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THE CONVERSE TO THE FOUR VERTEX THEOREM

by Herman GLUCK

The Four Vertex Theorem of classical differential geometry states:
a simple closed curve in the plane has at least four vertices. All curves are
understood to be of class C?, since we must talk about their curvature,
and a vertex is a point at which the curvature function has a local maximum
or minimum. This theorem was first proved by Mukhopadhyaya [7] in
1909, and has been reproved and reexamined many times since then. The
same result for non-convex simple closed curves in the plane was proved
by A. Kneser in 1912 and may be found in [6]; further information is in
[1] and [2].

In this paper I will prove a converse to the Four Vertex Theorem.
This converse is actually the one-dimensional case of a more extensive result
on the existence of spheres in Euclidean space with preassigned strictly
positive Gaussian curvature (the generalized Minkowski problem) which
the reader may find in [4], and for which the present paper may serve as an
introduction. We have here all of the essential ideas yet few of the tech-
nicalities of the higher dimensional analogue.

The Four Vertex Theorem must be sharpened slightly before we formu-
late and prove its converse. To see why this is necessary, consider the unit
circle S' = {(x,»):x* + y*> =1} in the plane R? and the function
k:S'' — R' defined by k(x,y) =1+ y + |y ‘ Could there exist an
embedding G: S* - R* which takes S onto a simple closed curve M* such
that the curvature of M at the point G (x, y) is k (x, y) for all (x, y) e S*?
Note that the function k: S* — R' takes the constant value 1 on the semi-
circle y = 0. At each point of this semicircle, k achieves a relative minimum,
so technically M* would have infinitely many vertices. Therefore the Four
Vertex Theorem in its casual formulation does not preclude the existence of
such an embedding. Nevertheless, no such embedding exists.

It is the vertex counting procedure which needs to be sharpened. Suppose
M' is a simple closed curve in the plane R?, and that k: M' — R! is its
curvature function. Then we have the following possibilities.

(I) Perhaps k is a constant function.

(2) Perhaps k is not constant and there are two points, p, and p,, on M
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such that k is weakly monotonically increasing on each of the two arcs
of M* running from p, to p,. In this case we say that the function k
has one maximum and one minimum on M*.

(3) Perhaps neither (1) nor (2) is true. Then there are two relative maximum
points of k on M* which are separated by two relative minimum points,
such that the values of k at the two relative minimum points are strictly
less than the values of k at the two relative maximum points. It is also
possible to find four points p,, p,, ps, ps in cyclic order around M*
such that k(p,) = k(p3) < k(p,) = k(ps). We cannot guarantee
that these four are relative extrema of k, however. Case (3) is sum-

marized by saying that k& has at least two maxima and two minima
on M*.

Using this vertex counting procedure, we now reformulate the

FOUR VERTEX THEOREM. The curvature function of a simple closed curve
of class C? in the plane is either constant or else has at least two maxima
and two minima.

Note that this version immediately precludes the existence of the em-
bedding G discussed above. Throughout this paper we deal only with curves
of strictly positive curvature, and our main result is as follows.

CONVERSE TO THE FOUR VERTEX THEOREM. Let k:S' — R' be a con-
tinuous strictly positive function which is either constant or else has at least
two maxima and two minima. Then there is an embedding G: S* — R* taking
S onto a convex simple closed curve M*, such that the curvature of M*'
at the point G (@) is k (@) for all p € S*.

Furthermore, if k is of class C", r =0, then G is of class C"™* and M,
if reparametrized by arc length, is actually of class C™*2.

In section 1 below, I review some preliminary information about plane
curves. In section 2, the converse to the Four Vertex Theorem is transformed
into a purely topological theorem about normal vector fields on the unit
circle S* in R?, the proof of which is outlined briefly. In sections 3 through 5,
I record the details of this proof.

1. Plane curves

We collect here some relevant information about plane curves. Let x
= x (), y = y (s) be a C* parametrization by arc length of a plane curve.
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Then the tangent vector (u (s), v (s)) = (x" (s), ¥’ (s)) to the curve is of unit
length and satisfies the Frenet equations:

u' (s) = —k(s)v(s) v (s) = k(s)u(s),

where k (s) is the curvature function. If the function k (s), of class C',
r =0, is given in advance, then existence and uniqueness theorems for
ordinary differential equations [5] tell us that there is up to rigid motions
in the plane exactly one curve, of class C"*?, with this preassigned curvature
function. Such a curve may be found explicitly, as follows.

We must solve the above Frenet equations together with the initial
conditions (x (s,), ¥ (s,)) = (x,, »,) and (u(s,), v (s,)) = (4,5 v,), a unit
vector. Pick an angle 0, such that cos 8, = u, and sin 6, = v,. Then define

the angle of inclination function 0 (s) = 0, + [ k (o) do. Next let u (s)

= cos 0 (s) and v (s) = sin 0 (s). Note that
u'(s) = —0'(s) sin 0(s) = — k(s)v(s)
v' (s) = 6'(s) cos 0(s) = k(s)u(s).

Finally let x (s) = x, + [ u(o)do and y(s) = y, + f v (0) do, and we

have the desired curve.

Suppose we are given a curvature function k (s), how do we decide if
“ the ” corresponding plane curve is closed, say of length L ? In fact, it is
easy to show that this curve will be closed if and only if the following condi-
tions hold:

(1) k (s) is periodic with period dividing L.
so+ L
2) | k (0) do is an integral multiple of 27.

(3) If we define 0 (s) = | k (o) do, then

o
sot+L so+L

| cos O(o)do =0 = | sin 0 (o) do .

So SO

Next we ask, to what extent must these conditions be strengthened in
order to guarantee that “ the ” corresponding closed curve is a simple closed
curve of length L ? This question is rather difficult to answer in general;
let us assume that k (s) = 0 for all s. Then “ the ” corresponding curve is a

simple closed curve of length L if and only if conditions (1) and (3) above
hold, together with
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‘ sot+L

(2 | k(oc)do = 2mn.
This is an easy exercise for the reader.

Suppose furthermore that k (s) > O for all s. For simplicity, put s, = 0,
so that 0 (s) = | k(o) do. The map 0: R' — R' is an orientation preserving

0

diffeomorphism, since df/ds = k (s) > 0, and 0 ([0, L]) = [0, 2z]. Inverting
this diffeomorphism, we write s = s (0), with ds/df = 1/k (s (0)). If we
denote the unit tangent vector to the curve by 7'(6) = (cos 0, sin 6), and
if by abuse of language we write k (0) instead of k (s (0)), then changing the
variable of integration in condition (3) from s to 0 yields

(3% [~ do =

So now our curve is a simple closed curve of length L if and only if condi-
tions (1), (2) and (3") hold.

In the following sections I will prefer to parametrize a convex simple
closed curve by its unit outward normal vector, rather than by its unit
tangent vector, so as to maintain an analogy with the higher dimensional
version of this problem treated in [4]. If ¢ (s) is the angle of inclination of the
unit outward normal vector, then ¢ (s) = 0 (s) — n/2, and the normal
vector 1s

-

N (p) = (cos¢@,sin@) = (sin @, — cos 0).

Continuing our abuse of notation, we now write k (¢) instead of & (s (®)).
Then (3') is equivalent to

; 2x N (¢) B
(3" (piomdgo_o.

In order to collect the above information in a form suitable for our
purposes, first recall the Gauss map. If M*' is a smooth (at least C* when
parametrized by arc length) curve in the plane, then the Gauss map y: M*
— S! assigns to each point p e M* one of the two unit normal vectors
y(p) to M! at p, in such a way that y (p) varies continuously with p. If M
is a simple closed curve, for example, we let y (p) be the unit outward normal
vector to M at p. If M* is a convex simple closed curve in the plane, of
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class C", r = 2, whose curvature at every point is strictly positive, then
y: M* - St is a C"" ! diffeomorphism.

We now summarize as follows.

LEmMMA 1.1. Let k:S* - R' be a continuous strictly positive function

such that jzn V(o) do
e=0 k(o)

M' = R?, with Gauss map y: M' — S, such that the curvature of M" at

v“ 1 (@) is k (o) for all ¢ € S*, and this curve is unique up to translations.

Furthermore, if k is of class C", r =0, then y"*: S* - M' = R* is a

Cr*1 embedding and M*, if reparametrized by arc length, is of class C"* 2,

= 0. Then there exists a convex simple closed curve

Suppose now that we are given a continuous strictly positive function
k:S' — R! and asked to find an embedding G: S* — R* taking S* onto a
simple closed curve M*' such that the curvature of M' at the point G (¢)
is k (¢) for all @ € S*. The first thing to check, of course, is whether or not
the integral

Md(p _ j“N(co)d
stk (o) e=0 k (¢)
vanishes. If it does, then the preceding lemma supplies the curve M* and
the embedding G = y~1: St - M < R? to answer our question.

Suppose, however, that the integral does not vanish, but that never-
theless an embedding G: S' — R? as required can somehow be found.
Consider the diffeomorphism 4 = y G: S' — S'. Note that the curvature
of M' at the point y~! (¢) = Gh~ ' (¢) is kh™'(p). Hence by (3") we
must have

{ ____N—(l(/)) dp = 0.

s1 kh ((p)
Conversely, if we could find a diffeomorphism #4: S' — S' which makes
the above integral vanish, then by Lemma 1.1 there would exist a convex
simple closed curve M' = R* with Gauss map y: M* — S!, such that the
curvature of M"' at y~! () is kh™! (¢) for all ¢ € S*. It follows that G
= y~ ! his also an embedding of S* onto M in R? such that the curvature

of M"' at G () is k () for all ¢ € S*. We may summarize as follows.

LEMMA 1.2. Given a continuous strictly positive function k: S* — R!,
then there exists an embedding G: S* — R? taking S* onto a convex simple

L’Enseignement mathém., t. XVII, fasc. 3-4. 21
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closed curve M* such that the curvature of M* at G () is k (@) for all p € S*,
if and only if there exists a diffeomorphism h: S* — S* such that
N ()

[ - gy = 0.

stkh™ (o)

2. Normal vector fields on the circle

In this section we transform the converse to the Four Vertex Theorem
into a topological theorem about normal vector fields on the unit circle
S* = R?. The point (x, y) = (cos @, sin @) on S will often be referred to as

¢ for short. At the point ¢, the unit outward normal vector to S* is N (¢)
= (cos @, sin @). Let /2 S' — R! be a continuous, not necessarily positive,

function. Then the vector field f (o) N (¢), ¢ € S*, will be called a normal
vector field on S*. Let h: S* — S' be a C® diffeomorphism, diffeotopic
(that is, differentiably isotopic) to the identity 1. At the same time that /
slides a point ¢ of S* over to its image /4 (¢), we may imagine the normal

vector /() N (p) to S* at ¢ being dragged along with ¢, its length remaining
fixed during this process, until it becomes the normal vector f (@) N (ho)
to ST at & (@). If we write £ () N (hp) = fh~* (ho) N (hg), we see that h
moves the normal vector field f(¢p) N (p) to the normal vector field

g (o) N (¢), where g = fh~!. Under these circumstances, we will say that
the two normal vector fields on S' are deformations of one another. Note
that the diffeomorphism /4 is required to be of class C®, even though the
normal vector fields may only be continuous. This is a simple way of
guaranteeing that the deformed normal vector field will automatically be
as smooth as the original one.

The integral of a continuous normal vector field f (¢) N (p) on St is the

vector
2

[ SN @) de = (] fp)eospdp, | f(@)singdo),

in R?, and if the vector field is more or less random, so is its integral. Our
problem is to decide whether or not a given normal vector field on S* can
be deformed so as to make its integral over S* vanish.

THEOREM 2.1. A continuous normal vector field f(¢) N (@) on the unit
circle S* = R?* can be deformed so that, after the deformation, its integral
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over S vanishes if and only if the function f: S* — R' is either constant
or else has at least two maxima and two minima.

ADDENDUM 2.2. Under the above circumstances, if the function f: S*
— R has just one maximum and one minimum, then it is impossible to
ynd even a homeomorphism h:S' — S' which makes the integral

[ fh™ (@)N () do vanish.
S1

The effect of these assertions on the Four Vertex Theorem and its

converse is clear. We couple Theorem 2.1 with Lemmas 1.1 and 1.2 by

N ()

k ()

is the Converse to the Four Vertex Theorem stated in the introduction.

Similarly, coupling Addendum 2.2 with Lemma 1.2, we get yet another

proof of the Four Vertex Theorem for convex curves of strictly positive
curvature.

Addendum 2.2 is very easy to prove, and we do so now. We are given

considering the normal vector field on S'. An immediate consequence

a normal vector field f () N (p) on S*, where f has just one maximum and
one minimum. Such a vector field is sketched in Figure 1.

max

equal

> in

equal ‘
Fic. 1

By continuity there must be a diameter D of S* which separates the
maximum and minimum points of £, such that at the ends of D the two
values of f are equal. Then f (@) is always larger to one side of D than the
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other, so that | f(¢) N (¢) dp must have a nonzero component perpen-
51

dicular to D. If & is any homeomorphism of S* onto itself, the function
fh™': 8" — R still has just one maximum and one minimum, so that by

the same argument, | fA™' (¢) N (@) dp # 0. This proves the Addendum,
Sl

and therefore yields a fast proof of the Four Vertex Theorem for convex
curves of strictly positive curvature.

To complete the proof of Theorem 2.1, we must start with a continuous
function f: S* — R! which is either constant or else has at least two maxima
and two minima, and hunt for a diffeomorphism 4: S* — S*, diffeotopic

to the identity, such that | f2™' (o) N (¢) dp = 0. The idea behind this
S1

hunt 1s most easily described by analogy with the usual topological proof
of the Fundamental Theorem of Algebra [3, pp. 306-307].

The equation | fi~" (o) N (p)dp = 0 with unknown % contained in
S1

Diff (S1), the group of diffeomorphisms of the circle, is the analogue of
a complex polynomial equation with unknown z contained in the complex
numbers. The map

I: Diff(S') - R?,

T =] S @)N (@) do,

is continuous if Diff (S') is given the compact-open topology, hence remains
continuous if Diff (§') is given any larger topology, such as the C® topology
[8, pp. 25-28]. The map I is the analogue of a complex polynomial function.

After some preliminary adjustments of f, which amount to replacing
I by a similar map /; but do not affect the outcome of the problem, we
restrict our hunt for % to a certain subgroup 2 of Diff (S*). This subgroup
is contractible, consists only of diffeomorphisms diffeotopic to the identity,
and is the analogue of the complex plane. Inside & we construct a certain
simple closed curve X', which is the analogue of a circle of large radius in
the complex plane.

We approximate the adjusted function f by a step function g, and obtain
a consequent approximation of /; by a map J,:Diff (S') - R?. This
map J; plays the same role as that of the leading term of a complex poly-
nomial function.

The argument draws to a close just as in the proof of the Fundamental
Theorem of Algebra. We show that I, (') misses the origin in R*> and
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that I, | Z*: ' — R* — {0} is an essential map by first establishing these
results for J, and then capitalizing on the approximation between J; and
I,. Since X! is contractible within &, the equation /; () = 0 must have a
solution within 9. We then easily produce a solution of I (h) = 0, and are
done.

3. Beginning of the proof of Theorem 2.1

We are given a continuous normal vector field f(¢) N (¢) on the unit
circle S = R?, such that the function f: S* — R! is either constant or else
has at least two maxima and two minima. If fis constant, then obviously

A N () dp = 0 by symmetry, so that no deformation is needed to
51

make the integral vanish. Henceforth we may assume that f has at least
two maxima and two minima.

By the remarks in the introduction, there are four points ¢;*, ¢,*,
©5*, @,* in counterclockwise order around S* such that

F(@1*) = f(@3™) = N <M = f(@,*) = fo,¥).

Let { > 0 be a small number, its actual size to be determined near the end
of the proof. In order to make a later construction independent of the choice
of {, we insist that { < n/2. Let E;* and E;* be closed intervals about ¢ *
and ¢;* such that

N - <fle*) <N+ for @*eE* U E*.
Similarly let D,* and D,* be closed intervals about ¢,* and ¢,* such that

M- <flo*) <M+ for o@*eD,*uD,*.

We may take these four intervals to be disjoint.

Let ¢; =0, ¢, = n/2, ¢3 = n and ¢, = 3n/2. We choose disjoint
intervals E;, D,, E;, D, about these four points, as follows. Let E, be the
interval about ¢, from 13 #/8 + (/4 to 3 =/8 — (/4. Let D, be the interval
[37/8, 57/8] about ¢,. Let E; be the interval [5n/8+ (/4,11 n/8— (/4]
about ¢, and finally let D, be the interval [11 n/8, 13 /8] about ¢,. See
Figure 2.

Now let 4*:S* — S' be an orientation preserving diffeomorphism
(hence diffeotopic to the identity) taking ¢,, ¢,, @5, @, E, D,, E;, D,
to @1*, %, 3%, 0%, E*, D,*, Ey*, D,* respectively. Then we have
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Jh* (@) = fh*(ps) = M <M = fh*(p,) = fh*(p4),
and
N —C<fh*(p) <N +{ Tfor @eE; UE;
M- <fh*(p) <M+ for ¢@eD,uD,.

Note that when the four closed intervals E,, D,, E; and D, are removed
from S', the remainder A is the union of four open intervals, each of
length (/4.

The function fA*:S' — R' is best understood by comparison with
the discontinuous step function g: S' — R! defined by

I R forpe D, U D,
g(¢) = {932 otherwise.
P2 = n/z
P3 =T o =0
©q4 = 3n/2
Fic. 2

Then f4* and g are (-approximations in measure to one another on S!
g pp )

in the sense that l fh* () — g (o) | < { on most of S' (namely, at least
onE, u D, uFE; u D,), while the set X of points at which this inequality
fails lies within 4 and has measure < (.
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We now replace f by fh* in our original problem, and therefore consider
in place of the map I, the map

1,: Diff (') > R?
LW = [ fh* 0 (@)N (9)dg

If & is a zero of this map, then /4 h*~! will be a zero of the original map 7,
so that it suffices to find a zero of I;.

Since { has yet to be determined, the reader should bear in mind the
provisional character of the constructions in this section. The subsets
E.*, D,*, Es*, D,* E,, E; and A of S*, the diffeomorphism #* of S* and
the map I, : Diff (S') — R? all depend on the future choice of {. On the
other hand, the step function g: S* — R is independent of (.

4. The subgroup @ < Diff (S*) and the simple closed curve £* = 9@

The subgroup 2 of Diff (S') will consist of those diffeomorphisms 4
of S' which restrict to the identity on some neighborhoods of ¢; = 0 and
@5 = =, these neighborhoods being allowed to vary with 4. Such diffeo-
morphisms are orientation preserving and hence diffeotopic to the identity.
Indeed, the linear isotopy

hi(p) =te +(1-0h(p), 0=¢ <2n,

shows that & is contractible to the identity 1. Within & we shall find a
root of the equation I, (h) = 0.

Next we construct the simple closed curve X! inside 2. To do this, it
turns out to be convenient to first construct a certain 2-cell B in & and
then let X' be its boundary.

For each (¢,d)e[—n/8, n/8] x [1/2,1] we will construct a diffeo-
morphism 4, , € &. The action of 4, on the two intervals D, = [3 /8,
5n/8} and D, = [11 /8, 13 =/8] is what concerns us most. We insist that

/2 + d(p —7n/2) — ¢ for ¢@eD,

ht,d((P) = { 372 + (3/2 —d) ((0—'375/2) + t for peD,.

The behavior of 4, , on the rest of S* is not too important, except of course
we want each £, , to restrict to the identity on some neighborhoods of 0
and =, in order to guarantee that 4, , € 9. Note that h; 4 does not stretch
either D, or D,, and it will be a matter of technical convenience later if we
can assert the same for the four small intervals of length {/4 which comprise
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A. This is most easily done by extending the formula for 4, , on D, to the
larger interval [n/4, 3 n/4], and similarly extending the formula from D, to
[5 m/4, 7 n/4]. Since we insisted in section 3 that { = n/2, this enlargement
of D, u D, swallows up A.

The extension of our partial definition of 4, ; to one over all of S* is a
straightforward but tiresome exercise. Instead one may appeal to a theorem
of Palais [9], which guarantees that this extension is possible in such a way
that the map

[ —=/8,7/8] x [1/2,1] » 2 < Diff(S")
(ta d) —> ht,d

is continuous with respect to the C® topology on Diff (S'). This map is
also one-to-one, as easily seen from the definition of #,, on D, U Dy,
and furthermore & i1s Hausdorff. Therefore the image of the map is a
2-cell B? in &. The boundary of this 2-cell is the simple closed curve X!
in & that we are looking for. Thus

>l = {hegit = +m/8 while 12=d=1,
or else
- n/8 =t=mn/8 while d=1/2o0rl}.

The reader may find a verbal description of the diffeomorphisms 4, ; € &'
helpful. Suppose 0 = ¢ = n/8. Then &, acts on D, by sliding it rigidly
to the right, ¢ units. At the same time, #, ; acts on D, by instantaneously
shrinking it from its original length of /4 to a new length of n/8 and then
sliding it ¢ units to the right also.

As we travel around X' and ¢ reaches n/8, then d begins to decrease
from 1 to 1/2. As this happens, the image of D, under %, 5 ; gradually shrinks
from an interval of length 7/4 to one of length 7/8, its center remaining
fixed at 3 /8. At the same time, the image of D, under 4, 4 gradually
grows from an interval of length 7/8 to one of length /4, its center remaining
fixed at 13 x/8.

Continuing the trip around X', when d reaches 1/2 then ¢ begins to
decrease from 7/8. As this happens, the image of D, under 4, ,, slides
rigidly to the left, its length remaining shrunken to ©/8. At the same time,
the image of D, under £, ; ,, also slides rigidly to the left, its length remaining
full at n/4.

When we reach Ay ;,, we have traveled half way around Z'. At this
point the image of D, under /4, ;,, is an interval of length n/8 centered at
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7/2, while the image of D, is D, itself. The remaining half of the trip around
Z1 corresponding to — m/8 = ¢ == 0, is similar to the first half, except that
the roles of D, and D, are interchanged, as are the words “left ” and
“right ”.

The reader should note that the constructions in this section of the
subsets &, B* and X! of Diff (S'), and therefore of the individual diffeo-
morphisms %, ;, are independent of the future choice of (.

5. Conclusion of the proof

In this section we compute the image curve I, (X') in R?, show that it
misses the origin and finally show that it has winding number 1 about the
origin. We do this by comparing /; with its “ leading term ”,

J,: Diff (S!) —» R2

Jo(h) = [ gh™ ' (¢)N(p)dop,

51

the step function g: S' — R' having been defined in section 3. Note that

Jih) = [ AN(@do + | (M-MN(p)de

S h(DguDy4)

= [ (M=NN(p)de,

h(Dgyu Dy)

since the first integral is O by symmetry. This expression for J; (h) shows
that the discontinuity of g does not prevent J; from being a continuous map.
Note that the map J; is independent of the choice of {, because this was
true of the step function g. Since 9, B* and X' are independent of {, so are
the restricted maps J; | 2, J; | B> and J, | 2.

We now describe the image J; (B*) by computing explicitly the vectors

Ji(hy) = (M=N) | N(g)do,
St.d

where S,; = h,4(D,uD,) and (t,d)e[—n/8, n/8] x [1/2,1]. We begin
with a brief calculation:

a2 /2 i/2
[ N(@)dp = | (cosq,sing)dp = (sing, — cos o) |
p=—1/2 -2/2 —1/2

= (2sin 4/2,0) = 2sin /2N (0).
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By symmetry, we may state that in general the integral of N (p) over an

interval on S' of length A centered at ¢, has the value 2 sin 1/2 N (p,)-
Next we note that S;, = h;,(D,u D,) consists of an interval of

length d n/4 centered at n/2 — ¢ and another interval of length (3/2—d) n/4

centered at 3 n/2 4 ¢. Using the preceding calculation, we find that

Ji(h ) = (M=) [2sindrn/8 N(n/2—1)
+ 2sin(3/2—d)n/8 N(3n/2+1)].

If we let d’ = (4d—3) m/32, then this expression simplifies to

Jy (hyg) = 4(M—N) (sin 3 7/32 cos d’sint, cos 37/32sind’ cost).

One easily checks that J; embeds B? into the plane R* and takes the point
hy 3,4 to the origin. Furthermore, J; (hy ;) is one of the two points on
Jy (Z') closest to the origin, the other being J; (/g ; s2)- Its distance from
the origin is

4 (M —I) cos 3n/32 sin 7w/32 ~ .375(M—N) .

Now we are in a position to pick {. We must do it so that the integrals
I (h4) = J-lfh* ht,d_l (p) N(@)do and J, (h, ) = jl g ht,d_l () N (¢) do
S S

are within .375 (M —N) of each other for all A, , € 2.

Recall from section 3 that X denotes the set of points ¢ € S* at which
1 fh* (p) — g (go)l = (, and that X lies within 4 and has total measure
< (. Then |fh* hea (@) — ghey”t (@) ' = ( for precisely those ¢ which
lie in &, 4(X). Since A, ; was constructed in section 4 not to stretch A, we
know that %, , (X) also has measure < (. Hence fh*h, ,~" and gh, ,~* are
{-approximations in measure to one another on S*.

Now we compute the distance from I (h,4) to Jy (h,,) for h, ;e Z*
(the same calculation is valid for %, ;€ B>, but is of no interest), as follows.

13 (heg) = T3 (e | = 1] Sh* o™ () N (9) do
~ [ gha” @N @ do | =] 1/ 1*hy™ (9) = g hy™ (9) | do
<2 + (M- = 2r+IM—-—N)C.

Since we want this to be less than .375 (M —9), we may set it equal to
(M —N)/3, and therefore finally choose
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. m— N
32 4+M-N)

Note that { = n/2, as demanded at the beginning of section 3. Our previous
constructions now lose their provisional character and become quite definite.

With this choice of {, I,(X') must also miss the origin, and is homotopic
in R* = {0} to J; (£"), which links the origin once. Just as in the proof
of the Fundamental Theorem of Algebra, it now follows that somewhere
within the 2-cell B? there must exist a root 4 of the equation I, (h)

— | fh*h™* (@) N (@) dp = 0. Then
S1

I(hh*™Y) = [ f(hh* Y ' N(p)dp =0,

S1

and our proof is over.
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