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2. Questions d'existence

2.1. L'existence d'un [v, b, r, k, 2] entraîne celle d'un [v, b, b~r,v — k,
b-2r+X\.

Il suffit en effet de remplacer tout bloc par £ — Bj.

2.2. L'existence d'un [v, b, r, k, A] entraîne, pour tout entier t, cc//e

d'un [v, tb, tr, k, f2].

Il suffit en effet de répéter i fois chaque bloc.
Mais il peut exister un |Y>, tb, tr, k9 tA] sans qu'il existe un |Y>, b, r, k, A].

Ainsi il existe un [15, 42, 14, 5, 4] mais pas de [15, 21, 7, 5, 2].

2.3. L'existence d'un [v, /c, 2] entraîne celle d'un [v~k, v— 1, k, k — 2, 2].

i?! étant un bloc du premier plan, le nouveau plan (appelé résiduel du

premier relativement à i^) est constitué, sur E — Bu des blocs Bj n(E — Bf)

Ainsi le résiduel d'un plan projectif d'ordre n est un plan affine d'ordre n.

Réciproquement on montre:

Pour A 1 ou 2, tout [v — k, v — 1, k, k — 2, 2] est résiduel d'un [v, k, A].

Le problème de cette réciproque n'est pas résolu pour 2^3. Toutefois il
existe un [12, 33, 28, 8, 14] mais pas de [34, 22, 14].

2.4. L'existence d'un [v, k, A] (ou 2^2) entraîne celle d'un [k9v — 1,

£-1,2,2—1].
Bx étant un bloc du premier plan, le nouveau plan (appelé dérivé du

premier relativement à Bx) est constitué, sur Bu des blocs Bj n B±

(./ — 2, v).

2.5. Mais le plus beau résultat relatif à l'existence des plans équilibrés
est le théorème de Bruck — Ryser — Chowla — Shrikhande —
Schutzenberger:

Pour qu'il existe un [v,k,A] (où naturellement, compte tenu de (1.3),

A(v— 1) k (k — 1)) il est nécessaire que

— si v est pair, (k — 2) soit un carré parfait,
V — 1

— si v est impair, l'équation z2 (k —A) x2 + (— 1) 2 Ay2 ait une solution

non nulle en nombres entiers.

Ainsi il n'existe pas de [22, 7, 2] ni de [43, 7, 1].
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2.6. Signalons aussi le résultat suivant (le cas k — 2 étant trivial):

Si k — 3 ou 4 les conditions nécessaires (1.3) sont aussi suffisantes pour
l'existence d'un [v, b, r, k, 2].

Mais cela n'est plus vrai à partir de k 5: ainsi [15, 21, 7, 5, 2] et

[36, 42, 7, 6, 1] n'existent pas.

2.7. La classification des solutions entières des équations (1.3) peut être

faite soit par b croissants (car b > k et b > r > X) soit — c'est la
tradition — par r croissants (il n'existe en effet qu'un nombre fini de solutions

aux équations (1.3) quand r est fixé). On trouvera dans [2] une telle classification

pour r :S 15. On y a toujours v ^ 2k (compte tenu de (2.1)) et les

[v, tb, tr, k, ?2] sont omis quand il existe un [v, b, r, k, 2]. Le nombre de plans
dont l'existence est encore inconnue est important ([46, 69, 9, 6, 1] étant le

plus «petit» de ceux-ci). Postérieurement à la parution de [2] certains de

ces problèmes d'existence ont été résolus ([5], [7]) positivement: [56, 11, 2],

[45, 12, 3], [36, 15, 6]. Signalons enfin une conjecture: v et k étant donnés

(les équations (1.3) ont alors une infinité de solutions en b, r, 2) il existe

toujours un [v, b, r, k, 2] sauf peut-être dans un nombre fini de cas.

3. Questions d'«unicité»

3.1. Précisons d'abord ce qu'on entend par plans isomorphes.

Définition. — Deux [iv, b, r, 2] seront dits isomorphes si leurs matrices
d'incidences A1 etA2 sont telles qu'il existe deux matrices de permutation P
et Q, d'ordres v et b respectivement, vérifiant A1 P A2 Q.

3.2. Pour n — 2, 3, 4, 5, 7, 8 il existe un seul plan projectif (resp.
affine) d'ordre n.

Mais ce n'est plus vrai pour n 9. On conjecture toutefois l'unicité
d'un tel plan pour n premier. Mais pour certaines valeurs de n primaire il
existe au moins quatre plans projectifs (ou affines) d'ordre n non isomorphes
deux à deux [3].

3.3. Les plans pour lesquels k 3 et 2 1 (appelés triplets de Steiner)
sont uniques pour v 3, 7, 9. Il y a deux solutions pour v 13 et 80 solutions
pour v 15. Le nombre de solutions est inconnu pour v > 15.
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