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REPRÉSENTATION DE - 1 COMME SOMME DE CARRÉS

D'ENTIERS DANS UN CORPS QUADRATIQUE IMAGINAIRE

par C. Moser

Introduction

On se propose dans cet article de déterminer le plus petit nombre de

carrés nécessaires pour représenter — 1 dans l'anneau Am des entiers d'un

corps quadratique imaginaire Q (x/ — m). De façon précise, on montre

que ce nombre de carrés (« Stufe » de Am dans la terminologie traditionnelle;
notation s (Am)) vaut 1 si m 1, 4 si m 7 (mod 8), 2 ou 3 lorsque m §ê 3

(mod 4), selon que la norme de l'unité fondamentale sm du corps quadratique

réel Q (.Jm) est - 1 ou + 1 ; enfin, dans le cas m 3 (mod 8), s (Am) vaut
2 ou 3 selon que um - 1 est un carré ou non, um désignant la partie rationnelle

de l'unité em. Ainsi il est possible, à l'aide d'une table des unités des

corps quadratiques réels, de déterminer explicitement s (Am) pour tout corps

quadratique imaginaire Q -m).
En fait, les démonstrations que nous donnons, et qui sont entièrement

élémentaires, permettraient, pour m donné, et connaissant la valeur numérique

de sm, de déterminer une représentation effective de — 1 comme
somme de s (Am) carrés dans l'anneau Am.

Les résultats présentés ici ont été annoncés dans [1]. Signalons d'autre

part que M. Kneser, P. Draxl et M. Peters (voir [2], [3]) viennent d'obtenir
une méthode générale permettant d'évaluer la «Stufe» s (A) d'un ordre
d'entiers algébriques (totalement imaginaire) quelconque: cette méthode
utilise certains résultats de M. Eichler [5] et le théorème d'Approximation
de M. Kneser [6], et fait donc intervenir des considérations locales.

Notations

Dans tout ce qui suit nous désignons par

m un entier rationnel > 1 et sans facteur carré;

Km le corps quadratique imaginaire Q - m) ;

Lm le corps quadratique réel Q (y/m) ;
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N l'application norme dans l'extension LJQ ;

Em le corps biquadratique composé de Lm et Km ;

sm l'unité fondamentale de Lm, em um + vm^Jm;

Am l'anneau des entiers de Km ;

s (Am) la « Stufe » de Am c'est-à-dire le plus petit entier £ tel que
— 1 soit somme de s carrés dans Am ;

s (Z [yj — m]) la « Stufe » de l'ordre Z — m\.

1. Détermination de s (Am) lorsque m =1 (mod 8).

Théorème 1.

Si m est congru à 1 modulo 8, alors s (Am) 4.

Démonstration:
En effet, m — l 6 (mod 8) est alors somme de trois carrés dans

Z: m - 1 a2 + b2 + c2, et par suite - 1 a2 + b2 + c2 + ~m)2

est somme de quatre carrés dans Z [^J — m\ Am. Si on avait s (Am) < 3,

il existerait six nombres entiers xl9 x2, x3f yl9 y2, y$ tels que

- i X (xi+yid ~mY »

1

3 3

c'est-à-dire — 1 ^ x2 — my2 et 0 £ x^. Du fait que m — 1

1 1

(mod 8), il résulterait de ces deux égalités (en multipliant la seconde par 2

et en l'ajoutant à la première): i

- 1 Z (Xi+yf(mod8). :

1 i;

Or il est bien connu que — 1 n'est pas somme de trois carrés dans Z/8Z. |

Par conséquent, s (Am) 4. j

j:

2. Détermination de s (Am) lorsque m 3 (mod 4). |j

|1

Lemme 1. jj

Soit ym l'unité fondamentale de Z [^/m], (m> 1). Alors ym em, sauf si m
j

est congru à 1 modulo 4, auquel cas ym sm ou ym e^. ]
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Démonstration :

Si m yk1 (mod 4), l'anneau des entiers de Lm Q («s/m) est Z

Si m 1 (mod 4), on sait que 2sm a + bjm avec (mod 2) et

a2 - mb2 ± 4. On a alors si ab«=1 (mod 2)

mb 2m r—-.
£m ± 1 +-^—

et

4 - « ("^) + /// V»s z tV»]

ce qui démontre le lemme.

Proposition 1.

Soit m > 1 un entier sans facteur carré et non congru à 1 modulo 8. Alors

i) si m 1, s(Z [sj — m]) 1

ii) si m > 1 et N (eOT) — 1 s (Z [y/ - m]) 2

iii) si m > l et N (sm) + 1 s (Z [%/ - m]) 3

Démonstration :

Pour i), il n'y a rien à démontrer, ii) est une conséquence du lemme 1,

car si ym am + bmy/m avec am9 bm e Z, on a

i\fym ~ 1

et

- 1 a2m + - m)2.

Démontrons iii) en deux étapes:

1) s (Z [y/~m]) > 3. Il suffit de montrer que l'équation

(E) - 1 (x i y isjm)2+ (x2+y2J-m)2

n'a pas de solutions en nombres entiers xu x2, y1? y2. Or cette équation est

équivalente au système d'équations:

,c«. f-1 xl+ *2 - m(yi+yl)
(-'i1 i A0 xly1+ x2y2
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Du fait que Nem + 1, le système (5X) n'admet pas de solution entière
telle que x1x2 0. Ce système est donc équivalent au suivant

(S2)

xi (xi+xi)(myi-xi)
0 x1y1+ x2y2

x1x2 ^ 0

dont la première équation n'admet évidemment pas de solution entière non
triviale. Par conséquent s (Z [-J ~ m]) > 3.

2) s(Z [/- m]) < 3. Remarquons que m # 7 (mod 8) est somme de

deux ou de trois carrés dans Z et distinguons ces deux cas (encore que le

premier soit évidemment contenu dans le second):

— si m a2 + b2, on a évidemment {a,b) 1. D'après l'identité
de Bezout, il existe deux entiers et y2 tels que ay1 + by2 — 1 ;

on peut alors écrire

m{y\+y\)1 + {ay^-bytf
d'où la représentation

- 1 ay2-by1f+ (ylx/-w)2 +

— si m a2 + b2 + c2, on a {a, b, c) 1 ; toujours d'après l'identité
de Bezout, il existe trois entiers ylfy2,y2 tels Que ayi + by2 + cy2 1.

Utilisons ici la multiplicativité de la norme des quaternions. Nous obtenons

m (yi + yi + yi)(ayt + by2 +c+(by1-ay2)2

+ (cyi~ay3)2+ (cy2-by3)2 ;

il en résulte

- 1 (by3-cy2+yiy -m)2 +>'2V - m)2

+ (ay2-by1 +y3J -m)1

Ces deux calculs montrent de façon explicite que s (Z [yj — m]) — 3.

Théorème 2.

Si m > 1 est non congru à 3 modulo 4, alors s (Am) 2 ou 3 selon que
Nem - 1 ou + 1.
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Démonstration :

Il suffit de remarquer que, comme - m # 1 (mod 4), on a Am

Z [y/-m], et d'appliquer la proposition 1.

3. Détermination de s (Am) lorsque m 3 (mod 8).

Dans le dernier cas qui nous reste à étudier nous aurons besoin de

quelques résultats supplémentaires sur les unités de Lm.

Lemme 2.

Soit m > 1 un entier sans facteur carré tel que Nem 1. Les trois assertions

suivantes sont équivalentes :

i) iym est un carré dans Em Q {y/m, y/ - m), i y/ ~ 1 ;

ii) 2ym est un carré dans Z [y/m];

iii) Si on pose ym am + bmJm, (am, 6meZ), alors l'un des nombres

am + 1, am — 1 est u/7 carre daas Z.

Démonstration :

Il suffit pour le voir de décomposer iym sur la Q-base de Em formée par

1, UJm, -J ~m.

Proposition 2.

Soit m > 1 un entier sans facteur carré tel que Nsm + 1. Alors, si

s (Am) 2, l'un des nombres am + 1, am — 1 est un carré dans Z.

Démonstration:
D'après le lemme 2, il suffit de montrer que iym (ou a fortiori ism) est un

carré dans Em. Le corps Em est une extension biquadratique non réelle du

corps Q dont les sous-corps quadratiques sont Km, Lm et Q (/).

Il résulte du théorème de Dirichlet que le groupe des unités de Em est
de rang 1, donc isomorphe au groupe Wm x Z, où Wm est le groupe des

racines de l'unité du corps Em. Un calcul de degrés montre que
Wm { + 1, + i} dès que m > 6. Par ailleurs, il est bien connu (voir
les tables) que Ns2 Ns5 - 1 et que Ns3 Ne6 1 et le théorème 2

nous montre que s(A6) 3. Dans le cas m 3, on a e3 2 + y/3,
a3 2 et a3 — 1 1 est un carré. La proposition est donc vraie pour

L'Enseignement mathém., t. XVII, fasc. 3-4. 20
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m < 6 et on peut supposer dans la suite de cette démonstration que m > 6

Wm — { ± 1, ± i}. Soit alors rjm l'unité fondamentale de Em. Il existe

a et b e Z tels que &m iarjbm. Soit TV* l'application norme dans l'extension

EJKm. Il résulte de la théorie de Galois que pour tout x e Lm on a Nx
,N*x. En particulier:

1 Nem (N*rjm)b.

Dans ces conditions, si s (Am) 2,-1 est la norme d'une unité de Em

dans l'extension EJKm et le nombre b est pair. Il en résulte que em est de

l'une des quatre formes ± rj2f, ± i r\2f (peZ). Raisonnons par l'absurde
et supposons que sm ± rj2f. Cette hypothèse implique que sm est un

carré dans Em donc que Q est un sous-corps de Em. Le corps Q (-N/em)

est réel. C'est donc un sous-corps de Lm qui est le sous-corps réel maximal
de Em. Ce résultat contredit le fait que sm est l'unité fondamentale de Lm.

Par conséquent sm est de la forme + irj2£, ism + rj2mp est bien un carré
dans Em, et la proposition est démontrée.

Théorème 3.

Soit m > 1 un entier sans facteur carré et congru à 3 modulo 8. Les trois
assertions suivantes sont équivalentes :

i) sÇ4J 2;

ii) l'équation x2 — my2 — 2 admet une solution en nombres entiers

x,y;
iii) si on pose em um + vm~Jm, alors um — 1 est un carré dans Z.

Si ces conditions ne sont pas réalisées, alors s (Am) 3.

Démonstration :

Puisque m 3 (mod 8), il existe un diviseur premier p 3 (mod 4)

de m. De ce fait on a Nsm + 1, car — 1 n'est pas reste quadratique

modulo p. En particulier s(Z[^/-m]) 3 d'après la proposition 1. A
fortiori, s (Am) < 3, et il reste à prouver l'équivalence de i), ii) et iii).

i) implique ii). Si s (Am) 2, il existe quatre entiers rationnels xl5 x2,

Li, L2 tels que Xj ^ x2 =y i y2 ^ 1 (mod 2) avec - 4 (xl+y1-sJ-m)2

+ (x2+y2^~m)2- Il en résulte l'égalité

-4xj(xi + {x\ -myi).
Ceci n'est évidemment possible que si x\ + 2x2 x\ ~ my\ ~ 2,

d'où ii).
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ii) implique i). Soient x, y e Z tels que x2 — my2 — 2. Les entiers

x et y sont nécessairement impairs et on a

_ i -
2

+ ^x-y<J-rriJ

d'où i).

i) implique iii). D'après la proposition 2, il suffit de montrer que um + 1

ne peut pas être un carré dans Z. S'il en était ainsi, l'égalité u2m - 1 mv2m

impliquerait l'existence de deux entiers a et b tels que um — 1 ma2 et

um + 1 b2, c'est-à-dire b2 - ma2 2. Puisque i) et ii) sont équivalents,
il existe par ailleurs deux entiers c et d tels que c2 - md2 — - 2. On

vérifierait alors que (c + d^Jm) (a + b^/m)'1 est une unité de norme — 1 dans

Lm. Mais ceci est impossible (voir le début de la démonstration).

iii) implique ii). On a (um+ 1) (um — 1) *= mv2m. Si um - 1 est un carré
d'entier, soit um — 1 b2, alors um + 1 ma2, a e Z, et on a bien

— 2 — (um — 1) — (um + 1) a2 — mb2

Le théorème est ainsi démontré.

4. Quelques applications.

Proposition 3.

Si m est un nombre premier, on a s (Am) 2, sauf si m ^ 7 (mod 8),
auquel cas s (Am) 4.

Démonstration :

Le cas m 2 ayant déjà été examiné, on peut supposer m premier impair.
Si m 1 (mod 4), la théorie des genres (voir par exemple [6]) montre

que Nem - 1. On applique alors le théorème 2.

Si m sa 3 (mod 8), il suffit de montrer que um - 1 est un carré dans Z.
A priori, quatre cas peuvent se présenter:

a) um + 1 est un carré;

b) um + 1 est le double d'un carré;
c) um - 1 est le double d'un carré;
d) um — 1 est un carré.
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Eliminons les trois premiers. L'hypothèse a) impliquerait que — (um — 1)
m

est un carré et que 2 est reste quadratique modulo m, ce qui est faux. L'hypothèse

b) impliquerait que — (um — 1) est un carré; il existerait deux entiers
2m

x et y tels que 0 < x < um et x2 - my2 1 ; mais ceci contredirait le fait

que Gm um + vm\Jm est l'unité fondamentale de Lm. L'hypothèse c)

impliquerait que —(ww+l) est un carré dans Z; — 1 serait donc norme
2m

d'un entier de Lm, ce qui est absurde. Seul le cas d) est possible et donc,
d'après le théorème 3, s (Am) 2.

Enfin, si m 7 (mod 8), on applique le théorème 1.

Proposition 4.

Il existe une infinité d'entiers m tels que s (Am) 3.

Démonstration :

Il suffit de considérer les entiers m qui sont produit en nombre pair de

nombres premiers congrus à 3 (mod 4), ou les entiers m qui sont produit
d'un nombre premier congru à 5 (mod 8) par un nombre premier congru
à 7 modulo 8 (un tel entier m n'est pas représentable rationnellement par
la forme quadratique X2 + 2 L2, et l'équation - 2 x2 - my2 n'a donc

pas de solution en nombres entiers x, y).
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