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10. NORM FORMS

10.1. Let K be an algebraic number field of degree f. There are ¢
isomorphisms of K into the complex numbers; denote the images of an
element o« of K under these isomorphisms by oV, ... «®. Let L (x)
= oyxX; + ... + a,x, be a linear form with coefficients in K. For 1 i = ¢
put LY (x) = a{’x; + ... + a{”x,. The norm

N (LX) = LD (x)... LY (x)

is a form of degree ¢ with rational coefficients. A form obtained in this way
will be called a norm form. It is easy to see that every form F (x) which has
rational coefficients and is irreducible over the rationals but which is a
product of linear forms with algebraic coefficients, is a constant times a norm
form. In particular when n = 2, every form with rational coefficients which
is irreducible over the rationals is essentially a norm form.

10.2. We may as well discuss more general products of linear forms
with real or complex algebraic coefficients. For any real or complex number «
we denote its complex conjugate by . The complex conjugate of a linear
form L(x) = oyx; + ... + a,x, is defined by L(x) = o;x; + ... + a,x,.
We shall call linear forms L, ..., L, a Symmetric System if, except for the
ordering, L, ..., L, are the same as the given forms.

THEOREM 10A (Schmidt, 1971b). Suppose L, ...,L, is a Symmetric
System of linear forms with algebraic coefficients. Suppose n > 0. The
Jfollowing two conditions are equivalent :

(@) There is a constant ¢, = ¢y (L, ..., L,;;n) and there are infinitely
many integer points X with

Ly (0 L) | < ey X[

(b) There is a rational subspace S* of dimension d with 1 < d < n and
there is a Symmetric System of linear forms L, ..., L with 1 S m <t

and iy, < ... < i, whose restrictions to S have rank r with
(10.1) r<dmln and r <d.

This theorem again contains Roth’s Theorem. It can be deduced from
the Subspace Theorem.
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10.3. We shall now discuss diophantine equations
(10.2) A (L(x)) = a

where a is a constant. As x runs through the integer points, A" (L (x)) runs
through certain rationals with bounded denominators. Hence there are
constants a for which (10.2) has infinitely many integer solutions x precisely
if there are constants b for which the inequality

(10.3) | A (L)) | < b

has infinitely many solutions. This will in fact be the case if the coefficients
of L are linearly dependent over the rationals, so that we shall assume in the
sequel that the coefficients are linearly independent.

We shall say that a linear form with coefficients in K 1s full in K if its
coefficients form a field basis of K. Suppose the linear form L (x) i1s full
in K where K is neither the rational field nor an imaginary quadratic field.
Further assume for a moment that the coefficients of L form in fact aninteger
basis of K. By Dirichlet’s unit theorem K contains infinitely many units,
and hence there are infinitely many integer points x with 4" (L (x)) = 1.
By studying units of certain subrings of K one sees more generally that if
L (x) is full in K where K is not rational or imaginary quadratic, then (10.3)
has infinitely many solutions if b is large enough. We shall say that a linear
form L (x) represents a linear form L’ (y) (where the number of components
of y need not be n) if there is a constant ¢ such that for every integer point y
there is an integer point x with L’ (y) = cL (x). Now suppose L (Xx) is a
linear form with coefficients in K. We shall call L (x) degenerate if it repre-
sents a linear form L’ (y) which is full in a subfield K’ of K which is

neither rational nor imaginary quadratic. For example, L (x) = \/le
+ \/3 x, + \/6 x3 is not full in K = Q(\/?_ \/3) but it represents the

form 2y, + \/6y2 \/2(\/2y1+\/3y2) which is full in K’ = Q(\/6) and
thus L (x) is degenerate. From what we said above it follows that for
degenerate L (x) and for large b the inequality (10.3) has infinitely many
integer solutions. A detailed proof may be found, e.g., in Borevich and
Shafarevich (1966, ch. 2).

10.4. The converse also holds:

THEOREM 10B (Schmidt, 1971b). Suppose L (x) is a non-degenerate
linear form with linearly independent coefficients in a number field K. Then for

{
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any fixed b, the inequality (10.3) has only finitely many solutions in integer
points X.

When the number of variables 7 = 2, this becomes Thue’s result on
his equation F(x, y) = m where F (x, y) is a binary form. When n = 3
the theorem was shown by Skolem (1935) when K has degree t = 5 and by
Chabauty (1938) for general degree, but these authors made the additional
assumption that among the isomorphisms of K into the complex numbers
there are at least two pairs of complex conjugates. Skolem and Chabauty
used a p-adic method. The general case n = 3 was settled by Schmidt (1967b).
Before the results of §7 were known, Gyory (1968) assumed the hypothetical
truth of Corollary 7B and derived results about norm forms in an arbitrary
number of variables. Since he did not have Theorem 10A as a tool, his results
are relatively weak. See also Gydry (1969), where he proves some special
cases of Theorem 10B. Ramachandra (1969) dealt with special norm forms
and derived for them an asymptotic formula for the number of solutions of
(10.3), thus generalizing Mahler’s (1933c) result.

Theorem 10B and the theorems of Skolem and Chabauty are non-
effective. Effective bounds for the size of the solutions of certain rather
special equations with norm forms were given by Skolem (1937) (for further
references see Skolem (1938)) and Feldman (1970b). See also the references
given at the end of §7.2.

If L (x) 1s full in K where K is neither rational nor imaginary quadratic,
then the solutions of an equation (10.2) may be parametrized by using
the group of units of K. More generally one can show that if L (x) is degen-
erate, then all solutions of (10.2) with finitely many exceptions belong
to finitely many parameter families. For example, in the equation

(10.4) ./V(\/Exl + \/§x2 + \/gx3) == 4,

all but finitely many solutions have x; = O or x, = 0 or x;, = 0 and hence
come from solutions of A" (\/2x; + /3x,) = a or A (\/Ex1 +- \/€x3) =a

or N (\/gxz + \/gx3) = q. Hence all but finitely many solutions come
from one of the three equations

/

NQ2x 4+ 16x;) = £ 2 /a, N (xy +/3x5) = £ - /a,

[\ R =

N (X + \/5x3) = ié\/a,
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where A, NV, A" are the norms from the fields K’ = Q(\/g), K"

=Q (\/—3) and K" = Q (\/—2). The solutions of these three equations can be
easily described in terms of the units of the fields K’, K" and K’"'. In parti-
cular (10.4) has only finitely many solutions unless a is a perfect square.

10.5. Roth’s Theorem implied not only that for an irreducible binary
form F(x,y) of degree ¢t = 3 there are only finitely many solutions of
| F(x,)| < a, but according to Theorem 2C there are only finitely many
solutions of | F(x,y) | < (|x|+|y])” if v < — 2. In the present context
it is reasonable to expect that “in general ” there are only finitely many
integer points x with

(10.95) I/V(L(x))l < |x|
if
(10.6) v<t-—n.

Using Minkowski’s Linear Forms Theorem one can easily show that unless
n = lorn = 2and no conjugate of L has real coefficients, there are infinitely
many X with | A" (L (x))| < ¢|x|*™"; hence ¢ — n in (10.6) is best possible.

Suppose K = Q () is a number field of degree ¢ and suppose 1
< r £ t. We shall say that K is r times transitive if for any r distinct
conjugates o'V, ..., al") of « there is an element ¢ of the Galois group of
Q («'V, ..., ) (i.e. the least normal extension of K) with ¢ («'!))
= o'V, .., o («'”) = Y. This definition is clearly independent of the
primitive element .

THEOREM 10C (Schmidt, in preparation). Suppose the coefficients of
L(x) = o;x; + ... + a,x, lie in a number field K and are linearly independent
over the rationals. Suppose that K is generated by the quotients o;fu;
(1=, j=n) and that K is (n—1)-times transitive. Finally assume that any
n of the conjugates of L (X) are linearly independent. Then for every v with
(10.6) there are only finitely many integer points x satisfying (10.5).

CoROLLARY 10D. Suppose L (x) is as above and suppose G (X) is a
polynomial of total degree v < t — n. Then the equation

N (L(x)) = G(x)
has only finitely many integer solutions.

This contains Corollary 2D.
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10.6. Both Theorems 10B and 10C are derived from Theorem 10A.
We shall briefly discuss the argument for Theorem 10B. We have to show
that L (x) is degenerate if the inequality

A (L) = LV . LO® | Se =c|x[

has infinitely many solutions. By the case n = ¢ of the assertion (a) = (b)
of Theorem 10A there is a subspace S and there is a Symmetric System
LW LUm) of forms whose restrictions to S¢ have a rank r with

(10.7) r<dmft and r <d.

One can reduce the situation to the special case where L (x) = x; +
+ orx, + ... + o,x, and K = Q («y, ..., o,), and where d = n. The condi-
tions (10.7) now become r < nm/t and r < n, and with

q = t/n
they become
(10.8) rg <m and r <n.

Now rq < m is impossible (this would imply infinitely many solutions
of | /(L (x))| < |x|7? for some § > 0), and hence the rank r of every
Symmetric System LUV, ... LUm) satisfies

(10.9) m s rq.

But by (10.8) there is a special Symmetric System LUV, ..., LU® of rank p
with

(10.10) U =pq and p<n.

I We choose u and p as small as possible with this property. We may assume
} without loss of generality that the forms LUV, .. LGw are 1 1,
k In what follows, « will be a primitive element of K, i.e. an element with
K = Q («). We have to distinguish two cases.

{ (A) For every element ¢ of the Galois group of Q («'V, ..., «®), the
| two sets { «f, .., 0™ } and { @ («V), ..., @ (™) } are identical or disjoint.

(B) We have not (A).

| In the case (A) it turns out that u divides ¢ and that L (x) represents
§ 2 full linear form L' (y) in a field K’ of degree #/u, where K’ is neither
| rational nor imaginary quadratic, and hence L (x) is degenerate. Let us
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discuss what happens in the case (B). For simplicity we shall assume that K §
is totally real. |

There is an element ¢ of the Galois group such that the sets {a‘"), ..., «
and {¢ (@), ..., ¢ (™)} are neither identical nor disjoint. We may assume
without loss of generality that

{(p(oc(l)) ) (oc(“))} — {oz(”, e oc(’), oc(‘“’l), e 06(2”_’)} .

Here 1 < /< pu— 1. The forms L™, ..., L™ have rank p, and hence also
LY L0 LD L5 D have rank p. Denote the rank of L), ..., L®
by r; and the rank of LW .. LW LGr=D by p, Tt is easily seen that
r, < 2p — ry, 1.e. that

ry +ry, < 2p.

Since u was chosen as small as possible with (10.10), and since / < u — 1,
we have I < r;q. The number 2u — [ of elements of LV, ..., LW .. LZr=D
satisfies 2u — [ < r,q by (10.9). Thus

2u =1+ Qu—1) <ryq+ryq =2pq,

which contradicts (10.10). Hence (B) is impossible if K is totally real.

We have in fact used the hypothesis that K is totally real, for in general
LY. LY need not be a Symmetric System, and / < r,q need not hold.
The situation is therefore somewhat more complicated if K is not totally real.

11. (GENERALIZATIONS AND OPEN PROBLEMS

11.1. The theorems of §7 and §10 can almost certainly be generalized
to include p-adic valuations. I understand that work on this question is
being done now. ( p-adic versions of the results of §2 were discussed in §4.5).
Next, suppose that K is an algebraic number field and that «,, ..., «, are
algebraic numbers such that 1, «y, ..., ; are linearly independent over K.
It is likely that for every 6 > O there are only finitely many I-tuples of elements

Bis s By of K with
(1.1 [0 = Bl <A (BT (=1, ),

where S (f) is a suitably defined height of f = (S, ..., f,). A possible
definition for 5 (f) is

A (B) = [Tmax (L, [[ By s -, B 11
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