
ou de TT).

Si on restreint ces applications aux saturés on a deux isomorphismes
inverses de treillis, inverses l'un de l'autre.

Si B est une partie de âS, alors B* est un intervalle initial fermé, par
exemple si B ^C(X, R) par définition J5* est l'ensemble

des topologies plus fines que la topologie vague v.



— 315 —

Si T est une partie de 3T, T* est un sous-espace vectoriel de $ fermé pour
la topologie de la convergence uniforme.

Nous dirons qu'une partie B de & est suffisante si B* c ou si la

topologie initiale dans M\ correspondant à B est la topologie vague.

2.2. Détermination de

est la plus grande partie de & telle que la topologie initiale
correspondante est la topologie vague.

Proposition A. — Soit X un espace localement compact dénombrable
à l'infini, alors:

#**)

Démonstration. Si d'après [Bourbaki [1], Proposition 9,

p. 61] l'application p.-* pif) est continue pour la topologie vague dans

M0, et par conséquent fe Alors c &** et

(1)

Prouvons maintenant qu'une fonction de est nécessairement
continue. Soit / une fonction non continue au point x0 e X. Alors il existe

c > 0 tel que, dans tout voisinage de x0 il existe x tel que | / (x) - / (x0) | > c.

A chaque voisinage V associons la famille cp (V) des mesures de Dirac
en chaque point x de f ou |/(x) — fixf) | > c. Alors cp (V) est une base
de filtre dans filtre qui converge vers la mesure de Dirac au point x0

pour la topologie vague. L'image par l'application p pif) de cette base
de filtre ne converge pas vers p0 if).

Il en résulte que / n'appartient pas à ; on a donc

#**<=«;. (2)

Les inclusions (1) et (2) entraînent bien l'égalité des trois ensembles

tf**, Vb, Vf*.

§ 3. Seconde connexion de Galois

3.1. Définitions

Fixons une mesure /<„ e M,+ (X) et introduisons la nouvelle relation
entre une topologie t e F et une application/eJ:« l'application /t -> // (/

L'Enseignement mathém., t. XVII, fasc. 3-4. 22
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est continue au point p0 pour la topologie t »; relation qu'on écrit t _L /.
Pour une partie B c $ posons

B°{te5"ry/eß,! 1/}.
Pour une partie Tde STposons

T° {/EB:VtgT,T1/}.
Les remarques écrites dans le paragraphe 2, à propos de l'application *,

peuvent être reprises sans grand changement pour l'application o. Nous
nous intéressons aux parties B de telles que B° ^°c0 (les voisinages de

fi0 pour la topologie initiale correspondante à B sont les mêmes que les

voisinages de p0 pour la topologie vague).

3.2. Etude de °c°. Démonstration de la première partie du Théorème A

Proposition B. — °c° 0t00.

Démonstration. D'après Bourbaki [[1] §5.3, proposition 7], si

&(X,C), l'application p-> p(f) est continue au point p0, si les

applications p -> p (g) sont continues au point p0 pour tout g e ; où ce

qui est équivalent d'après la proposition A, si les applications p - p (g)
sont continues au point jxQ pour tout g e ^c. On a donc :

@ a %°c°

On en déduit: 0t00 c cß0000 ^00. D'autre part, de M T!c on déduit
M00 =3 c00, ce qui achève la démonstration.

Proposition C. — ^00 M' 0t' (X).

Démonstration. Puisque M' est inclus dans 0l'00 a 0l00 ^°c°.

Montrons que M'00 =>

1) Soit h une fonction borélienne bornée, nulle en dehors d'un compact
et qui vaut o, ^-presque partout, vérifions que h appartient à 0T00. Suppo-

,i 1

sons h bornée par c ^ 0, et majorons - h par une fonction h' de 0P quiil- c

est nulle p0-presque partout.

Pour toute mesure p de on a | p(h) | ^ p(h'). Par hypothèse si t
est une topologie de M'00, la fonction p jx {h') tend vers 0 quand p tend

vers p0 pour la topologie t.
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Il en est de même des fonctions fi -» hj et n -+

2) Montrons que si fe alors fe 01'°°. Si fe cêc, l'ensemble des a tels que

po (/"1 ({a})) n'est pas nul et est au plus dénombrable, son complémentaire

est dense dans R. On en déduit que pour tout e positif on peut trouver g,

une combinaison linéaire finie, de fonctions de M et une fonction A, nulle

en dehors d'un compact et qui vaut o ^-presque partout, telles que :

1/ - (g+h) I < s.

Puisque M'00 est fermée pour la topologie de la convergence uniforme

on en déduit que

/e M'00.

3) Puisque d'après 2), <c c= 0t'00 on a bien

c= m'0000 0'°° (0)

La première partie du théorème A est la conséquence du théorème C.

La démonstration de la deuxième partie du théorème A est repoussée au

§5.3.

3.3. Cas des groupes abéliens. Démonstration du Théorème B

Le théorème B est la conséquence de la proposition suivante (bien connu
en théorie des probabilités quand le groupe X est le groupe additif des réels).

Proposition D. — Soient X un groupe abélien localement compact, JH le

groupe topologique de ses caractères continus et (pn) une suite de mesures
de Mt (X).

Si la suite (/}„) des transformées de Fourier-Sieltjès converge ponctuellement

vers une fonction / et si / est continue à l 'origine, alors la suite (ju„)

converge dans Mx+, pour la topologie vague, vers une mesure dont la
transformée de Fourier-Sieltjès est /.

Démonstration. 1) La sphère { p,' || M || — 1 } est compacte
pour la topologie vague v; de la suite pn on peut donc extraire une sous-suite

Px(n) qui converge, pour v, vers une mesure p qui est positive et de norme
au plus égale à 1.

2) Démontrons que p est de norme 1. Soit K un voisinage compact de 0
dans T et x la fonction caractéristique de k. La fonction x est intégrale



pour la mesure de Haar h dans T; définissons x'> X C, par:

Z (x) S y (x)

X appartient à C0 (X). Pour une mesure de Borel régulière v telle que
Il v y < oo on a

v(x) jx(x)dv(x)Jf y (x)x (y) dh (y) dv(x) J (y) v (y) (1)

Puisque x appartient à C0 X),üm (Hrwix)) y" (X)
n ^ go

et en utilisant (1) on en déduit:

lim J X(y)iïz(n)(y)dh{ y)J" y" dh
n-+co

Grâce au théorème de convergence dominée de Lebesgue, on obtient:

I Z (y)/(y) dh (y)j (v) dy
k

et, par conséquent

J /(y) dh (y)J (2)
k k

Les fonctions / et jll sont continues au point 0, on déduit de (2):îi(o)m i.
La mesure /u, mesure positive, est de norme 1.

3) Démontrons que/ est la transformée de Fourier-Stieltjès de ju et que
la suite (fin) converge vaguement vers \i. Il résulte de la proposition A que,

pour tout y e T, jix{n) (y) converge vers jll (v), par conséquent, on a / ji.
Comme l'application ji -» ji est injective on en déduit que la suite jin ne

possède qu'un point d'accumulation jx\ elle converge donc vers ji.

§4. Les espace-mesures

4.1. Existence de familles suffisantes dénombrables

Proposition D. — Si X est un localement compact et possède une base

topologique dénombrable, alors il existe un sous-ensemble de

<ßc <ßc (A, R) qui est à la fois dénombrable, partout dense dans <c et

suffisant. (ffic muni de la topologie de la convergence uniforme.)
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Démonstration. L'ensemble des fonctions de X dans R qui ont

une limite à l'infini est séparable (voir Bourbaki [2], § 3, n° 3).

On en déduit, sans difficulté, que (c est séparable. Il existe donc une

sous-famille de #c dénombrable et partout denses dans <tëc.

Montrons qu'une famille 3F partout dense dans 33
c est suffisante.

Toute famille saturée de 3& est fermée pour la topologie de la convergence

uniforme et par conséquent 3F** qui contient contient ^c. D'où
l'on déduit que ^**** =d <3**. D'autre part, puisque est inclus

dans ^c, 3F** contient 3>**\ On a donc 3F** fé7**, ce qui est une carac-

térisation des familles suffisantes.

4.2. Le point de vue ensembliste

Soient u (w„) une suite de points d'un espace localement compact
X muni d'une mesure pe (X). Si M est une partie de X on note:

JJ (M; n) n ((u„) ; M ; n) card { / e N : 1 ^ i n : ut e M }

Zî=iX("i)

(x désignant la fonction caractéristique de M.)
On dira qu'une famille 3F de parties de X est suffisante pour la mesure p,

si la famille des fonctions caractéristiques correspondantes est suffisante

pour la mesure p.

Proposition E. — Soient (X, p) un espace-mesure. Alors il existe une
famille d'ouverts de X, qui est dénombrable, qui est une base topologique
de X, et qui est suffisante pour la mesure p.

Démonstration. D'après la proposition D, il existe une famille 3F

de fonctions de ^c — F3
c (a, R) partout dense dans

c et dénombrable.
Pour chaque fe 3F considérons un ouvert précompact 0f, qui contient

le support de / et qui est p-^-mesurable.
D'autre part, considérons une partie dénombrable de R, Dp, qui soit

dense dans R et telle que pour tout xe Dp, x AO, pif'1 ({*}) 0. A /
associons la famille dénombrable d'ouverts

^f { Qf n/-1 (]<L b[) : a, b eDp a b }

Considérons enfin l'union des familles ^f, lorsque / parcourt 3F

et montrons que 9JP est une base topologique de X. Soit x un point de X
et U un ouvert contenant x; il existe une fonction continue h à support
compact qui vaut 1 au point x et 0 sur le complémentaire de U. Soit/e 3F
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telle que supxsX { | g (x) - h (x) | } ^ 1/4. Soit a, b appartenant à Dp tels
3 5

que 1/4 <-<-< & et soit l'élément de M\ f (]a, Z?[); c'est un

ouvert contenant x et inclus dans U.
Montrons maintenant que 9JT est suffisante pour la mesure \i. Désignons

par ÏR, la famille des fonctions caractéristiques des éléments de SOL Puisque
SIR c f on a

W° C: m'°o Tc° (1)

D'autre part si M appartenant à M 6f nf'1 Qa, &[), M est

inclus dans une suite d'éléments Mn e tels que :

Mn => 9f nf'1 ({a, b]) => 6f n/"1 ([a, b[).

On en déduit que la fonction caractéristique de

ef n/-1([a,2>D '

appartient à SR00.

Comme ÏR00 est une algèbre fermée pour la topologie
uniforme, il est clair que 3* est inclus dans ÏR00. On en

^00 ^00 ^ gjjoooo gjjoo ^

Le fait que fflL est une famille suffisant pour la mesure

quence de (1) et (2).

§ 5. Existence, propriétés des suites /i-équiréparties
Image d'une suite ^-équirépartie

5.1. Démonstration du Théorème C

Image d'une suite fi-équirépartie

Il est clair, puisque XJ est à base dénombrable, qu'il suffit de démontrer

pour f e $ (XJ, R) que pour ^-presque tout x:

lim - £ f(PJ(a'"(x))) /(/).
n -> oo n i 1

Nous pouvons supposer que yd (/) 0. Posons

de la convergence
déduit

(2)

y, est une consé-
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1 "

aiat(x) (Pj(aui(x)))et £f(at) •

n i i

1) Notre première étape va consister à majorer la mesure $ de l'application

x -> v„2(x). Il est clair que a (v„) 0; il est clair d'autre part que si

\p- q| Max { ni- n2:n1,n2eJ}r les deux applications et aq

de XNdans Xs sont indépendantes. (Pour deux parties mesurables Ap et

Aqde XJ on a alors ,uN a~1 (Ap)n a~1 1 1
(Aq)))

et, par conséquent, fiJ(ap. aq) fi' (ap) fi' (aCj) 0.

On déduit de là, en posant m Max { | / | : y } :

PN(I f(ap)f(aq))^m2£1 — " •

1<p<n 1<p<n
1<q<n 1<q<n

\P~<l\<r

On en déduit: /iN (vn2) 2m2/n.

2) Utilisant l'inégalité de Bienaymé Tchebychef, nous obtenons une

majoration de la mesure de l'ensemble:

2 yyi
2

A„(e) {x e XN : \ v„(x)|^ £} : fiN(^1 0(1/«) (n -> co).

3) On en déduit que la sous-suite n vn2 (x) converge vers 0 pour
presque tout x. En effet, l'ensemble

lim sup [An (e)) {x: lim sup | vn2 (x) | > s } n u An2 (s)
n->oo n= oo seN n%<. s

a pour mesure 0 quel que soit s > 0.

4) Prouvons enfin que si vn2 converge vers 0, la suite vn converge vers 0.

Soit, pour n e N, l'entier r défini par: r2 < (r+ 1)2, alors

1 " r2 1 / ''2 \ 1 11

2 !««)+-(1)n i i n r \i=i / n r2

» 1 n

I y U; | ^ m ((r+1)2 - r2), et, par conséquent, - Y a; tend vers 0 quand n
r2 n r"2

r2
tend vers + co; — tend vers 1 quand « tend vers + oo. On déduit de (1)

n
que si vn2 tend vers 0 quand r tend vers + oo, vn tend vers 0 quand n tend
vers + oo.
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5.2. Démonstration du Théorème D

Soit (X, y) un espace mesure, X compact. Nous devons prouver que

pour /iN-presque tout point x g Xn, et pour toute partie S de XN qui est

jaN-^-intégrable

lim TI (v; S,n)/n (S),(1)

la suite v étant définie par vn on (x).
Posons Jp { 1, 2, ...,p }. Il résulte du théorème 3.A que, pour tout p

et pour ^'-presque tout x g Xn la suite n -> PJp (<jUn (x)) est p,JP-équi-

répartie dans Xjp. Montrons que cette dernière assertion est équivalent à

« olln (x) /iN-équirépartie dans XN ».

Soit, en effet, (?;„) une suite de points de XN telle que pour tout p, PJp (vn)

est //^-équirépartie dans Xjp; montrons tout d'abord que si K est un

compact de XN on a:

lim sup {II(v; K,n)/n} ^/F (K) (2)
co

Posons Fk PJ^ (PJk (K)); K étant fermé, il est l'intersection de Fk.

Pour s positif, on peut donc choisir k de telle sorte que

(Fr) — (F) + e/2

Par ailleurs PJk (.K) est fermé et puisque XJk est normal il existe un ensemble

L, ^-^-intégrable, qui le contient et tel que

fiJk(L)^fiJk(PJk(K)) + s/2.

Si M PJk (N), il est clair que M contient K, que /xN (M) ^ /r (K) + 8

et que

lim { H (v; M; n)ln } /jn(M).
n-> oo

La relation (2) s'en déduit.

Pour obtenir (1) pour une partie /rN-^-intégrable quelconque, il suffit

d'utiliser la relation (2), d'une part pour l'adhérence de F. d'autre part pour
le complémentaire de l'intérieur de F.

5.3. Suites adjacentes — Fin de la démonstration du Théorème A

Soit X un espace métrique (distance notée d). On dit que deux suites

u (un), v (vn) sont adjacentes si d (un, v„) tend vers la limite 0 quand n
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tend vers l'infini. Dans un tel espace une fonction continue à support

compact est uniformément continue. Et par conséquent:

Proposition F. — Soient (X, p) un espace-mesure. Si deux suites sont

adjacentes pour une distance d dont la topologie est équivalente à celle de

X, si / 'une est p-équirépartie il en est de même de l'autre.

La seconde partie du théorème A est une conséquence du résultat:

« Si X possède une base dénombrable, 0t =* &00 », conséquence de

la proposition B et de la proposition suivante.

Proposition G. — Si (X, p) est un espace-mesure, alors

<g°c° c m.

Démonstration. Montrons que si/ef (X, R) n'est pas p-t%-inté-

grable, alors / n'appartient pas à ^°c°.

Si / n'est pas /i-^-intégrable, il existe un nombre positif a et une partie
borelienne M de X de mesure positive, tels que pour tout me M

lim sup /(%) — lim inf f(x) > a
X~+m x-+m

Soit u (un) une suite de points de X qui est p0-équirépartie et telle que, si

X désigne la fonction caractéristique de M

lim
1

X *(«;) Ho(.X) Ho (M) (1)
n ;=i

(c'est dire que la « densité » des points de la suite qui appartiennent à M
égale p0(M). Une telle suite existe; pour s'en rendre compte, il suffit de

reprendre la démonstration du théorème 3.A en «ajoutant» à la famille
« suffisante » pour p0, dénombrable, la fonction %.

Un espace localement compact à base dénombrable est métrisable. Soit
d une métrique dont la topologie est équivalente à celle de x. A partir de la
suite w, construisons deux suites u' et u" définies ainsi:

Si un $ M on prend un un un.

Si une M on prend u n et u n vérifiant :

d (un,ufn) sä 1 /n d (un, u"n) X 1 fn
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Il est clair que les suites u'et u"sont équirépartie. D'autre part, on a

- Z /("';) _ -Z/(«"«) > - Z
n ; i n n ,- 1

les deux suites

» ->• - Z /(u'i) ^
1

Z /(«";)
»Fl «i=l

ne peuvent tendre toutes les deux vers \xa (/) puisque

a "
lim - Z X("i) a Ho (M)

n i= i

5.4. Image d'une suite équirépartie

Soient Z, F deux espaces localement compacts et/: Z - F une application

borélienne. Si p est une mesure sur Z son image par / est une mesure
notée fn (fn(A) p(/_1 (/())).

Nous obtiendrons

Proposition H. — Soient (Z, p) un « espace-mesure », F un espace

topologique localement compact et /: Z -> F une application borélienne.
Alors les assertions suivantes sont équivalentes.

(a) Pour toute fonction g e Cêc (F, C), g of est ^-^-intégrable.

(b) Pour toute fonction g, fp-ffl-intégrable, g o / est /x-^-intégrable.

(c) Pour toute fonction g caractéristique d'une partie de F, /a-^-intégrable,
g o / est /i-^-intégrable.

(d) Pour toute suite u (un) de points de Z qui est ^-équirépartie son

image fu (f(un)) est //^-équirépartie.

Démonstration. Les implications schématisées par:

(b) => (a)

(c) => (d) sont évidentes
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Prouvons, pour achever la démonstration:

non (b) => non (d).

Soit g et ///-^-intégrable telle que g of n'est pas ^-^-intégrable. Mais

d'après la proposition G, il existe une suite de points de X, u qui est p-équi-

répartie et telle qu'on n'a pas

lim Y, 9(/ ("«)) 9(9°f)
La suite/ un'est pas //(-équirépartie.

5.5. Suites uniformément équirépartie

Soient (X, p) un espace mesure et u (u„) une suite de points de X.

Nous dirons que la suite u est uniformément p-équirépartie, si, pour
toute partie M, //-^-intégrable, la suite n -» II (M; N, N+ri)/n converge
vers p (M), uniformément par rapport à N.

Existe-t-il toujours des suites uniformément réparties dans un espace

mesure (X, //)? Si X est un groupe abélien compact monothétique, et p la
mesure de Haar dans X la réponse est oui. Il est clair aussi que si (X, p)
et Y, v) sont des espaces si /: X Y conserve la mesurabilité et est telle

que pour toute partie mesurable A de Y, p(f~x (A)) v(A); s'il existe

une suite de points de X uniformément /^-équirépartie, son image par / est

une suite de points de Y uniformément-v-équirépartie.

Si p est mesure de Dirac ôa, la suite un a est uniformément //-équirépartie,
c'est dire que pN-presque toutes les suites sont uniformément équiréparties
Cependant

Proposition I. — Si (X, p) est un « espace mesure » et si p n'est pas une
mesure de Dirac, alors pour pN-presque tout x (x„) e XN la suite (xn)
n 'est pas uniformément p-équirépartie.

Démonstration. Nous mettrons en évidence l'existence d'une
partie D de XN qui ne contient aucune suite uniformément //-équirépartie
et dont la mesure pN est 1.

Soit A un ensemble /z-^-intégrable tel que 0 < p (A) < 1. Il résulte
de la démonstration du théorème C que, pour tout n e N, pour /z-Npresque



— 326 —

tout x xl5 x2, la propriété (k, n): xk+1 g A, xk+2 e A, xk+n g yf
a la fréquence égale à (/z (A))"0. On en déduit que l'ensemble D des x g Xn
tels que pour tout n il existe k de telle sorte qu'on ait la propriété £P (k, n)
est un ensemble de mesure 1.

D ne contient aucune suite uniformément /z-équirépartie car pour une
telle suite il existe n0 pour lequel la propriété & (,k, n0) n'a jamais lieu.

5.6. Conditions minimales d'équirépartition

On peut, dans certains cas déterminer des familles B de fonctions
fournissant un système de conditions nécessaires et suffisantes pour l'équi-
répartition d'une suite, familles qui sont minimales.

Proposition E. — Soient X un groupe abélien compact, r le groupe de

ses caractères continus et T' un sous-ensemble de r tel que

— Le caractère trivial n'appartient pas à y'.

— Si y est un caractère non trivial et y son caractère conjugué, un et

un seul des deux caractères y, y appartient à r'.
Alors r' est une partie suffisante pour la mesure de Haar h, qui est

minimale.

Démonstration. Il est clair que F' est une partie suffisante pour la

mesure h puisque r est une partie suffisante pour la mesure h. Considérons

y0 eT' et r" — T' — {y0}. r" n'est pas une partie suffisante de (X, C); en

effet, nous allons vérifier qu'il existe une mesure /z, distincte de la mesure de

Haar h telle que, pour tout y g T", ji (y) h (y). Alors comme il existe une

suite u, ju-équirépartie, cette suite vérifie la condition lim — S y (un) h (y),.

pour tout y g r", elle n'est pas cependant /z-équirépartie.
Considérons en effet la mesure v définie à l'aide de la fonction réelle

positive i(y0 + y0) (y„estle conjugué de y0)

alors on vérifie facilement que

fi — h + v

est telle que

fi (y) h(7) 0 (yer"),



tandis que

P (y0) h (>o) + i i •

§6. Espaces produit

6.1. Familles suffisantes dans un espace produit

Proposition F. — Soient (X, p), Y, v) deux espaces-mesures et %

[resp. if\ une famille d'ouverts de X, dénombrable et suffisante pour la

mesure p [resp. v], base topologique de X [resp. Y]. Alors 501 { U x V :

6/ e K g ^ } est une base topologique dénombrable de A x Y, suffisante

pour la mesure p x v.

Démonstration. 501 est une base dénombrable de JE x 7, montrons

qu'elle est suffisante pour la mesure p x v. Soit une suite u (un)

de points de X x Y telle que pour tout M U x V e 501 :

lim {Il (M, n)jn } pU • vV p x v (M) (1)
n-> oo

Il est clair que la relation (1) reste vraie pour l'algèbre de Boole engendrée

par la famille 501 et en particulier, qu'elle est vraie lorsqu'on remplace M
par une union finie d'éléments de la famille 501.

Soit 0 un ouvert de A x Y. 0 est couvert par les éléments de la famille 501

qui sont inclus dans (9. Il s'en suit que pour tout s > 0 il existe une union
finie S d'éléments de 501 tels que S > 0 et p {(9 — S) ^ s. On en déduit que:

lim inf { TI ((V; n)/n } p x v (0) (2)
n-> oo

Si enfin A est une partie de X x Y dont la frontière est de mesure nulle,
on déduit, de la propriété précédente appliquée d'une part à l'intérieur de A
et d'autre part à l'intérieur de son complémentaire:

lim (17 (A; n)jn) p x v (A).
/!-» 00

La famille 501 est donc bien suffisante pour p x v.

6.2. Démonstration du Théorème E

Utilisons °ll [resp. y] une famille dénombrable suffisante pour la mesure p
[resp. v]. Pour qu'une suite un (x„, yn) soit p x v équirépartie, il faut et il
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suffit que pour tout V e la suite des indices (;nf) tels que yneV ait la
fréquence v (F), et que, la sous suite i — xn. soit fi-équirépartie dans X.

Or par hypothèse, la première condition est remplie, v fixé, la seconde

condition l'est pour ^-presque tout x (xn) de XN d'après le théorème 3.A.
Puisque la famille X" est dénombrable, la fin de la preuve est immédiate.

6.3. Démonstration du Théorème F

Soit a un point arbitraire de X. Définissons l'application continue / de

{ 0, 1 } x X dans X par

/(0, x) a f(l,x)=x.
La fonction / est continue et l'image par / de la mesure v fia x yt est la

mesure/(v) (1 — oc) Ôa + a/t, où ôa désigne la mesure de Dirac au point a.

Alors d'après le théorème E, (/a)N-presque toutes les suites (yn) de (0, 1)N

sont telles que (yn, xn) est v-équirépartie, et par conséquent la suite n

f(yn, *n) est /(v)-équirépartie.
D'autre part, pour presque toute suite (yn), o a la « fréquence »

1 — oc. On déduit des deux derniers résultats, que pour ^-presque sous-
suite de xn est /i-équirépartie dans X; on vérifie, facilement, en effet, que si

une suite est v-équirépartie et qu'elle contient une sous-suite de densité
1 — a, ôa équirépartie, la sous-suite constituée par les « termes restants »

est /z-équirépartie.
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