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infinitely many integer solutions can always be found if F is linear, i.e.
is a subspace. For the non-linear case we have neither a good generalization
of Dirichlet's Theorem nor anything like Roth's Theorem.

Suppose now that F is a hypersurface containing no integer point
x 0 and defined by the equation F (x) 0 where F is a form of degree d
with rational integer coefficients. For every integer point x / 0 we have

d
I F (x) I ^ 1, and since j —F (x) I ^ ct I x \d~1 (/= 1, n), the distance

1

dxt
from x to Fis ^ c2 | x |1_d, which in turn implies that

(V,x)lc3[xr',
where the constants depend only on F. This inequality may be interpreted as

a generalization of Liouville's Theorem. Any improvement of this inequality,
even though perhaps it may apply only to special classes of non-linear hyper-
surfaces, would be of great interest and would shed light on certain dio-

phantine equations different from the equations with norm forms discussed

in §10.
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