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define a parallelepiped IT‘?’ in E* which we shall call the p-th pseudocompound
of the parallelepiped II defined by (8.4).

Remarks. Mahler (1955) defined the p-th compound of any symmetric
convex set, and the pseudocompound of a parallelepiped is closely related
to its compound. But the compound of a parallelepiped is not necessarily a
parallelepiped. Except for the notation, the (n—1)-st pseudocompound is
the same as the dual of a parallelepiped, and hence the results of the last
subsection may be interpreted as special cases of the results of the present
subsection.

THEOREM 8D (Mahler 1955).  Let Ay, ..., A, and vy, ..., v, be the successive
minima of a parallelepiped II and of its p-th pseudocompound IT P, respect-
ively. For o € C(n, p) put A, = II A; and order the elements of C (n, p) as

1eg

O1s ey 0y SUCh that A, < ... < Ay Then
vj></16j (]=1,,l)

Moreover, if xy, ..., x, are linearly independent integer points with (8.1),
i.e. with lLi (XJ,-)I = LR (G j=1,..,n), and if for © = {j,..,j,} in
C(n,p) we put X, = X;; A ... A X, then

L (X) | < AR,  (o,7eC(n,p)).

9. OUTLINE OF THE PROOF OF THE THEOREMS ON SIMULTANEOUS
APPROXIMATION TO ALGEBRAIC NUMBERS

9.1. Let us sez what happens if we try to generalize Roth’s proof to
prove, say, Corollary 7B. In Roth’s proof we constructed a polynomial
P (xy, ..., x,,) in m variables x, ..., x,, which had a zero of high order at
(a, ..., o). Hence the natural thing to try would be

(a) to construct a polynomial P (Xq(, .., X115 eel Xpgs oons X)) In ml
variables of total degree < r, in each block of variables Xpts -nes Xpi
(h =1, ..., m) with a zero of high order at («, ..., ot,; ...: Oy, ..., ;). Then

(b) one would have to show that if each of m given rational [-tuples

Ph: Py i
<f, e f) (h=1, ..., m) satisfies (7.2), then P also has a zero of high
h h

order at
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(c) one would have to show that under suitable conditions P cannot
have a high zero at such a rational point.

Finally

If we proceed in this fashion, we encounter difficulties in (c). In Roth’s
Lemma 3C it was essential that P had rather different degrees in its variables

and that the denominators in p—l, . Frm increased very fast. In our present
q1 qm

situation the first / denominators are equal, so that Roth’s Lemma does not
apply. The example m = 1, [ = 2, P (x,, x,) = (x;—Xx,)" shows that we
cannot expect to have a lemma similar to Roth’s in our present context,
since P has a zero of order as high as r at every point (&, &).

The polynomial P is defined on E' x ... x E' (m copies). While it is
difficult to say much about the order of vanishing of P at rational points
r; X ... X I,, it is easier to show that P cannot have a zero of high order on
certain linear manifolds .#; x ... x J, where each .#, is a rational
(i.e. defined by a linear equation with rational coefficients) hyperplane in E.
We can illustrate this when m = 1. Namely, .#, is defined by an equation
a, + a;x; + ... + a;x, = 0 which can be normalized such that a, a,, ..., q,
are coprime rational integers. If P (xy, ..., x;) has a zero of order = i on
A | (i.e. P has a zero of order = i at every point of .#,), then P (x4, ..., X,)
= (ag+a;x;+...+a,x)" R(x,, ..., x;), where R has integer coefficients
by Gauss’ Lemma. It follows that

(9.1) (H (M) < H(P)

where H (M) 1is the height of M (x) = ay + a;x; + ... + a;x;. This
inequality provides a good upper bound for i if H (M) is large.

9.2. It will be more convenient to deal with hyperplanes through the
origin in £'*! than with hyperplanes in E'. Hence we shall put

(9.2) | n=1+1

and we shall consider polynomials P (X, -.., X155 cor3 Xn1s -+ Xmy) Which are
homogeneous of degree r,, in each block of variables x4, ..., x,, (h=1, ..., m).
The manifold #; x ... x ., now becomes a subspace defined by
Ly (X115 eeos X1p) = oo = Ly (Xpn1s oo Xn) = 0, where each L, 1s a not
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identically vanishing linear form in x,q, ..., X, (h=1, ..., m). The poly-
nomial P vanishes on.#, x ... x #,, precisely if it lies in the ideal generated
by L,, ..., L,. A suitable definition of the index is now as follows.

Let L, = L, (X1, ..., X;) (h=1, ..., m) be not identically vanishing linear
forms. For positive integers r,, ..., r,, and for ¢ = 0 let J (c¢) be the ideal
generated by the products L,'* ... L,'™ with

The index of P with respect to (Ly, ..., Ly; Fy, -, I'y) 18 the largest value of ¢
such that Pe 7 (¢) if P is not identically zero, and it is + oo if P is identically
Zero.

9.3. Now suppose that L (x) = a;x; + ... + a,x, has real algebraic
coefficients. In analogy with Lemma 3A in step (a) in the proof of Roth’s
Theorem, one can construct a polynomial P as above which is not identically
zero and which has not too large rational integer coefficients, such that P

has index at least
1
——¢elm,
n

with respect tc (L, ..., L;ry, ..., r,,). Here L really occurs with m different
meanings; namely, the ~-th copy of L means oy x,,; + ... + o,x,, (h=1, ..., m).
Perhaps it should be explained why the factor L — ¢ in Lemma 3A is now

i
replaced by — —e. A form P in mn variables x;, ..., X{,; ...; X
n

mls =*°s Amn

is also a form in L, Xy,, ...y X135 o5 Ly Xp2y ooy Xy provided o # 0 (and
where L occurs with different meanings again). Now for “ most ” monomials

. : . 1
N L, X{o, coey Xqps eoes Ly X2y -oes Xy the degree in L will be about — times
n

, : 1
the total degree of the monomial, and hence will be greater than <——8>
n
times the total degree of the monomial.
But a result with only one linear form L is not enough. In general, say
when dealing with General Roth Systems, one has n linear forms L, ..., L,
to start with, and one can deal with them simultaneously. The following

result now replaces Lemma 3A.

L’Enseignement mathém,. t. XVII, fasc. 3-4. 17
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Lemma 9A. Let Ly, ..., L, be not identically vanishing linear forms with
real algebraic coefficients. Suppose ¢ > 0. Then if m > my (Ly, ..., L,; €)
and if ry, ..., 1, are positive integers, there is a polynomial P (x{{, ..., Xy,;
ooy Xt s Xun) 2 O With rational integer coefficients such that

(1) P is homogeneous in x,y, ..., x;, of degree r, (h=1, ..., m).

1
(1) P has index = (———8) m with respect to (L;, ..., L;; 7y, ooy Fry)
n
(i=1, ..., n).

(iiiy H(P) < B!

Tt phere B = B(Ly, ..., L,).

This takes care of generalizing part (a) of Roth’s proof. We have chosen
our definition of the index such that (c¢) has a chance of going through,
and in fact one can derive from Roth’s Lemma 3C a more general lemma
that applies in our situation. Namely, if M, (x), ..., M,, (x) are linear forms
with rational integer coefficients, then under suitable conditions the
index of P with respect to (M, ..., M,,; ¥1, ..., Fpy) 18 < €.

9.4. If thus remains to deal with part (b). Suppose, say, that we want
to derive a criterion for General Roth Systems as defined in §7.3. Suppose
L, .., L, are linear forms with real algebraic coefficients and suppose
vy + ... + v, = 0. Suppose there is a 6 > 0 and there are arbitrarily large
values of Q for which there is an integer point x # 0 with | L; (x) ‘ < QVi7°
(i=1, ..., n). Assume in particular that this is true for O = Q4, ..., O,
and with integer points X,, ..., X,,, respectively. An argument like the one
used in the proof of Lemma 3B shows that if suitable auxiliary conditions
are satisfied, then the polynomial P of Lemma 9A does in fact have

P(x,,....,x,) =0.

But this is not what we really need. Namely, we need a rational subspace of
the type A4, X ... x M, where each .#, is a hyperplane of E", such that P
vanishes on this subspace.

There is a way out of this difficulty, although it is a rather costly one.
Namely, we have to assume that for each Q, (=1, ..., m) there is not just
one but there are

| =n-—-1

linearly independent integer points x\", ..., x;" with




— 237 —

9.3)  |L,xI)| <047 (i=1,...,nj=1,...,h=1,...,m).

Now if .#, is the hyperplane through 0 spanned by xiV), ..., x" (

= 1, ..., m), then one can show that P vanishes on #, x ... x M, In
fact one can show that if M, is the linear form defining .#, (h=1, ..., m),
then the index of P with respect to (M4, ..., M,,; F{, ..., I'y) 18 = me, which
in conjunction with (c) gives the desired contradiction.

9.5. But what have we really shown now ? The inequalities

(9.4) x| Q"  (i=1,..,n)

define a parallelepiped. The presence of / = n — 1 linearly independent
integer points xV, ..., x¥ with | L; (xV) | < o'’ (=1, ..,n;j=1,..,1)
means that the (n—1) st minimum A,_; = A4,_; (Q) satisfies 1,_; < Q7°.
The inequalities (9.3) mean precisely that A,_,(Q) < 07° for QO
= 0, 05, ..., Q,,. Thus we obtain a theorem about 4,_,:

THEOREM 9B. (Theorem on the next to last minimum ). Suppose n = 2
and Ly, ..., L, are linearly independent linear forms with real algebraic
coefficients, and suppose L1, ..., L, are their duals. Suppose § > 0, suppose
Y1+ ... + 7y, =0, and let X be the set of integers i in 1 < i < n for which

There is a Qo = Qo (Ly, ...y Ly3 V15 .or Yu3 0) with the following property :
Let 1y = 4, (D), ..., 4, = 2,(Q) be the successive minima of the paral-
lelepiped 11 (Q) given by (9.4). Then for Q > Q, either

(95) /’{n—l > Q_é
or
(9.6) L (x) =0 for every i€,

where X1, ..., X, are the duals ') to linearly independent integer points X, ..., X
with x; € 4; 1T (j=1, ..., n).

It was clear from the discussion above that some inequality such as
(9.5) would result. The hyperplanes .# of the discussion above were spanned
by Xy, ..., X, (but with the notation x*’, ..., x"), and hence the coeflicients

n

1) I.e. they satisfy Xx% = 8;; (i, j=1, ..., n).
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in the defining equation for .# are proportional to x,. The alternative (9.6)
had to be put in to allow for the possibility that .# behaves in a somewhat
degenerate fashion. In most cases, e.g., if the coefficients of some L’ with
i e 2 are linearly independent over the rationals, then no integer point
x # 0 can satisfy (9.6), and then (9.5) must hold.

Theorem 9B gives information on A,_, rather than on A,. In what
follows, transference theorems will be used to gain information on A,.

9.6. Theorem 9B says that if Q is large and A,_, < Q% then x,
must lie in a certain subspace. The inequality (8.7) of Mahler’s Theorem 8C
further restricts the possibilities for x,. A combination of these results yields

CoroLLARY 9C. Suppose Ly, ..., L,, V15 «-0s Y 0, X; = X, (0), ..., X,
= X,(0),x; = X (0), ...,X, = X,(Q) are as above. Suppose there are
arbitrarily large values of Q with

(9.7) oy < Q70

Then there is a fixed vector ¢ and there are arbitrarily large values of Q with
(9.7) and with x,(Q) = c.

Next, the condition (9.7) will be replaced by
(9.8) Iy <Q702,.

The latter condition usually is milder, since 4, > 1 by (8.5).

THEOREM 9D. (Theorem on the last two minima). Suppose L, ..., L,,

Vis woos Vs O X1, ooy Xy Xq, ..., X, @re as above. Suppose there are arbitrarily g
large values of Q with (9.8). Then there are arbitrarily large values of Q with §

(9.8) and with x, (Q) = ¢, where ¢ is a fixed vector.

To prove this theorem one needs Davenport’s Lemma (Theorem 8B).
Namely, put po = (A ... 4,42 _;)"/" and

P1 = PolAi s e Py = PolAn—1 > but p, = poli,_1.

By Davenport’s Lemma we can compare the successive minima A, ..., 4,
of IT with the successive minima A, ..., 4, of another parallelepiped II'.

We have A;> < pid(j=1,..,n) and po <A <..< A1 <po |

< (A_ /2" < O7%" by (8.5) and (9.8). Hence 4,_; < Q™% if Q
is large, and applying Corollary 9C to I1' we see that x, (Q) is the same
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for arbitrarily large values of Q, which in turn (by the last assertion of
Davenport’s Lemma) implies that x. (0) is the same for certain arbitrarily
large values of Q.

9.7. Tueorem 9E. (Subspace Theorem). Suppose Ly, ..., Ly, V1, «os Yus O,
x,(0), ..., X,(Q) are as above. Suppose there isa din 1 =d=n — 1 such
that

(9.9) by < Age Q70

for certain arbitrarily large values of Q. Then there is a fixed rational subspace
S of dimension d such that for some arbitrarily large values of Q with (9.9),
the points

x,(0), ..., x,(Q) liein S°.

For the proof put p = n — d and construct the linear forms L) as in
§8.4. Also put I', = X 7y,. The inequalities

LX) 20'° (0 eC(n,p))

define the p-th pseudocompound II1? of II. By Mahler’s Theorem 8D
the last two minima v,_,, v, of this pseudocompound have

Vieg P K Adgradars Ay i > K Ay idarataes o Ao

whence v,_; < v, Q%2 for large QO by (9.9). An application of Theo-
rem 9D shows that X, 1) is the same for some arbitrarily large values of Q.
Some algebra combined with the last assertion of Theorem 8D shows that
(because of (9.9)) X, is proportional to X;,; A ... A X,. It follows that
the subspace S* spanned by X, {, ..., X, is the same for some arbitrarily large
values of Q. But for these values of Q the vectors x, ..., x; lie in the ortho-
gonal complement S¢ of S

9.8. We shall illustrate the power of the Subspace Theorem by deducing
Theorem 7E. Suppose we have 6 > 0, 1 < m < n, m linearly independent
linear forms L, ..., L,, with real algebraic coefficients, and infinitely many
integer solutions x # 0 of

) X; in E! is defined in terms of TI(P) (Q) just as x* in E” was defined in terms of

IT (Q).
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| L(x) | < [x|7@mmim=e (i=1,..,m).

We may assume without loss of generality that Ly, ..., L,, X{, .o, Xp—m
are linearly independent. Put L,,.; (X) = x, ..., L, (X) = x,_,,. It 1S easy
to see that there is a 0’ > 0 and there are arbitrarily large values of Q for
which there are solutions x # 0 of

L] Q" (i=1,....n)
where y;, = ... =y, = — (n—m)/m and y,,, = ... =y, = 1. For these
values of Q one has A, = 4, (0) < Q0™%. Since A, <..=< 1, and

l < 4.4, <1, thereisadwith ]l £d<n—1andao” > 0such that
(9.10) Jg < Ags1 077

for arbitrarily large values of Q. Let S be the subspace in the conclusion
of Theorem 9E.

Let IT" (Q) be the intersection of IT (Q) and S¢; this is a symmetric
convex set in S% Let A7, ..., A; be the successive minima of IT" (Q) with
respect to the lattice A of integer points in ¢, and let V" = V" (Q) be the
(d-dimensional) volume of IT" (Q). By applying (8.3) to the lattice 4 we
obtain

(9.11) 1< 2.V <1,

where the constants in < may depend on S? There are arbitrarily large
values of Q for which x, (Q), ..., X, (Q) lie in S9, and for these values we
have A, = 13, ..., 4, = A;, whence by (8.5) and (9.10),
Apcidy =g dg = Ay A" (Ay .. A= Din
< (g o B Gy o 2y Q0000 ¢ @=0'dn=din — =,
say. In conjunction with (9.11) this yields V* > Q".
Now if L,, ..., L, have rank r on S then

V* < Q—(r(n-—m)/m)+d—r e Qd—(rn/m) )
It follows that d — (rn/m) = n > 0 and that
r <dmjn.

This cannot happen if (7.6) holds, and hence L4, ..., L,, is a Roth System
in this case. Since the case of linearly dependent forms L, ..., L,, is trivial
and since the other half of the theorem was proved in §7.3, Theorem 7E

is established.
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