
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 17 (1971)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SOME ALGEBRAIC CALCULATIONS OF WALL GROUPS FOR Z2

Autor: Berstein, Israel

DOI: https://doi.org/10.5169/seals-44579

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 19.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-44579
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


SOME ALGEBRAIC CALCULATIONS OF WALL GROUPS

FOR Z2

by Israel Berstein1

The surgery obstructions, which play such an important role in the

topology of manifolds, are elements of certain groups Ln defined by
C. T. C. Wall [8], [9]. Roughly speaking, if we have a map cp: Mn Nn

of degree 1, satisfying certain additional conditions, and we want to apply

surgery on cp to modify it into a homotopy equivalence between the two
manifolds, we encounter an obstruction 9 (cp), which lies in the group
K Oi)-

Here nx denotes the fundamental group of N.
A purely algebraic description of the odd dimensional Wall groups can

be given as follows.
Let a be an associative ring with unit, provided with an involution

(conjugation) —, i.e. with an anti-automorphism of order 2; let further k
be a fixed integer. For any positive integer r, let SUr SUr a -, k)
be the group of (2r x 2r) — matrices over a of the form

((a, ß, y, ô) are (r x r))-matrices), satisfying

(i) As A* e, s f where
\(—i) ^ oy

I is the identity,
and

(ü) <xß* (p - - l)k cp* yd* ^ - - 1 fxß*

for some (r x r) — matrices cp and xß. Conditions (i), (ii) are equivalent to
(i') and (ii), where

(i') + (-If ßy* I.
1 Partially supported by NSF grant GP 16862.
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We have used above the notation A* for the conjugate of the transposed
At of A.

Let the subgroup RUr a SUr be generated by the matrices in SUr
of the form

(0.1)

0

0

1

0

0 — l)k 0

0 0 0

and

(0.2)
U 0

0 V
(0.3)

I P

0 I
(0.4)

I 0

p I
(clearly LF* I, P cp - (-1 )*>*)•

For any A e SCJr we shall denote by A © I2p the ((r +p) x (r + /?)) — matrix

(0.5) A © I2p —

'x 0 ß 0\

0/00
y 0 .0 0

v0 0 0 //
The correspondence A ^ A® hP imbeds SUr into SUr+p and RUr into

RUr+p so that we can form the stable groups

(0.6) RU u RUr, SU u SUr
r r

Then, as shown by Wall, RU is normal in SU, and the quotient

(0.7) L2k+1( a, -) SU/RU

is abelian.

In particular, let a Z (n) be the integral group ring of n, where n

is a group, and let Z* { — 1,1 } be the multiplicative group of units

of Z. Suppose that w: n -+ Z* is a homomorphism. If % is the fundamental

group of a manifold M2k+1, then w is defined by w (g) - 1 if and only g

reverses orientations. Define an involution in Z (n) as the linear extension

of g w (g) g'1, g g 7i. We shall write in this case Lh2k+1 (n, w) instead of

L2k+i (a, — The surgery obstructions for modifying maps of manifolds
with fundamental group n into homotopy equivalences belong to Lh2k+1.
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If we are interested in simple homotopy equivalences, the definition has to

be somewhat modified, and we obtain a new group Lslk+1 (n,w). It goes

without saying that for groups n for which the Whitehead group vanishes,

the two definitions coincide, and we shall sometimes omit the superscripts.

This will be always the case in this paper (71 1 or 7i Z2).

It has been known for a long time from topological considerations,

that for the trivial group n 1, L2k+1 (1) 0 [3], [7]. If n Z2, w is

either trivial (in this case we shall write L2k+1 (Z2) instead of L2k+1 (Z2, w))

or w is an isomorphism (notation: L2k+1 (Z2)). Wall and Lopez de Medrano
have shown (mainly by topological methods) that L2k+1 (Z2) 0 and

L2k+ 1 (Z2) 0 if A: is even, whereas for k odd the latter group is Z2 (see [5],

[8] and [10]). Our aim is to recover all these results in a purely algebraic way,
by taking as our starting point the above definition of L2k+1. Such computations

for the case n Zp, p odd, have been performed by R. Lee [4]. Our
treatment is similar, but much more elementary. It has also points of
contact with [1], again being on a much more elementary level, due to the

simplicity of the group Z2.
Section 1 is concerned with the easiest case, that of the " non-orientable "

group L2k+1 (Z2). The key Lemmas 1.5 and 1.6, which are mild generalizations

of the euclidean algorithm for integers, are our main tool throughout
the whole paper. Another characteristic feature of our treatment, which has

been used before [8], is to always view Z (Z2) as the subring of the direct
sum Z©Z of two copies of the ring of integers, consisting of pairs (au a2)
such that aL a2 (2).

In section 2 we continue in the same spirit and prove that L2k+1 a 0,

for a — Z, and that L2k+1 (Z2) 0 if A: is even.
Section 3 contains the proof of the fact that for k odd, L2k+1 (Z2) has

at most two elements, by pointing out a possible generator of this group,
and by proving that it is at most of order 2. The computation is concluded
in Section 4, where we define an " Arf invariant " map c of SU onto Z2.
The main difficulty consists in showing that c is a homomorphism; then it
turns out that it vanishes on RU. This is achieved by computing mod 8 and
by proving some peculiar Lemmas (4.2-4.5) about determinants over Z8.

The author wishes to thank R. Narasimhan for his help during the
preparation of this paper.

1. When speaking about the ring of integers as a ring with involution,
we shall always assume that this involution is the identity. Let r and I
be two rings with involution which as rings are isomorphic to Z (Z2) and
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are defined in the following way. Let R be the subring of Z © Z consisting
of all pairs (a, b) such that a b (2). The correspondence a + -+

(a + b, a — b), where £ is the generator of Z2, clearly induces an isomorphism

between Z (Z2) and R. Then r is R with the identity involution and

I is R with the involution (a, b) (6, a). For every ring a let GLr a be

the group of invertible matrices of rank r over a ; if 31 is a two-sided ideal

of a GLr a 31) denotes the normal subgroup of GLr a consisting of
all matrices A /(3I).

Any matrix over I can be written as a pair (Al9 A2) where the components

add and multiply separately. The projection (Au A2) -> At induces a

homomorphism

(1.1) q: SUr(T) -* GL2r(Z)

Lemma 1.1. The map q is a monomorphem. Its image is p~l (SUr (Z2))
where

p: GL2r(Z)-GL2r(Z2)

is the canonical map.

Proof. Noticing that (A1, Aff (Ä2, Ä[) and interpreting conditions

(i) and (ii) in this case, it follows that (A1} A2) e SUr (I) if and only if

(1.2) A± g A2 A2 g Ai s, Ai A2 (2)

and

ocißl <Pi - (-I)k<pL**ßI <P2 -(-1)kwL

(1.3) =^i~(-l)k^T2,y2ôï =^2-(-lfx^Ti,
for some matrices \//u such that (pi m (p2, ißi \ß2 (2) where

A'f i
From (1.2) we obtain A2 g (A[) 1

g 1, which shows that q is injective.

Moreover, since pq commutes with the involutions on 1 and on Z2, it
induces a map of S Ur(E) into S Ur(Z2), i.e.

(1.4) p(Ai)eSUr(Z2).

Let now p(A%) eSUr(Z2). Then A2 g(AI)~t g _1 satisfies At g At2

8, A1 A2(2). Moreover one can check that af] y are even on
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the diagonal, so that we can take e.g. (— 1 )k l(Pz C~~
(a1ß2)ijif i < j,fitfij 0 if which means that

(AuA2)eSU(I).
'

We shall from now on write SUr q(SUr(I)), RUr q{RUr{I)).
The latter group contains all the matrices <jt from (0.1) and also all the

matrices

(i 5) (» Pi)- {'p ") f^+"r<2)
and the invertible matrices

(1.6) "), ^',1(2)

Lemma 1.2. RUr(Z2) SUr{Z2)

Proof. Let

a'(iiysv-^-
By applying first some permutations of type g u we can assume that | a | ^ 0.

Then

(1.7) A « RED, R, E, D e RUr (Z2)

where

(I Q\ (IßocT\ /a 0 \
Ä

V^'1 /)' £ " (o 7 )' D " (o (a^1)

Lemma 1.3. The reduction mod 2 ma/? p satisfies

p(RUr) RUr (Z2) - SLr(Z2).

Proof. It is enough to check that the elements of RUr (Z2) of form (0.2)
belong to the image. This follows however from the fact that over the field

Z2 any non-singular matrix is a product of elementary matrices, which
clearly belong to the image.
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If 91 is a two-sided ideal of a the group GLn a 91) consists of those
invertible matrices A for which A /(91); if 91 a, a, 91)

GLr a In particular, Lemma 1.1 implies that

(1.9) GL2r (Z, 2Z) cz SUr

Clearly GLlr{Z,2Z) Ker p and by Lemma 1.3, this means that

Lemma 1.4. SUr GL2r (Z, 2Z) • RUr.

We shall prove now a very elementary result which plays a major role
in this paper. Let at, bte Z; m,n > 0; we shall say that (al9 ~
~ (a2, b2) or that they are (m, h) — equivalent, if (a2, b2) can be obtained
from (au bf) by a sequence of operations which consist in replacing (x, y)
by (x,y±nx) or by (x + my, y).

Lemma 1.5. Let (a, b) be such that \a \ ^ 0 is minimal in the corresponding

(m, n)-equivalence class. Then

i) either na divides b or, for every integer k, we have

m
(1.10) I a I ^ — I b + kna |

ii) Moreover, ifmn < 4 and {a, b) (I, 0) mod 2, we have (a, b) (m~n) (a', 0).

Proof i) Suppose that, for some k, we have

(1.11) I aI > I b'Iwhere b' b + kna. Clearly, (a, b)^n) {a, //). If na Jf b, bf ^ 0 and (1.11)

implies that for a suitable choice of the sign, | a' | \ a ± mb' | < | a |,

which contradicts minimality.

ii) If na | b, then clearly {a, b) ~ {a, 0). If however na f b, by (1.10)

• m - -

we may assume that \a \ < — | b |. Since in our case mb f a we can have

n I, .Ialso \ b \ < - \ a \, which is clearly impossible if mn < 4 and \a \ / \b
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Lemma 1.6. Let A 1(2) be a (2r*2r)-matrix. Then by right and left

multiplication by elements of RUr n GLlr (Z, 2Z), A can be diagonalized.

Proof Multiplication of a row of A or of a column of A by an even

number, followed by its addition to another row or column, keeps A in

the same double coset with respect to both RUr and GL2r (Z, 2Z). By

using repeatedly Lemma 1.5 ii), with m n 2 and induction on the

order of A we can reduce A to a diagonal form.

Theorem 1.7. L2/c+ % (Z2) 0.

Proof The identification of the underlying ring R of 1 with Z (Z2),
described at the beginning of this section, carries over the involution of I
into the involution a + bÇ a - bÇ where £ is the generator of Z2.
This is exactly the involution for L2k+l(Z2). Therefore L2k+1(Z2)

SU/RU SU (I)jRU (T). According to Lemma 1.4 it is enough to

show that GL2r (Z, 2Z) c= RUr. This is however an immediate consequence
of Lemma 1.6, if we take in it A e GLlr (Z, 2Z).

2. Let St <= Z be either the unit ideal, or St 2Z. In both cases we
shall write GL (Z, St). Lemma 1.5 and 1.6 and, for St Z, a classical

consequence of the euclidean algorithm can be stated together as

Lemma 2.1. Let q — 1 if St Z and q 2 if St 2Z. Any pair
(a, b) (1, 0) (St) is (,q, qfequivalent to apair (a', 0). Moreover, if a m I St)

then there exist TuT2e GLn (Z, St) such that T1 a T2 is diagonal.

For a fixed k9 and for the trivial involution on Z, define the groups
SUr SUr(Z) and RUr RUr(Z). RU contains the matrices of the
form

(2.1)

(2'2'1 (o /) and (p /) where P 9 ~
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More general, let SUr (Z, 31) c= SUr n GLlr (Z, 31) consist of matrices
A such that

(2.3) ctßT cp — - 1 )kcpT, yôT \jj — - 1 )kij/T, (p i// 0 (31)

Recall that r is the same ring as I but endowed with the trivial involution.

Then SUr(r) consists of pairs (Al? A2), AieSUr such that Al
Az> octß] <Pi-(-1 )k(pTi,yßTtifri and <p1 (p2,ij/1 s
ip2 (2). Then (Z, 2Z) is isomorphic to the subgroup of SUr (T) which

consists of pairs (A, I). This shows, by the way, that SUr (Z, 2Z) is indeed

a group.
Let RUr (Z, 31) be the normal subgroup of RUr(Z) generated by the

matrices (2.1) and (2.2) lying in SUr (Z, 31) and by their conjugates. It can
easily be checked that RUr (Z, 31) c SUr (Z, 31).

Lemma 2.2. SUr (Z, 31) is generated by RUr (Z, 3t) and by SU1 (Z, 31).

Proof. We shall assume that r > 2 and prove that any A e SUr (Z, 31)

is equivalent mod RUr (Z, 31) to A' © / where A e SUr_ l (Z, 3t). It is

enough to show that we can make arr +1. Indeed, let su denote the

matrix with only one non-zero entry — 1 at the intersection of the z-th row
and y-th column, and let q e 31. The matrices

and their transposed belong to RUr(Z, 31). Moreover, if (a; b)

(arl, arr; brl, brr) then, for i ^ r,

(2.4) (ä; b) Bt (q) (ä; brU bri ± qarr, ...,brr + qari)

If arr 1, then (â; b) Bx (+ brl)... Br_l (+ briT„f) (5; 0, ér'r) and one

can immediately see that b'rr — 0 if k is even and that b 'rr g 231 if k is odd,
so that

(2.3)

(a; 0, 0, b'rr)Br( + b'rrl2) (a; 0).

Obviously, there exists U e GLr (Z, 31), such that

dU (0, ...,0, 1).

Then, if UVT /,
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(«; 0)
o

|°) =(0, ....0. 1:0 0).

By left multiplication by another matrix of the same type, we can bring a

0C' 0 \ ^ „ t t ,1 n
ß ^

to the form ~ ^ implies then that ^ \ 0 0

fy' °\ uSimilarly, by row operations we can make y
^

I. Now, the de-

/<L 0
finition of SUr implies that <5

0 14

It remains for us to show that we can make arr + l. Suppose that
the absolute value of arr is minimal for the equivalence class of A (and

positive). It follows from Lemma 2.1 that arr divides all arj, since we are

U Q\
allowed to multiply A by any matrix of type I where U is arbitrary

n
0 V

/

in GLr (Z, 2l). The same Lemma also implies that arr \ brh i < r. Indeed, in
addition to (2.4) notice that

(2.5) (ä;b)Bt (q)r (arl,±qbrr, a„ + ; b),

so that any (q, ^-equivalence for the pair (<arr, bri) can be realized. To
conclude the proof, we may, after reducing first ä to (0 0, arr) as above,
obtain b (0, brr). Then if k is even brr 0, if k is odd

(0, +

where arr and qbrr must be relatively prime (if we take q'= l if 21 Z
or q 2 if 21 2Z). By virtue of the preceding divisibility remarks, this

can happen only if arr +1.

Lemma 2.3. Let A |
a

Then, except for the case when k is odd
\c à

and 21 2Z, A e RU1 (Z, 21)

Proof, a) Let k be even. Then ab — ba and either a 0 or b 0.

Since we may always assume that a is odd, b 0, and A e RUl.

b) Let k be odd and A e RUX (Z). Then by multiplication with
we can assume that A e GLr (Z, 2Z). The argument of Lemma 1.6 shows
then that A e RUl RU1 (Z).
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Theorem 2.4. F2fc+Î (1) 0.

Proof. Follows from Lemmas 2.2 and 2.3, since Z (n) — Z if n — 1.

The group RUr (F) c SUr (F) is generated by pairs (<r£, cr.) where
is defined in (0.1), and (A1, Z2), — ^2 m°d 2, of the type

(Ui 0 \
(2-7) ^=(0 ' UiVi=I,Ui,V

(2-8) j4i (0 /') °r ^i=(p
<f>2 (2).

We shall need

Lemma 2.5. y4 (A1, A2), B (Fl5 i?2) e SL,. (F). F/zen Z B
belong to the same double coset with respect to RUr (F) if and only if there

exist matrices S, Te RUr (Z, 2Z), We RUr(Z) such that

(2.9) SWA^W'^T jB^1

Proof Let (2.9) be satisfied. By definition of RUr (Z, 2Z)

5 1
SmsmSm

1 T T1t1 T11 TmtmTm
1

where £f, Tte RUr (Z) and «f, tt e SUr (Z, 2Z) are generators of the type
(2.1M2.2).

It is enough to assume n m 1. By Theorem 2.4, A2, B2 e RUr (Z),
so that (Z2, Z2), (F2, F2) e RUr (F); since (^, /), (F, I) e RUr (F), we have,

assuming (2.9),

(Bx, B2) (Si, Sj) (Sl, /) (SI1, S?!) W, W) (A, (/121

(W-1,W-1)^,T,)(tuI){T-x\Ti1)

where all the factors besides (At,A2) are in RUr (r). Now let

(2.10) (BUB2) (Ri,R2)(A1,A2)(QuQ2)

where (Fl5 R2), (Qu Qf) e RUr (F). Then, as above, it is enough to assume

that (Ru R2), (Qu Q2) are generators of one of the types (2.7), (2.8) or
(ab af It is easy then to see that
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RiR 21, QiQl16 R U (z, 2Z e Ur (Z Ä! e Ur (Z ;

(RiA^R^iRiA&iQ^A^Rl^iRiRÏ)
which means that (2.9) holds.

Theorem 2.6. If k is even, L^+i (Z2) 0.

Prou/. Let (Au A2) e SUr ^F). Then 21 e PF, (Z, 2Z). But Lemmas

2.2, 2.3 imply that PF, (Z, 2Z) RUr (Z, 2Z); by the previous Lemma,

this means that (At, A2) e PFr (F). Therefore P2k+i CO ^ (recall that F
is isomorphic to Z (Z2) with the trivial involution).

/I 0\ /I 1

3. From now on k will be assumed odd. Let T — F —

X1 1/ \1 0

Then

(3.1) T4,P4ePL1(Z, 2Z), T2,P2ePL1(Z)

Lemma 3.1. (Z, 2Z) is generated by the matrices — 7, F4 a/2<i

TR^T-f i 0, 1,2,3

Proof A ^ SUl(Z, 2Z) if and only if | A | 1 and b

c 0 mod 4,

a—b b \ a b + 4a
TAT'1 AR4

\c +a —b —d d + b J \ c d + 4c

This means that by conjugation by powers of T and by multiplication by

powers of F, we can transform (a, b) into any (1, 4) equivalent pair. This
implies by Lemma 1.5 ii, that by our operations we can bring A to the
form P, where B F41 or B (~1) F4\ Conversely A can be obtained
from B by the same type of operations. The result follows by noticing that

T4k+iÄT-4k-i (^(f^F"') r~4k, where i 0,1,2,3,

Lemma 3.2. Any element (Au A2) e SU1 (F) is equivalent, mod RU (F)
to Dm (D, I) where
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/ — 3 4
(3.2) D1 TR4T~1 I

Proof. By Lemma 2.5, we see that (Au A2) ~ (A, I) where A

A^^1; by the same Lemma and the Lemmas 2.2 and 3.1, we may
assume that A — TlR4T~\ i < 3. But in view of (3.1), Lemma 2.5 implies
that (T2R*T~2, I) e RU (T) and that

(T3R4T~3,1) ~(Dl9I)

Proposition 3.3. The group L2k+1 (T) for k odd has at most 2 elements.

13 4N

Proof. It is enough to show that D" e RU (T). Let Ei

Z^i?4. Then (EUI) ~ D and therefore (AUI) ~ D2, where

(3.3) A,

13 0 4 0N

0-304
16 0 5 0

0-4 0 5

1

0

0 0 °\ / 13 0 4

3 0 4
1

/ o 1 0

0 1 ° / \ 16 0 5

4 0 5/ V 0 0 0

1 2\ U 0
Now let U gGL2(Z,2Z). Then B _ »

\ 6 13 /
2V V0 (V

etf!72 (Z,2Z)
and

/I 0 4 0^

BAXBT j 0 — 39 0 4 where M, N are of no interest to us.

\ M N

Now set

(I o\ /o 0\c \PfeRU^Z),where P (o 10 '' and

1 0 4 0'
CBA^C'1 0 1 0 4

M'
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is easily seen to belong to RU (Z, 2Z), and by Lemma 2.5 this implies
that D2 ~ (/, 1).

4. We shall now define a map cSU(F) -> Z2 which will ultimately
turn out to be a homomorphism which vanishes on RU and we shall

show that c (D) I, where D is the generator defined in the previous section.

Let (A1,A2)eSUr(r). Then A^In general, if
foe ß\

A e SUr(Z,2Z), we define k(A) as the determinant a taken
\y ô J

mod 8. k (A)isa unit in Z8, and we set c (Alt k modulo
the trivial units + 1. Thus c takes values in the quotient Z8/Z* « Z2.

Clearly c is well defined on the stable group SU (T).
Since we are calculating mod 8, it is convenient to consider the groups

SUr(Z8), RUr(Zg), SUr(Zs, Z4), RUr(Zs, Z4), defined analogously to
SUXZ), RUr(Z),SUr(Z, 2Z),RUr{Z,2Z).

Lemma 4.1. i) SU,(Z8, Z4) RUr(Z8, Z4).

ii) SUr(Z8) RUr(Zs).

Proof, i) Let A
\y ^ e SUr(Z8,Z

is a unit in Z8, so that

(4.1) A REF, R,E,FeRUr(Z8, Z4)

Vî'»-' ij' \o o )• \o («T)-'t

ii) Similar to i), except that we first have to apply some permutations
to make | a | odd.

Lemma 4.2. Let A I + IB be a matrix over Z8 and let Sp B denote
the trace of B and Bu, i < j\ be the minor

bti

bji

of B. Then | A \=> 1 + 2 Sp B+ 4 y Bu
i<j

L'Enseignement mathém., t. XVII, fasc. 3-4. io
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Proof. Left to the imagination of the reader.

Lemma 4.3. If A', A" e SUr(Z8, Z4), then k (A'A") k {A') k {A").

Proof Let

A A'A", a (/+ 2M') (/+ 2M") + 4N'R". By Lemma 4.2, k (A)
I I + 2M' I I / + 2M" |+4 Sp (N'R") n (A') k (A") + 4 Sp {N'R").

It is therefore enough to show that Sp (N'R") 0 mod 2. By definition
of SUr(Z8, Z4) we have

(I+ 2M')2N't 2 {(p+(pT)

and therefore

Then, Sp (N'R") Sp (cpi/z + cpil/7+ (pTil/ + (pTij/T) ~ 0 mod 2, since for
any P, Q,Sp(PQ) Sp (QP) Sp(PTQT).

Lemma 4.4. If A e SU(Z8), SeSU(Z8,Z4), then k(ASA~1)
± k (S).

Proof It is easy to check that ASA'1 e SUr (Z8, Z4), so that, by
Lemmas 4.3 and 4.1, it is enough to verify the assertion for generators of

RUr(Z8) and RUr(Z8, Z4). But any generator ^ ^
of RUr{Z8) is a

product of elementary generators of the same form, with P e/7- + eji
where st7 has only one non-zero entry 1 at the intersection of the z-th row
and the j-th column. In the following list of all possible combinations,
k (ASA'1) is the determinant of the matrix Rt:

(I + 2M') N't N,t cp + cpT ~ N' mod 2

Similarly,

R" \j/ + \jjT mod 2
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A \ (S S) c n (i

r2 R3

c :) R4 UocU'1 r5 / Re I

// ey+SjA
V° Z /

R-j oc Rs= I r9

C ' 0Nl

VSy+Syj /y
Rio a Ri i *12 I

The only non-trivial cases are

a) R1 is obtained from a by replacing otH by + ôu and all the other
elements in the z-th row and column by 0. Then | | ± öHAih where

An — Sa I oc I (since ôT oc~~1) which means that | R1 | ± ô2u\ ot\

± I a I (we are computing in Z8

b) R2 (R3) has non-zero non-diagonal elements only in the z-th row
(column) and all the diagonal elements are + 1, therefore | R2 | | i?3 |

± 1.

c) To evaluate R9 one uses Lemma 4.2. We have R9 I + 2B, where
B (Sij + Sji) Q. For i ^ j, B is a matrix with only two non-zero rows and

Q \R cp + (pT. If Q (qst), we verify that for i ^ j
(4.2) SpB 2qtj

and, with the notation of Lemma 4.2,

(4-3) Bkl 0 (k, ï) ^ (l9j), Btj q]j - quqjj q2.. mod 2

(we are using the fact that Q is symmetric and has even diagonal elements).
By (4.2) and (4.3),

\ Rg\ I + 4qu + 4q]j 1

since q-tj q2j mod 2.
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If / j, B 2 eu Q and Sp B 2qH 0 mod 4 while Bkl are zero
for all k < /, so that | 7?9 | 1 +2 Sp B 1.

d) The case of is similar to that of R9. Again, | R1X | 1.

Proposition 4.4. c A a homomorphhm and vanishes on RU (T).

Proof. Since reduction mod 8 maps SUr(Z) and SUr (Z, 2Z) into
SUr (Z8) and SUr (Z8, Z4), Lemma 4.4 implies that

(4.4) k^ASA'1) - k (S) for AeSUfiZ) and S e SUr (Z, 2Z

Let Z (Au A2\ B (Bu B2) e SU(r); by (4.4) and Lemma 4.3

c (AB) ± k(A1B1B21A21) ±K(A~11(A1B1B~21A21)A1)

±k(B1B21)k(A21A1) c(B)k(A1A21A1A~11) c(B)c(A).

We have, of course, used the fact that At e SUr (Z) and that A^B^^A'f
etc. belong to SUr (Z, 2Z).

Since c is now a homomorphism, the second assertion follows by

checking it on the generators of RUr (L), which is entirely trivial.

Theorem 4.5. For k odd c defines an isomorphism of L2k+1 (Z2)
SU(P)/RU(r) onto Z2.

Proof In view of Propositions 3.3 and 4.4 it is enough to exhibit an
element D in SU (T) for which c is non-trivial. Such an element is indeed

D (Z)l5 /), where D1 is described by (3.2), since (DJ — 3 which is not
congruent to + 1 mod 8.

Corollary 4.6. Let k be odd and let L2k+1 (Z) be the orientable Wall

group, defined similarly to L2k+1 (Z2) by considering the ring Z (Z)
Z [x, x"1] with the " trivial " involution. Then L2k + 1 (Z) is generated by

the class of the matrix

/l+x+x"1 x+x-1 \
\ —x—x_1 1—x—x-1/

and the map r: L2k+1 (Z) -» iJk+i (Z2) induced by Z -> Z2 a/7 isomorphism.
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Proof. The "trivial" involution Z(Z)-+Z(Z) which corresponds

to the orientable case w 1 is of course not really the identity; it maps x
into x-1. It is easy to check that S belongs to SU{Z(Z)) with respect to

this involution, r (S) e SU1 (Z (Z2)) corresponds under the identification

of Z (Z2) with F to the pair (Zl5 A2), where

and the first element of A1A21 is 5 whence c(r(S)) c(A1,A2) is non-
trivial. The result now follows from the fact [2], [6])) that L2k + 1 (Z) Z2

and from Theorem 4.5.
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