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2. QUESTIONS D’EXISTENCE

2.1. L’existence d’un [v, b, r, k, 2] entraine celle d’un [v, b, b—r,v—k,
b—2r+ A} '
Il suffit en effet de remplacer tout bloc B; par E — B,.

2.2. L’existence d'un [v, b, r, k, A] entraine, pour tout entier t, celle
d’un (v, th, tr, k, tA].

Il suffit en effet de répéter ¢ fois chaque bloc.

Mais il peut exister un [v, b, tr, k, t1] sans qu’il existe un [v, b, r, k, A].
Ainsi 1l existe un [15, 42, 14, 5, 4] mais pas de [15, 21, 7, 5, 2].

2.3. L’existence d’un [v, k, A] entraine celle d’'un [v—k,v—1, k, k— 4, A].
B, étant un bloc du premier plan, le nouveau plan (appelé résiduel du
premier relativement a By ) est constitué, sur £ — By, des blocs B; n (£ — By)

(j=2,..9).
Ainsi le résiduel d’un plan projectif d’ordre # est un plan affine d’ordre ».

Réciproquement on montre:

Pour 2 = 1 ou 2, tout [v—k,v—1, k, k— A, 1] est résiduel d’un [v, k, 2].
Le probléme de cette réciproque n’est pas résolu pour A == 3. Toutefois il
existe un [12, 33, 28, 8, 14] mais pas de [34, 22, 14]. '

2.4. L’existence d'un [v,k, 2] (ou L =2) entraine celle d’un [k,v—1,
k—1,2, A—1].

B, étant un bloc du premier plan, le nouveau plan (appelé dérivé du
premier relativement a B;) est constitué, sur B;, des blocs B; n B

(j=2,..0).

2.5. Mais le plus beau résultat relatif & ’existence des plans équilibrés
est le théoréme de BRUCK — RYSER — CHOWLA — SHRIKHANDE —
SCHUTZENBERGER :

Pour qu’il existe un [v, k, A} (ol naturellement, compte tenu de (1.3),
A(w—1) = k (k—1)) il est nécessaire que
— si v est pair, (k—2) soit un carré parfait,

v—1
2

— si v est impair, ["équation z* = (k—21) x* + (= 1) 2 Ay* ait une solution

non nulle en nombres entiers.
Ainsi il n’existe pas de [22, 7, 2] n1 de [43, 7, 1].
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2.6. Signalons aussi le résultat suivant (le cas k = 2 étant trivial):

Si k = 3 ou 4 les conditions nécessaires (1.3) sont aussi suffisantes pour
[’existence d’un v, b, r, k, /).

Mais cela n’est plus vrai a partir de k = 5: ainsi [15,21,7,5, 2] et
[36, 42, 7, 6, 1] n’existent pas.

2.7. La classification des solutions entiéres des équations (1.3) peut étre
faite soit par b croissants (car b =v > k et b > r > 1) soit — c’est la tra-
dition — par r croissants (il n’existe en effet qu'un nombre fini de solutions
aux équations (1.3) quand r est fixé). On trouvera dans [2] une telle classifi-
cation pour r = 15. On y a toujours v == 2k (compte tenu de (2.1)) et les
[v, tb, tr, k, t]] sont omis quand il existe un [v, b, r, k, 2]. Le nombre de plans
dont V’existence est encore inconnue est important ([46, 69, 9, 6, 1] étant le
plus «petit» de ceux-ci). Postérieurement & la parution de [2] certains de
ces problémes d’existence ont été résolus ([5], [7]) positivement: [56, 11, 2],
[45, 12, 3], [36, 15, 6]. Signalons enfin une conjecture: v et k étant donnés
(les équations (1.3) ont alors une infinit¢ de solutions en b, r, A) il existe
toujours un [v, b, r, k, A] sauf peut-étre dans un nombre fini de cas.

3. QUESTIONS D’« UNICITE »

3.1. Précisons d’abord ce qu’on entend par plans isomorphes.

Définition. — Deux [v, b, r, k, A] seront dits isomorphes si leurs matrices
d’incidences 4, et A, sont telles qu’il existe deux matrices de permutation P
et O, d’ordres v et b respectivement, vérifiant 4, = P 4, O.

3.2. Pour n =2,3,4,57,8 il existe un seul plan projectif (resp.
affine) d’ordre n.

Mais ce n’est plus vrai pour n = 9. On conjecture toutefois I’unicité
d’un tel plan pour n premier. Mais pour certaines valeurs de »n primaire il
existe au moins quatre plans projectifs (ou affines) d’ordre 7 non isomorphes
deux a deux [3].

3.3. Les plans pour lesquels k = 3 et A = 1 (appelés triplets de Steiner)
sont uniques pour v = 3,77, 9. Il y a deux solutions pour v = 13 et 80 solutions
pour v = 15. Le nombre de solutions est inconnu pour v > 15,
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