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UN CRITERE D’IRREDUCTIBILITE DES POLYNOMES

par Maurice MIGNOTTE

NOTATIONS

A désigne un anneau commutatif unitaire tel que tout élément non nul
de A n’a qu’'un nombre fini de diviseurs.

P est un polyndme de degré d > 1 de 4 [x].
u = u (P) = nombre d’éléments a € A4 tels que P (a) soit une « unité » de A.
i = i(P) = nombre d’éléments a € 4 tels que P (a) soit irréductible dans 4.
Remarquons d’abord que 1 n’a qu’un nombre fini de diviseurs, ainsi

il n’y a qu’un nombre fini d’unités ey, e,, ..., ¢, dans A.

Soient a; 4, ..., Qjuj les ¢€léments tels que P(a) =e,j=1,.., k.

A étant intégre, on a l'inégalité u; <<d. Donc u = u; + ... + u; est fini.
Par contre, il peut se faire que i ne soit pas fini, si tel est le cas, dans tout
ce qui suit on pourra remplacer i par un entier i’ assez grand.

CRITERE D’IRREDUCTIBILITE

Théoreme : 11 existe une constante ¢ (ne dépendant que de A4) telle que
I'inégalité
i+ 2u—d>c

implique 'irréductibilité de P sur A4 [x].

Démonstration:

Supposons que l'on ait P = Q.R avec Q, Re A [x], avec deg (Q),
deg (R) > 1.
Les implications
P (a) irréductible = Q (a) ou R (a) inversible,
P (a) inversible = Q (a) et R (@) inversibles,

conduisent a I'inégalité
u(@Q) +u(R)>1i + 2u
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ou encore a

f(Q)+f(Ry>i+2u—d
avece
f(Q) = u(Q) —deg(Q), f(R) = u(R) — deg(R).

Supposons que I'on ait montré I’existence d’une constante F telle que
f(S) < F pour tout Se A4 [x], il est clair que le théoréme sera vrai avec
c=2F.

Soit, par exemple, u; = max (u;) et u, = max (u;).
1=j=k 2<j<k

Siu, = 0, alors on a f <0, il n’y a rien & démontrer.
Sinon on peut écrire
P(X) = (X—a1,1) "-(X_al,ul)Pl (X) + ¢
avec

P,(X)e A[X], et Play,) =e,.

Ainsi les a, ; — a;, sont des diviseurs de e; — e, il n’y en a qu'un
nombre fini n, par suite u; < n. Il en résulte que

f=u—-—d<kuy —d<kn-1.

Comme il n’y a qu’un nombre fini de choix possibles de e; — e,, I'exis-
tence de F est bien démontrée. Ceci acheéve la démonstration.

Exemples

A = Z.; ¢ = 4 convient.

A = anneau des entiers d’un corps quadratique imaginaire
Sid = Z][i],c = 8convient (i*=—1).
Sid = Z1[j], c = 16 convient (j>=1).
Sinon ¢ = 4 convient.

A = F, [X], F, corps fini a g €éléments, il est clair que ¢ = 2((g— 1)2-1)
convient.
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